用户名: 密码: 验证码:
催化裂化装置采用助剂增产丙烯的工业应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文对国内外增产丙烯的技术发展情况进行了较全面的综述。针对中国石化股份有限公司上海高桥分公司1#催化裂化装置的特点,开展了MP031、OlefinsMax和LOSA-1丙烯助剂工业应用试验。在应用MP03 1丙烯助剂后,液化气收率上升0.35个百分点,丙烯收率(丙烯相对于原料收率,不包括干气中的丙烯,下同)上升了0.51个百分点。在应用OlefinsMax丙烯助剂后,液化气收率上升1.36个百分点,丙烯收率上升了0.61个百分点。在应用LOSA-1丙烯助剂后,液化气收率上升0.81个百分点,丙烯收率上升了0.62个百分点。三种丙烯助剂都可以显著提高丙烯的收率和液化气的收率,但对产品分布和汽油、柴油的质量没有明显影响。不过会给催化装置吸收稳定系统系统操作带来压力,导致干气中丙烯含量增高。使用增产丙烯助剂出现的上述问题提出了优化吸收稳定系统操作条件、改进工艺流程及设备结构等措施,将干气中丙烯含量降低到2 v%以内。本论文的研究结果对于其他同类催化裂化装置通过应用丙烯助剂提高丙烯收率有很好的借鉴作用。
This paper described the progress of the technologies to produce more propylene comprehensively both in domestic and abroad. According to the features of Shanghai Gao Qiao 1# FCC Unit of Sinopec, Industrial application tests of the propylene additives such as MP031, OlefinsMax and LOSA-1 were carry out. After MP031 additive was used, yield of the liquified petroleum gas (LPG) was increased by 0.35%, propylene yield (the yield of propylene relative to feedstocks, not including the propylene in dry gas) rose by 0.51%. And when LOSA-1 was added, yield of the liquified petroleum gas increased by 0.81%, propylene yield was increased by 0.62%. Three additives can significantly enhance the yield of propylene and the yield of LPG, but don't significantly impact the qualities of gasoline and diesel. Meanwhile they would affect the operation of absorption stabilization system and lead to higher. In response to the above mentioned problem, the measures such as optimizing absorption stabilization system, improving process and device structure were put forward,to control. propylene content in dry gas under 2 v%.. The results of this research are useful for other similar units to improve propylene yield by propylene additive.
引文
[1]钱伯章.丙烯系列石油化工的技术进展[J].当代化工,2003,31(1):24-27
    [2]王巍,谢朝钢.催化裂解(DCC)新技术的开发与应用[J].石油化工技术经济,2005,21(1) : 8-13
    [3]赵淑战译.由深度催化裂化(DCC)生产丙烯[J].国内外石油化工快报,2004,34(11):7-10
    [4]张永连,刑颖春.MGG工艺的工业试验[J].炼油设计,1993,23(3):4-9
    [5]霍永清,王亚民.多产液化气和高辛烷值汽油MGG工艺技术[J].石油炼制,1993,24(5): 41-51
    [6]钟乐桑,霍永清等.常压渣油多产液化气和汽油(ARGG)工艺技术[J].石油炼制与化工,1996,26(6):15-19
    [7]霍玉杰.多产液化气和高辛烷值汽油的MGG工艺技术及其RMG、RAG催化剂.齐鲁石油化工,1995,3:192-195
    [8]刘怀元.MIO技术的工业应用[J].石油炼制与化工,1998,29(8):10-13
    [9]刘仪忠译.MIO工艺运转一年的总结[J].南炼科技,1998,5(1):61-70
    [10]谢朝钢,郭志雄.催化热裂解(CPP)制取烯烃技术的开发及其工业试验[J].石油炼制与化工,2001,32(12):8-10
    [11]谢朝钢.催化热裂解生产乙烯技术的研究及反应机理的探讨[J].石油炼制与化工,2000,31(7):40-44
    [12]伊红亮,施至诚.催化热裂解工艺专用催化剂CEP-1的研制开发及工业应用[J].石油炼制与化工,2002,33(3):38-42
    [13]许友好,张久顺;杨轶男,等.一种制取异丁烷和富含异构烷烃的催化转化方法[P].CN 1232069A,1999-4-23
    [14]许友好,张久顺,徐惠,等.多产异构烷烃的催化裂化工艺的工业应用[J].石油炼制与化工,2003,34(11):1-6
    [15]许友好,张久顺,马建国,等.生产清洁汽油组分并增产丙烯的催化裂化工艺[J].石油炼制与化工,2004,35(9):1-4
    [16]耿凌云,居荣富,吴之仁,等.灵活多效烃类催化裂化方法[P].ZL92105596.X.1993-2-17
    [17]王文柯.FDFCC工艺降低催化裂化汽油烯烃含量[J].石化技术与应用,2004,22(2):115-118
    [18]王文柯.FDFCC多产柴油和液化气工艺研究[J].河南石油,2004,18(1):58-60
    [19]杨朝合,山红红,张建芳.两段提升管催化裂化系列技术[J].炼油技术与工程, 2005,35(3):28-33
    [20]王刚,蓝兴英,张国磊,徐春明,等.重油催化裂化MZCC技术的工艺基础研究[J].炼油技术与工程,2008,38(12):6-11
    [21]曹占友,时铭显.催化裂化提升管末端旋流式快速分离系统的研究[J].石油炼制与化工,1996,26(10):10-13
    [22]高金森,毛羽,徐春明,等.一种重油催化裂化沉降器抑制结焦的方法[P].ZL200310121301.1,2005.06.15
    [23]王刚.高温短接触时间重油催化裂化反应规律研究[D].北京:中国石油大学(北京)博士论文,2006.8
    [24]陈祖庇,张久顺,钟乐桑,等,MGD工艺技术的特点[J].石油炼制与化工,2002,33(3) : 21-25
    [25]钟孝湘,张执刚,黎仕克,等,催化裂化多产液化气和柴油工艺技术的开发与应用[J].石油炼制与化工,2001,32(11):1-5
    [26]康飚,王庆元,康庆山,等,福建炼化公司催化裂化装置应用MGD技术的工业试验[J].石油炼制与化工,2002,33(2):19-23
    [27]Phillil K. Niccum. Maxofin:a novel FCC process for maximizing light olefins using a new generation ZSM5 additive. NPRA Annual meeting[M],AM-98-18, 1998
    [28]孙昱东,窦锦民,黄小海.催化裂化生产低碳烯烃技术综述Ⅰ.生产低碳烯烃工艺[J],2004,160-163
    [29]Hairston D. Process advance for increase propylene production[J], Chem Eng.1999,106(5):30-36
    [30]程哲生.鲁姆斯公司多产丙烯的SCC催化裂化[J].石油化工要闻,2000,(1):13-14
    [31]Fluid Catalytic Cracking[J]. Hydro Proc,2000,79 (11):107
    [32]汤海涛 王龙延 王国良,等,灵活多效催化裂化工艺技术的工业试验[J].炼油技术与工程,2003,33(3):15-18
    [33]Mohammad A, Abul—Htunayel. Preprints Division of Petroleum Chemistry of ACS,2001,46(4):371-373
    [34]Juha J. Jyrki H. Preprints, Division of Petxoleum Chemistry of ACS[J], 1999,4 (4):460-462
    [35]Mandal Sukumar. Process for the production of high yield of LPG and light olefins, EP0922744(A1),1999,6
    [36]Mingting Xu, Edison, NJ, John Macaoay, In-situ ZSM-5 synthesis, US7344695 B2,2008,5
    [37]Y. G. Adewuyi, D. J. Klocke, Effects of high-level additions of ZSM-5 to a fluid catalytic cracking (FCC) RE-USY catalyst [J]. Applied Catalysis A:General, 1995,131(1):121-133
    [38]Hairston D. The divide in distillation[J]. Chem Eng,1999,32
    [39]Pimienta R. Quinones A R. Imhof P, Akzo Nobel Catalysts Symposium,1998, 6(12):25-29
    [40]Picciotti M, Novel ethylene technologies developing, but steam cracking remains king[J].Oil Gas J,1997,95(25):53-56
    [41]余达荣.高丙烯选择性催化裂解催化剂MMC-2的工业应用[J].石油炼制与化工,2004,35(10):1-4
    [42]张执刚谢朝钢施至诚,等,催化热裂解制聚乙烯和丙烯的工艺研究[J].石油炼制与化工,2001,32(5):21-24
    [43]许友好,龚剑洪,张久顺,等.多产异构烷烃的催化裂化工艺两个反应区概念实验研究[J].石油学报,2004,20(4):1-5
    [44]邱中红,龙军,陆友宝,等.MIP-CGP工艺专用催化剂CGP-1的开发与应用.石油炼制与化工,2006,37(5):1-5
    [45]魏小波,刘丹禾,郝代军,等,催化裂化多产丙烯助剂LPI-1的工业应用[J].炼油技术与工程,2004,34(9):38-41
    [46]卫纲领,周志宏,LPI-1催化裂化多产丙烯助剂工业应用总结[C].2005年中国石油炼制技术大会论文集,2004,454-459
    [47]毛安国,刘宪龙,提高催化裂化液化石油气中丙烯浓度助剂的工业应用浅析[J],炼油技术与工程,2004,34(11):27-30
    [48]孙慧聪,潘金亮,刘慧丽,等,催化裂化丙烯增浓助剂MP031的工业应用[J],河南化工,2005,22(4):24-25
    [49]陆颖,罗勇,黄道培.LOSA-1丙烯增产助剂的工业应用[J].石化技术与应用,2005,23(4):295-298
    [50]刘天波,刘焕章,林春阳,等.LOSA-1增产轻烯烃FCC助催化剂的开发及工业应用[J].工业催化,2005,13(12):30-32
    [51]秦松,邹旭彪,张忠东.多产丙烯FCC催化剂助剂LCC-A性能和工业应用[J].工业催化,2005,13(9):10-13
    [52]王巍.催化裂化生产丙烯技术的开发与应用[J].炼油技术与工程,2005,35(2):20-23
    [53]刘春岩,车延超,曹祖宾,等.在改性H β沸石催化剂上FCC汽油的加氢改质[J].燃料化学学报,2004,32(3):367-371.
    [54]陈俊武,曹汉昌.催化裂化工艺与工程[M].131-137.
    [55]陈良,施力.FCC硫转移复合助剂的研究[J].燃料化学学报,2005,33(1):83-88.
    [56]沈志虹,师为,李红杰.Cr改性USY分子筛提高裂化催化剂的异构化性能[J].燃料化学学报,2005,33(3):363-366.
    [57]闵恩泽.工业催化剂的研制与开发——我的实践与探索[M].北京:中国石化出版社,131.
    [58]Aedewuyi Y G, Klocke D J, Buchananl J S. Effect of high level addition of ZSM-5 to a fluid catalytic cracking(FCC) Re-USY catalyst[J].Applied Catalysis A,1995,131(1):121-131.
    [59]杨小明,罗京娥.磷氧化物改性对ZSM-5沸石物化性质及择形催化性能的影响[J].石油炼制与化工,2001,32(11):48-51.
    [60]Degnan T F, Chitnis G K, SchipperP H. History of ZSM-5 FCC additive development at Mobil[J]. Microporous and Mesoporus Materials,1996,41(2):365-366.
    [61]Haag W 0, Lago R M, Wiesz P B. Faraday Discuss Chem Soz 72,1982:317.
    [62]Buchanan J. S. Reactions of model compounds over steamed ZSM-5 at simulated FCC reaction conditions[J]. Applied Catalysis,1991 (74):83-94
    [63]Zhao X. Z, Roberie T. G. ZSM-5 additive in fluid catalytic cracking.1. Effect of Additive Level and Temperature on light olefins and gasoline olefins[J]. Ind Eng Chem Res 38(10),1999:3847-3853
    [64]Buchanan J. S. The chemistry of olefins production by ZSM-5 addition to catalytic cracking units[J].Catalysis Today,2000 (55):207-212
    [65]徐永根.优化催化裂化工艺流程节约装置能耗[J].炼油技术与工程,2004,34(9):24-25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700