用户名: 密码: 验证码:
FCC汽油中硫化物在改性纳米HZSM-5催化剂上的脱除
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
催化裂化(FCC)汽油约占我国成品油总量的80%。FCC汽油中的烯烃和硫含量很高,常用的加氢脱硫催化剂如Ni-Mo/Al_2O_3等虽然可以降低汽油中的硫含量,但在加氢脱硫过程中会造成烯烃大幅减少,使辛烷值损失。
     纳米ZSM-5分子筛催化剂由于晶粒小、微孔短、孔口多和外表面酸量大等特点,在催化脱除噻吩硫及烃类芳构化方面表现出比微米ZSM-5分子筛更好的活性和稳定性。负载稀土金属氧化物和过渡金属氧化物如Ni、Mo都可以进一步提高催化剂的活性及稳定性。本论文首先采用乙酸镍、硝酸镍和硫酸镍作为镍源,比较了用不同镍盐改性的纳米HZSM-5催化剂在FCC汽油脱硫降烯烃过程中的催化活性:在此基础上研究了稀土氧化物对HZSM-5及NiSO_4改性HZSM-5催化剂催化活性的影响:研究了HZSM-5负载NiSO_4制备的芳构化降烯烃脱硫工业催化剂(FDO)再生后SO_4~(2-)的流失对催化剂脱硫活性的影响;最后还研究了MoO_3改性对HZSM-5负载La_2O_3和NiSO_4制备的Ni-La/HZSM-5催化脱硫活性的影响。
     得到如下主要结果:
     1.Ni(Ac)_2和Ni(NO_3)_2改性的纳米HZSM-5催化剂的脱硫稳定性有明显改善,当用NiSO_4改性后,脱硫率达80%,并且稳定性有了很大提高。
     以γ-Al_2O_3和SiO_2小球为载体,分别负载NiSO_4、Ni(Ac)_2和Ni(NO_3)_2所做的对比研究表明,NiSO_4中的S=O与HZSM-5催化剂和γ-Al_2O_3载体中的铝氧化物之间存在着强的相互作用。这种强相互作用可以产生以下影响:(1)产生大量的L酸中心,提高L/B比值,增强L酸与B酸的协同作用;(2)使Ni盐在催化剂表面形成单层分布;(3)减少NiO与Al_2O_3作用生成尖晶石结构NiAl_2O_4的机会:(4)增强催化剂对噻吩的选择性吸附能力,促进脱硫反应的进行。而SO_4~(2-)与SiO_2之间则不存在类似的相互作用。
     单纯γ-Al_2O_3负载SO_4~(2-)制备的SO_4~(2-)/Al_2O_3催化剂上虽然会有大量L酸产生,且酸性较强,催化剂却依然没有脱硫活性。这表明在酸性催化剂上,B酸中心是脱硫反应所必不可少的活性中心。
     2.用硫含量为1000μg/g的模拟油品(噻吩+环己烷)研究发现,原料中加入烯烃有利于HZSM-5以及Ni/HZSM-5催化剂的脱硫活性和稳定性。这是由于以环己烷和1-辛烯为反应原料时,烯烃和环烷烃的芳构化反应会产生大量的活性氢,这些活性氢可以极大地提高催化剂的脱硫活性和稳定性。
     3.适量的La_2O_3和CeO_2改性可以降低HZSM-5上强B酸中心的数量,减少噻吩在催化剂上生成噻吩衍生物的副反应,提高脱硫选择性。La_2O_3或CeO_2改性后再负载NiSO_4制备的双金属化合物改性HZSM-5催化剂上,NiSO_4与催化剂间的强相互作用被削弱,NiSO_4的分解温度从928℃降低到了827℃,NiSO_4的分布状态被改变。La_2O_3与NiSO_4双金属化合物改性HZSM-5催化剂较好的保持了NiSO_4改性催化剂的脱硫稳定性,而CeO_2与NiSO_4之间可能还存在着其它的相互作用,导致CeO_2与NiSO_4双金属化合物改性HZSM-5催化剂的脱硫稳定性急剧下降。
     4.以NiSO_4改性HZSM-5制备的芳构化降烯烃脱硫工业催化剂FDO的再生研究表明,经过烧炭再生后,催化剂的芳构化降烯烃活性基本恢复,但催化剂的脱硫活性降低了约20个百分点。脱硫活性的降低主要归因于长运转反应(5400 h)后,再生FDO催化剂上的SO_4~(2-)部分流失,部分NiSO_4转化成为NiO。SO_4~(2-)的流失造成S=O与Al_2O_3之间的相互作用减弱,催化剂的总酸量降低,L/B值变小。在再生FDO催化剂上补载适量NiSO_4可以恢复催化剂的脱硫活性。
     5.在负载La_2O_3和NiSO_4制备的Ni-La/HZSM-5催化剂上引入MoO_3,预硫化后,NiSO_4中的Ni同样可以与Mo形成Ni-Mo-S相,增强催化剂的加氢脱硫活性,尤其是提高通过裂解方式难以脱除的噻吩、苯并噻吩等硫化物的脱除能力。但是,3%Mo-Ni-La/HZSM-5的反应结果也表明,MoO_3的引入在使催化剂的总硫脱除率达到了90%以上的同时,烯烃降低幅度多达20个百分点,而芳烃只增加了约7个百分点,造成产物的辛烷值损失了约1.8个单位。
Fluid catalytic cracking(FCC) gasoline contributes about 80%of the total gasoline pool in China.For high content of olefins and sulfur,the FCC gasoline provides over 95%sulfur and almost all of the olefins for the gasoline pool.The gasoline sulfur could be reduced effectively by using traditional hydrotreating catalysts,such as Ni-Mo/Al_2O_3.But there would be a great loss of RON for the decrease of olefins in the hydrotreating process.
     ZSM-5 zeolites are widely used in transforming olefins and light alkanes to aromatics and iso-paraffins for excellent aromatization,isomerization and alkylation activities.Nanosize ZSM-5 zeolites show more stable and higher catalytic activity because of smaller crystals, shorter micropore,more micropores and more acid sites at external surface.The catalytic activity of HZSM-5 could be promoted by supporting rare earth metal oxides and transition metal oxides,such as Ni and Mo.In this article,catalysts were prepared by supporting NiSO_4, Ni(Ac)_2 and Ni(NO_3)_2 over nano-HZSM-5.Investigations were performed to evaluate the catalytic performance for the upgrading of FCC gasoline.Effect of rare earth metal oxides modification on desulfurization activity of HZSM-5 and NiSO_4/HZSM-5 catalyst was studied. And the effect of SO_4~(2-) loss upon desulfruization activity of regenerated industrial catalyst FDO,which was prepared by supporting NiSO_4 on HZSM-5,was also studied.Meanwhile, effect of MoO_3 modification on desulfurization activity of Ni-La/HZSM-5,which was prepared by supporting La_2O_3 and NiSO_4 over HZSM-5,was also studied.
     Based on all above investigations,the following conclusions were reached:
     1.The incorporation of Ni(Ac)_2 and Ni(NO_3)_2 into the HZSM-5 catalysts improved the stability of desulfurization.And the incorporation of NiSO_4 increased not only the desulfurization activity,but also the desulfurization stability largely.
     γ-Al_2O_3 and SiO_2 were chosed as the supports to prepare catalysts by impregnating with NiSO_4,Ni(Ac)_2 and Ni(NO_3)_2.And the results showed that there was a strong interaction between S=O in SO_4~(2-) and alumina oxides in both HZSM-5 zeolites andγ-Al_2O_3 supports. The strong interaction could bring following effects:(1) creates a large amount of Lewis acid sites and enhances the ratio of Lewis acid sites to Brφnsted acid sites(L/B);(2) help Ni species disperse in monolayer on catalyst;(3) prevents the forming of NiAl_2O_4 between NiO and Al_2O_3;(4) increases the adsorbing capability for thiophene impurities.
     Although a large of amount of lewis(L) acid sites,which was strong enough,was created on SO_4~(2-)/Al_2O_3,there was little desulfurization activity on the catalyst.This was because Brφnsted(B) acid sites were indispensable for the cracking of thiophenic species over acidic catalyst.
     2.Thiophene+cyclohexane,in which the sulfur content was 1000μg/g,was used as a model of gasoline.The study showed that the blending of 20 v%1- octene into thiophene +cyclohexane model was beneficial to desulfurization activity and stability.This was becaused that a large amount of active hydrogen was generated in the aromatization process of 1-octene and cyclohexane on HZSM-5 catalyst.And the active hydrogen could accelerate the desulfurization activity and stability.
     3.The modifications of La_2O_3 and CeO_2 to HZSM-5 catalysts decreased the amount of strong B acid sites of HZSM-5.The decrease of strong B acid sites inhibited thiophene from transforming into thiophene derives and increased the selectivity of H_2S.HZSM-5 modified by bimetals of La_2O_3 and NiSO_4 or CeO_2 and NiSO_4 showed that the strong interaction between NiSO_4 and HZSM-5 catalysts was weakened.The decomposition tempreture of NiSO_4 on HZSM-5 catalyst decreased from 928℃to 827℃.
     4.Industrial catalyst FDO was prepared by impregnating NiSO_4 into HZSM-5 and was used to transform olefin into aromatics.The deactivated FDO was sampled from the industrial unit(200 kt/a) after 5400 h.The regeneration of deactivated FDO showed that the aromatization and de-olefin activities recovered basically after carefully coke calcinations. But the desulfuriaztion activity decreased about 20%.This was because that there was a loss of SO_4~(2-) in RFDO catalyst after 5400 h run.And part of NiSO_4 was transformed into NiO after calcinations.The loss of SO_4~(2-) weakened the interaction between S=O and HZSM-5 catalyst.This led to a dcrease of total amount of acid and smaller L/B.The reloading of proper amount of NiSO_4 could recover the desulfurization activity.
     5.La_2O_3 and NiSO_4 were supported on nano-HZSM-5 to prepare Ni-La/HZSM-5 catalyst.The incorporation of MoO_3 into Ni-La/HZSM-5 catalyst increased the desulfurization activity largely,especially the desulfurization activity for thiophene and benzothiophene,which were difficult to be removed by cracking method on HZSM-5.The formation of Ni-Mo-S,which exhibited higher hydrogenating activity,was supposed to be the main cause.The results of 3%Mo-Ni-La/HZSM-5 also indicated that although the desufurization ratio was over 90%,the olefin content in product decreased from 34.0 v%to 14.2 v%.Meanwhile,the aromatic content increased from 31.4 v%to 38.0 v%.This led to a loss of RON,which was about 1.8.
引文
[1]李大东.21世纪的炼油技术与催化.石油学报(石油加工),2005,21(3):17-24.
    [2]冯钰,高金森,徐春明.清洁汽油生产技术现状及发展趋势.石化技术,2002,9(4):238-242.
    [3]山红红,李春义,赵博艺等.FCC汽油中硫分布和催化脱硫研究.石油大学学报(自然科学版),2001,25(6):78-80.
    [4]Song C.An overview of new approaches to deep desulfurization for ultra-clean gasoline,diesel and jet fuel.Catal Today,2003,86(1-2):211-263.
    [5]郝代军.炼油厂生产清洁汽油的技术措施.山东化工,2002,31(1):20-23.
    [6]Raymond W,Roberie T,Zhao X,et al.Suppressing FCC gasoline olefinicity while managing light olefins production.NPRA Annual Meeting,San Antonio,Texas,1998:11.
    [7]王国良,刘金龙,王文柯.降低催化裂化汽油烯烃含量的中型试验设计.炼油设计,2000,30(9):1-4.
    [8]康飚,王庆元,康庆山.福建炼化公司催化裂化装置应用MGD技术的工业试验.石油炼制与化工,2002,33(2):19-23.
    [9]许友好,张久顺,龙军等.一种降低液化气和汽油中烯烃含量的催化转化方法.CN,99109193.0.1999.
    [10]许友好,张久顺,龙军等.生产低烯烃含量汽油和多产柴油的催化转化方法.CN,01102240.X.2001.
    [11]许友好,张久顺,龙军.生产清洁汽油组分的催化裂化新工艺MIP.石油炼制与化工,2001,32(8):1-5.
    [12]许友好,汪燮卿.催化裂化过程反应化学的进展.中国过程科学.2007,9(8):6-14.
    [13]许友好,施至诚,张久顺等.制取丙烯、异丁烷和富含异构烷烃汽油的催化转化方法.CN,99105905.O.1999.
    [14]邱中红,龙军,陆友保等.MIP-CGP工艺专用催化剂CGP-1的开发和应用.石油炼制与化工,2006,37(5):1-6.
    [15]杨健,谢晓东,蔡智等.MIP-CGP技术的工业试验.石油炼制与化工,2006,37(8):54-59.
    [16]杨轶男,张久顺,达志坚等.生产清洁汽油的新型GOR系列裂化催化剂及其工艺技术.当代石油石化,2003,(11):30-32,37.
    [17]郇维芳,欧阳福生.FCC汽油脱硫降烯烃技术最新进展.工业催化,2004,12(8):6-10.
    [18]赵起超,韩海波,包素芳.降低FCC汽油烯烃助剂LAP-2工业应用.河南石油,2003,(3):64-66.
    [19]王天普.催化裂化汽油脱硫技术进展.齐鲁石油化工,2001,29(1):48-51.
    [20]Duran M A,Grossmann I E.Simultaneous optimization and heat integration of chemical progress.AICHE,1986,32(1):123-138.
    [21]李春义,袁起民,庞新梅等.催化裂化USY/ZnO/Al_2O_3脱硫添加剂的高温水热失活.催化学报,2003,24(6):457-464.
    [22]Kasztelan S,Morel F,Le Loarer J L,et al.Improving motor fuel quality-using a new generation of hydrotreatment catalysts.NPRA Annual Meeting,San Antonio,Texas,1999:56.
    [23]Nocca J L,Cosyns J,Debuisschert Q,et al.The domino interaction of refinery processes for gasoline quality attainment.NPRA Annual Meeting,Washington,2000:61.
    [24]Greeley J P,Zaczepinski S.Selective cat naphtha hydrofining with minimal octane loss.NPRA Annual Meeting,San Antonio,Texas,1999:31.
    [25]Desai P H,Gerritsen L A,Inoue Y.Low cost production of clean fuels with stars catalyst technology.NPRA Annual Meeting,San Antonio,Texas,1999:40.
    [26]Halbert T R,Brignac G B,Greeley J P,et al.Technology options for meeting low sulfur mogas targets.NPRA Annual Meeting,Washington,2000:11.
    [27]李大东,石玉林,胡云剑等.一种汽油深度脱硫降烯烃的方法.CN,1465666.2002.
    [28]马伯文,清洁燃料生产技术.北京:中国石化出版社,2001:187-188.
    [29]Rock K.Ultra-low sulfur gasoline via catalytic distillation.Proceeding of the fifth international conference on refinery processing,AICHE 2002 spring national meeting,New Orleans,LA,2002:200-205.
    [30]Martinez N P,Salazar J A,Tejada J,et al.Gasoline pool sulfur and octane control with ISAL.Vision Tecnologica,2000,7(2):77-82.
    [31]Martinez N P,Salazar J A,Tejada J,et al.Meet gasoline pool sulfur and octane targets with the ISAL process.NPRA Annual Meeting,San Antonio,Texas,2000:52.
    [32]Antos G J,Solari B,Monque R.Hydroprocessing to produce reformulated gasolines:The ISAL process.Stud Surf Sci Catal,1997,106:27-40.
    [33]Shih S S,Keville K M,Lissy D N.Gasoline upgrading process.US,5326462.1994.
    [34]Shih S S,Owens P J,Palit S,et al.Mobil' s OCTGAIN Process:FCC gasoline desulfurization reaches a new performance level.NPRA Annual Meeting,San Antonio,Texas,1999:30.
    [35]Khare G P,Engelbert D R,Cass B W.Transport desulfurization process utilizing a sulfur sorbent that is both fluidizable and circulatable and a methodof making such sulfur sorbent.US,5914292.1999.
    [36]Khare G P.Process for the production of a sulfur sorbent.US,6184176.2001.
    [37]Khare G P.Desulfurization with zinc titanate sorbents.US,6338794.2002.
    [38]Gupta R,Cicero D,Portzer J,et al.Desulfurizationof syngas in a transport reactor.Environ Prog,2001,20(3):187-195.
    [39]Turk B,Gupta R.RTI' s TREND process for deep desulfurization of naphtha,Am.Chem Soc,Div Fuel Chem Prepr,2001,46(2):392-393.
    [40]GTC,Desulfurization,Hydrocarbon Process.2000,79:104.
    [41]Zhou L,Mowry J,Hamm D.FCC naphtha desulfurization by solvent extraction.Proceeding of the fifth international conference on refinery processing,AICHE 2002 spring national meeting,New Orleans,LA,2002:352-359.
    [42]常振勇.汽油噻吩硫的烷基化脱除技术.炼油设计.2002,32(5):44-46.
    [43]Collins,Nick A,Trewella,et al.Alkylation process for desulfurization of gasoline.US,5599441,1997.
    [44]Huff J,George A,Alexander,et al.Sulfur removal process.US 6048451,2000.
    [45]Brunet S,Mey D,perot G,et al.On the hydrodesulfurization of FCC gasoline:a review.Appl Catal A,2005,278(2):143-172.
    [46]Nocca J L,Debuisschert Q.Prime-G+~(TM):from pilot to startup of world' s first commercial 10 ppm FCC gasoline desulfurization process.NPRA 2002 Annual Meeting,San Antonio Texas,2002:12.
    [47]Magne-Drisch J,Picard F.Process for desulfurization of gasolines.US 20050061711,2005.
    [48]White L,Lesemann M.Sulfur reduction of naphtha with membrane technology.Am Chem Soc,Div Petrol Prepr,2002,47(1):45-47.
    [49]刘妍,孙斌,赵地顺,等.催化裂化汽油氧化法脱硫.天津化工,2004,18(5):25-27.
    [50]孙兰兰,刘淑芝,王宝辉.轻质燃料油脱硫技术研究进展.化工科技市场,2006,29(2):27-31.
    [51]居沈贵,曾勇平,姚虎卿.非常规汽油脱硫技术.现代化工,2004,24(1):56-59.
    [52]Kerr G T.The synthesis and properties of two catalytically important zeolites.Catal Rev Sci Eng,1981,23(2):281-291.
    [53]Nastro A,Colella C,Aiello R.Synthesis of ZSM-5 type zeolites in the system(sodium,potauinm) oxide-alumina-silica-water without and with tetrapropyl ammonium.Stud Surf Sci Catal,1985,24:39-46.
    [54]Grose R W,Flanigen E M.Novel zeolite composition and process for preparing and using same.US,4257885.1981.
    [55]Mostowicz R,Bezak J M.Factors influencing the crystal morphology of ZSM-5 type zeolite.Stud Surf Sci Catal,1985,24:65-72.
    [56]Plank C J,Rosinski E J,Rubin M K.Method for producing zeolites.US,4175114.1979.
    [57]Dessau R M,Schmitt K D,Kerr G T,et al.On the presence of internal silanol groups in ZSM-5 and the annealing of these sites by steaming.J Catal,1987,104(2):484-489.
    [58]Kim D J,Chung H S.Synthesis and characterization of ZSM-5 zeolite from serpentine.Applied Clay Science,2003,24(1-2):69-77.
    [59]杨付.超细HZSM-5的改性、表征及催化汽油改质催化剂的研制:(博士学位论文).大连:大连理工大学,2003.
    [60]张培青.FCC汽油改质催化剂的研制、表征和催化性能研究:(博士学位论文).大连:大连理工大学,2004.
    [61]张维萍,韩秀文,包信和.超细分子筛的合成、结构特性及在催化中的应用.分子催化,1999,13(5):393-399.
    [62]Pu S,Inui T.Influence of crystallite size on catalytic performance of HZSM-5 prepared by different methods in 2,7-dimethylphthalene isomerization.Zeolites,1996,17(4):334-339.
    [63]Yanmamura M,Chaki K,Wakatsuki T,et al.Synthesis of ZSM-5 zeolite with small crystal size and its catalytic performance for ethylene oligomerization.Zeolites,1994,14(8):643-649.
    [64]Zhang W,Bao X,Guo X,et al.A high-resolution solid-state NMR study on nano-structured HZSM-5 zeolite.Catal Lett,1999,69(1-2):89-94.
    [65]王学勤,王祥生.苯乙烯烷基化HZSM-5沸石催化剂积炭失活的研究Ⅰ.不同晶粒大小沸石的合成及HZSM-5沸石的积炭过程.石油学报(石油加工),1994,10(2):38-43.
    [66]王学勤.纳米ZSM-5沸石的合成、表征和催化性能研究:(博士学位论文).大连:大连理工大学,1997.
    [67]郭洪臣.在改性HZSM-5沸石上乙苯乙烯选择乙基化合成对二乙苯的研究:(博士学位论文).大连:大连理工大学,1997.
    [68]Tauster S T,Vaughan D E,Steger J J.Zeolite catalyst and preparation thereof.US,4552856.1985.
    [69]Shan H,Li C,Yang C,et al.Mechanistic studies on thiophene species cracking over USY zeolite.Catal Today,2002,77(1-2):117-126.
    [70]Yu S,Waku T,Iglesia E.Catalytic desulfurization of thiophene on HZSM-5 using alkanes as co-reactants.Appl Catal A,2003,242(1):111-121.
    [71]Yin C,Zhao R,Liu C.Hydrotreating of cracked naphtha over Ni/HZSM-5 catalyst.Energy Fuels.2003,17(5):1356-1359.
    [72]Garcia C,Lercher J.Adsorption and surface reaction of thiophene on ZSM5 zeolites.J Phys Chem,1992,96(6):2669-2675.
    [73]Welters W,Beer V,Santen R.Influence of zeolite acidity on thiophene hydrodesulfurization activity.Appl Catal A,1994,119(2):253-269.
    [74]Chica A,Strohmaier K,Iglesia E.Adsorption,desorption and conversion of thiophene on H-ZSM5.Langmuir.2004.20(25):10982-10991.
    [75]左广玲,王文寿,王刃等.改性纳米HZGM-5催化剂上噻吩转化反应的研究.分子催化.2007,21(4):319-323.
    [76]左广玲.噻吩的选择氧化及临氢催化转化脱硫研究:(硕士学位论文).大连:大连理工大学,2006.
    [77]Yu S,Li W,Iglesia E.Desulfurization of thiophene via hydrogen transfer from alkanes on cation-modified H-ZSM5.J Catal,1999,187(2):257-261.
    [78]王桂茹.催化剂与催化作用.大连理工大学出版社,2004:214-217.
    [79]Wang A,Wang Y,Kabe T,et al.Hydrodesulfurization of dibenzothiophene over siliceous MCM-41-supported catalysts:Ⅰ.Sulfided Co-Mo catalysts.J Catal,2001,199(1):19-29.
    [80]Wang A,Wang Y,Kabe T,et al.Hydrodesulfurization of dibenzothiophene over siliceous MCM-41-supported catalysts:Ⅱ.Sulfided Ni-Mo catalysts.J Catal,2002,210(2):319-327.
    [81]Li X,Wang A,Sun Z,et al.Effect of surface proton exchange on hydrodesulfurization performance of MCM-41-supported catalysts.Appl Catal A,2003,254(2):319-326.
    [82]Wang A,Ruan L,Teng Y,et al.Hydrodesulfurization of dibenzothiophene over siliceous MCM-41-supported nickel phosphide catalysts.J Catal,2005,229(2):314-321,
    [83]Yin C,Liu C.Hydrodesulfurization of cracked naphtha over zeolite-supported Ni-Mo-S catalysts.Appl Catal A,2004,273(1-2):177-184.
    [84]赵晓波.改性纳米HZSM-5在低品质轻油改质中的应用研究:(博士学位论文).大连:大连理工大学,2007.
    [85]贺咏梅,廖世军.硫酸促进型固体超强酸.化学通报,2005,68:1-6.
    [86]Chen C,Li T,Cheng S,et al.Direct impregnation method for preparing sulfated zirconia supported on mesoporous silica.Micropor Mesopor Mater,2001,50(2-3):201-208.
    [87]Yamaguchi T,Jin T,Tanabe K.Structure of acid sites on sulfur-promoted iron oxide.J Phys Chem,1986,90(14):3148-3152.
    [88]Jin T,Machida M,Yamaguchi T,et al.Infrared study of sulfur-containing iron oxide.Behavior of sulfur during reduction and oxidation.Inorg Chem,1984,23(25):4396-4398.
    [89]Jin T,Yamaguchi T,Tanabe K.Mechanism of acidity generation on sulfur-promoted metal oxides.J Phys Chem,1986,90(20):4794-4796.
    [90]Yang T,Chang T,Yeh C.Acidities of sulfate species formed on a superacid of sulfated alumina.J Mol Catal,1997,115():339-346.
    [91]田部浩三等著,徐柏庆等译.新固体酸与碱及其催化作用.北京:化学工业出版社,1986:122-124.
    [92]Garcia E,Rueda E,Rouco A.Sulfated zirconia catalysts promoted with Fe and Mn:Mn effect in the Fe dispersion.Appl Catal A,2001,210(1-2):363-370.
    [93]Ohtsuka H.Effect of iron addition on the durability of Pd-Pt-loaded sulfated zirconia for the selective reduction of nitrogen oxides by methane.Catal Let,2003,87(3-4):179-186.
    [94]Hua W,Xia Y,Yue Y,et al.Promoting effect of Al on SO_4~(2-)/M_xO_y(M=Zr,Ti,Fe) catalysts.J Catal,2000,196(1):104-114.
    [95]廖世军,王乐夫,杨兆禧等.SO_4~(2-)/ZrO_2-Sio_2催化剂的结构及其形成过程.物理化学学报,2000,16(3):278-283.
    [96]孙桂大,闫富山编著.石油化工催化作用导论.中国石化出版社出版,2000:70-71
    [97]蔡天锡,曹殿学,齐爱华等.NiSO_4 γ-Al_2O_3对低级烯烃齐聚反应的催化作用.催化学报,1994,45(1):23-27.
    [98]王大庆,王建军,陶学明等.NiSO_4/γ-Al_2O_3催化剂中活性组分的分散度及与其叠合活性的关联.石油学报(石油加工),1993,9(1):48-56.
    [99]刘坤,朱高忠,余励勤等.NiSO_1/HY催化剂上丙烯齐聚反应研究.分子催化,1994,8(6):412-420.
    [100]Sohn J,Park W.Characterization and catalytic activity for ethylene dimerization of nickel sulfate supported on zirconia.Appl Catal A,2002,230(1-2):11-18.
    [101]Sohn J,Park W.The role of active sites of nickel sulfate supported on γ-Al_2O_3 for ethylene dimerization.Appl Catal A,2003,239(1-2):269-278.
    [102]Sohn J,Cho E.Promoting effect of Al_2O_3on catalytic activity of NiSO_4/ZrO_2 for ethylene dimerization.Appl Catal A,2005,282(1-2):147-154.
    [103]王学勤,王祥生,郭新闻.超细颗粒五元环型沸石.CN,1240193.2000.
    [104]Ono Y.Transformation of lower alkaned ino aromatic hydrocarbons over ZSM-5 zeolites.Catal Rev-Sci Eng,34(3):179-226.
    [105]Kitagawa H,Sendoda Y,Ono Y.Transformation of propane into aromatic hydrocarbons over ZSM-5 zeolites.J Catal,.1986,101(1):12-18.
    [106]Collins N A,Teitman G J,Durand P P,et al.Hydrocarbon upgrading process.WO,9853030.1998.
    [107]Adebajo M O,Howe R F,Long M A.Methylation of toluene with methane over ZSM-5catalysts.Engery Fuels,2001,15(3):671-674.
    [108]Zhang P,Wang X,Guo X,et al.Characterization of modified nanoscale ZSM-5 zeolite and its application in the olefins reduction in FCC gasoline.Catal Lett,2004,92(1-2):63-68.
    [109]Liu C,Deng Y,Pan Y,et al.Effect of ZSM-5 on the aromatization performance in cracking catalyst.J Mol Catal A,2004,215(1-2):195-199.
    [110]Fan Y,Bao X,Shi G,et al.Olefin reduction of FCC gasoline via hydroisomerization aromatization over modified HMOR/HZSM-5/Hβ Composite carriers.Appl Catal A,2004,275(1-2):61-71.
    [111]Ooi Y S,Zakaria R,Mohamed A R,et al.Catalytic conversion of fatty acids mixture to liquid fuel and chemicals over composite microporous/mesoporous catalysts.Energy Fuels,2005,19(3):736-743.
    [112]Zhang P,Wang X,Guo H.Reducing olefins in FCC gasoline by isomerization and aromatization over modified nano-ZSM-5.Chin J Catal,2003,24(3):159-160.
    [113]Smieskova A,Rojasova E,Hudec P,et al.Aromatization of light alkanes over ZSM-5catalysts influence of the particle properties of the zeolite,Appl Catal A,2004,268(1-2):235-240.
    [114]Lubango L M,Scurrell M S.Light alkanes aromatization to BTX over Zn-ZSM-5 catalysts enhancements in BTX selectivity by means of a second transition metal ion.Appl Catal A,2002,235(1-2):265-272.
    [115]Biscardi J A,Iglesia E.Structure and function of metal cations in light alkane reactions catalyzed by modified HZSM-5.Catal Today,1996,31(3-4):207-231.
    [116]Gajda G J.Process for isomerizing olefins in gasoline streams.US,5430221.1995.
    [117]Martinez A,Lopez C.The influence of ZSM-5 zeolite composition and crystal size on the in situ conversion of Fischer-Tropsch products over hybrid catalysts,Appl Catal A,2005,294(2):251-259.
    [118]Liu J,Xu H.Study on the regeneration of deactivated NiO/γ-Al_2O_3 catalyst for the conversion of natural gas with CO_2 to synthesis gas by TG.Thermochimica Acta,2000,343(1-2):99-104.
    [119]纪敏,周美娟,毕颖丽等.Ni/γ-Al_2O_3,Ni/MgO,Ni/SiO_2催化剂上甲烷与二氧化碳重整反应的研究.分子催化,1997,11(1)6-12.
    [120]Yasuda H,Higo M,Yoshitomi S,et al.Hydrogenation of tetralin over sulfided nickel-tungstate/alumina and nickel-molybdate/alumina catalysts.Catal Today,1997,39(1-2):77-87.
    [121]Wormsbecher,R F Kim,Gwan.Sulfur reduction in FCC gasoline.US 5525210,1996.
    [122]王祥生,罗国华.HZSM-5沸石上焦化苯的精制脱硫.催化学报,1996,17(6):530-534.
    [123]杨付,王祥生,郭洪臣.超细HZSM-5沸石催化烃类芳构化反应的研究.分子催化,2004,18(1):30-35.
    [124]程谟杰,杨亚书.ZnHZSM-5上脱氢环化芳构化过程的探讨.分子催化,1996,10(6):418-422.
    [125]罗国华,王学勤,王祥生.焦化苯中的噻吩与乙醇在HZSM-5沸石上的反应.催化学报,1998,19(1):53-57.
    [126]Saintigny X,Van Santen R,Clemendot S,et al.A theoretical stuty of the solid acid catalyzed desulfurization of thiophene.J Catal,1999,183(1):107-118.
    [127]徐新,罗国华,张国英.焦化苯中噻吩在酸性沸石催化剂上的催化裂解性能.过程工程学报,2001,1(4):436-438.
    [128]Cai X,Cai Y,Lin W.Autothermal reforming of methane over Ni catalysts supported over ZrO_2-CeO_2-Al_2O_3.J Natur Gas Chem,2008,17(2):201-207.
    [129]胡辉,李胜利,张顺喜等.CeO_2-La_2O_3/Al_2O_3催化还原SO_2反应机理的研究.催化学报,2004,25(2):115-119.
    [130]王磊,马建新,孙凡等.稀土氧化物上SO_2和NO的催化还原.催化学报,2000,21(6):547-550.
    [131]Liu W,Sarofim A,Flytzani-Stephanopoulos M.Reduction of sulfur dioxide by carbon monoxide to elemental sulfur over composite oxide catalysts.Appl Catal B,1994,4(2-3):167-186.
    [132]胡永康,赵乐平,李扬等.全馏分催化裂化汽油芳构化烷基化降烯烃技术的开发.炼油技术与工程,2004,34(1):1-4.
    [133]庞新梅,李春义,山红红等.硫化物在FCC催化剂上的裂化脱硫研究.石油大学学报(自然科学版),2003,27(1):95-98.
    [134]Nielsen L P,Christensen S V,Topsφe H.Changes in metal-sulfur bond energy in promoted and unpromoted molybdenum catalysts.Catal Lett,2000,67(2-4):81-85.
    [135]Niemann W,Clausen B S,Topsφe H.X-Ray adsorption studies of the Ni environment in Ni-Mo-S.Catal Lett,1990,4(4-6):355-364.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700