用户名: 密码: 验证码:
几种室内植物对苯和甲醛复合污染响应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以金边虎尾兰、芦荟、金心吊兰、黄金葛、铁线蕨和鸟巢蕨等6种室内常见观叶植物为材料,采用室内人工熏气箱胁迫的方法,研究苯、甲醛单一和复合胁迫条件下,植物体内活性氧自由基(·O_2~-)的累积、叶绿素(Chl)含量、丙二醛(MDA)含量、脯氨酸(Pro)含量、超氧化物歧化酶(SOD)活性、过氧化氢酶(CAT)活性、过氧化物酶(POD)活性以及叶片微观结构的变化。通过研究不同植物对苯、甲醛污染的响应差异,揭示室内植物对苯、甲醛污染的响应机理、净化效果以及苯、甲醛对植物的毒害效应,为丰富室内植物逆境理论研究提供参考,主要研究结果如下:
     1.苯、甲醛单一胁迫对植物的毒害效应
     用浓度为0.1、1、3、5mg/m~3的甲醛和浓度为0.11、0.55、1.1、3.3mg/m~3的苯分别处理48h。在试验期间,随着苯、甲醛浓度的增加,与对照相比,6种植物的Chl含量呈现下降变化,活性氧自由基(·O_2~-)不断累积,膜脂过氧化程度增加(MDA增加),Pro含量逐渐增加,而SOD、POD、CAT三种保护酶活性因植物种类的不同出现持续增加、持续减少和先增加后减少三种不同的变化。
     当苯、甲醛胁迫浓度达最大值(苯3.3mg/m~3,甲醛5mg/m~3)时,6种植物的主要生理指标与对照相比差异达极显著,其中Chl含量下降幅度最大的植物是铁线蕨,降幅超过了30%,降幅较小的植物是黄金葛和金边虎尾兰,降幅在20%左右;·O_2~-含量增幅最高的植物是鸟巢蕨和铁线蕨,增幅超过了95%,增幅最小的植物是黄金葛,增幅小于72%;除鸟巢蕨、铁线蕨的SOD活性出现先增加后下降的变化外,其它植物的SOD随苯、甲醛浓度的增加而逐渐增加,说明此浓度的苯和甲醛对铁线蕨和鸟巢蕨毒害作用达到最大。
     运用主成分分析法对6种植物抗苯、甲醛能力进行评定,抗甲醛能力强弱排序为:金心吊兰>金边虎尾兰>黄金葛>芦荟>鸟巢蕨>铁线蕨;抗苯能力强弱排序为:金心吊兰>金边虎尾兰>芦荟>黄金葛>铁线蕨>鸟巢蕨。
     2.苯、甲醛单一胁迫对植物微观结构影响
     苯、甲醛胁迫对金心吊兰的气孔结构和叶片断面厚度都产生了影响。苯迫下,金心吊兰气孔长径与对照相比差异不显著,气孔短径在苯胁迫14d时比对照减少26.46%。甲醛胁迫下,气孔的长径、短径与对照差异不显著,但气孔形态由对照时的哑铃形变成不规则长方形,且大部分气孔处于闭合状态。
     金心吊兰叶片断面厚度和气孔密度呈现减少的变化趋势。在苯、甲醛各处理14d后,与对照相比,叶片厚度分别下降23.6%和35.53%,而气孔密度比对照下降21.95%
     3.苯、甲醛复合胁迫对植物的毒害效应
     苯、甲醛复合胁迫对植物的毒害效应与复合方式有关,但复合胁迫下的光合系统、抗氧化系统的变化并不是苯、甲醛单一胁迫下指标变化的简单叠加,而是一种较为复杂的交互作用。当甲醛浓度低于1mg/m~3时,甲醛与苯的复合对植物生理指标的协同抑制作用并不明显;当甲醛浓度高于1mg/m~3时,这种协同抑制作用明显增强。
     经主成分分析计算的综合值表明,当高浓度的甲醛(T3处理:3mg/m~3,T4处理:5mg/m~3)与苯复合时,金心吊兰、金边虎尾兰和铁线蕨对苯、甲醛复合胁迫的抗性从强到弱排序为:金心吊兰>金边虎尾兰>铁线蕨。
     4.室内植物对苯、甲醛复合胁迫的响应机制
     正常生长条件下,植物体内自由基的产生和清除处于一种动态的平衡。在较低浓度的苯、甲醛胁迫下,植物体活性氧自由基的累积还处于抗氧化酶的清除能力范围时,细胞膜不会被破坏,细胞可以维持正常的结构。随着胁迫浓度的增加,6种植物体内的活性氧自由基过度累积, SOD、POD和CAT的合成受到限制,活性下降,细胞质脂发生过氧化反应,导致丙二醛(MDA)含量增加,植物细胞结构被破坏生理功能出现紊乱,光合作用受阻,Chl含量下降,情况严重时会导致植物死亡。
     5.室内植物对苯、甲醛的净化效果
     用浓度为0.1、1、3mg/m~3的苯和甲醛处理(单一和复合)24h,熏气箱及土壤吸附苯、甲醛的量随着时间的增加而增加,但吸附效果远低于植物的净化能力。相同胁迫条件下,空熏气箱的吸附能力低于土壤的吸附能力,而对苯的吸附能力又低于对甲醛的吸附能力。
     植物对苯、甲醛的净化效果与胁迫浓度和胁迫时间有关,浓度越高,净化效果越差。单一胁迫条件下,铁线蕨平均去除了37.61%的苯和41.64%的甲醛,而黄金葛和金边虎尾兰对苯和甲醛的去除率均超过49%;复合胁迫下,铁线蕨平均去除了41.06%的苯和41.28%的甲醛,而黄金葛平和金边虎尾兰对苯和甲醛的去除率均超过45%。
In this dissertation, six different indoor plants including Sansevieria trifasciata var. laurentii,Aloe vera var. chinensis, Chlorophytum comosum var. mediopictum, Scindapsus aureum,Adiantum capillus-veneris and Asplenium antiquum had been tested in the experiment. Weanalyzed the accumulation of superoxide radicals(·O_2~-), contents of chlorophyll (Chl),malondialdehyde (MDA) and proline (Pro), activities of superoxide dismutase (SOD),peroxidase (POD), catalase (CAT) and the variation of leaf microstructure in plants throughindoor artificial fumigation box, under the single and compound stress of benzene andformaldehyde. Studying the different responses to the pollution of benzene and formaldehydeamong the plants, the dissertation revealed that the response mechanism to the pollution ofbenzene and formaldehyde in indoor plants, as well as the toxicity mechanism of benzene andformaldehyde in the plants. By doing this, I hope that the results will provide a more scientificreference for enriching the theoretical research on plant responses to environmental stress. Themajor results were as follows:
     1. Toxicity mechanism in plants under the stress of benzene or formaldehyde
     Treated with0.1,1,3,5mg/m~3formaldehyde or0.11,0.55,1.1,3.3mg/m~3benzene for48hours, the contents of Chl in six plants decreased as the concentration of benzene andformaldehyde increased, the·O_2~-was accumulating, the MDA and Pro content were increasing,therefore, the activities of SOD, POD and CAT in different species showed three differentpatterns such as increasing continuously, decreasing continuously and firstly increasing and thendecreasing.
     When the concentration of benzene and formaldehyde reached the maximum (benzene3.3mg/m~3and formaldehyde5mg/m~3), the major physiological indexes of six plants had greatdifferences compared with the contrast. Adiantum capillus-veneris was the plant with the largestdecline in Chl content, reduced more than30%. The plants with the smallest decline wereScindapsus aureum and Sansevieria trifasciata var. laurentii, decreased about20%. Adiantumcapillus-veneris and Asplenium antiquum were the plants with the largest increase in super oxideanion content, increasing over95%. The plant with the smallest increase was Scindapsus aureum,increasing less than72%. Except of the activities of SOD in Adiantum capillus-veneris andAsplenium antiquum first increased and then decreased, they increased continuously as theconcentration of benzene and formaldehyde increasing. It indicated the present concentration offormaldehyde or benzene had the greatest toxic effects on Adiantum capillus-veneris andAsplenium antiquum.
     This dissertation measured the anti ability to benzene and formaldehyde of six plantsthrough the principle component analysis. The anti ability to formaldehyde from the strongest toweakest was Chlorophytum comosum var. mediopictum, Sansevieria trifasciata var. laurentii,Scindapsus aureum, Aloe vera var. chinensis, Asplenium antiquum and Adiantum capillus-veneris.The anti ability to benzene from the strongest to weakest was Chlorophytum comosum var.mediopictum, Sansevieria trifasciata var. laurentii, Aloe vera var. chinensis, Scindapsus aureum,Adiantum capillus-veneris and Asplenium antiquum.
     2. Effects on microstructure of spider plant under the stress of benzene or formaldehyde
     Benzene and formaldehyde had some different effects on the pore structure and thethickness of leaf cross-section of Chlorophytum comosum var. mediopictum. Under the stress ofbenzene, the stomatal length-diameter of Chlorophytum comosum var. mediopictum had notsignificant difference by contrast, and the stomatal short-diameter reduced26.46%in14days bycontrast. Under the stress of formaldehyde, the length-diameter and short-diameter had notobvious differences by contrast, but the shape had changed from dumbbell shape to rectangle.Most stomas gradually entered the closed state as the stress time increasing.
     The leaf cross-section thickness and stomatal density of Chlorophytum comosum var.mediopictum decreased under the stress of benzene and formaldehyde. Under the treatment ofbenzene and formaldehyde, the thickness decreased23.6%and35.53%14days later, as well as,the stomatal density was21.95%lower than that of control.
     3. Toxicity mechanism in plants under the compound stress of benzene and formaldehyde
     The toxicity mechanism in plants under the compound stress of benzene and formaldehydewas related to the compound pattern. The changes of photosynthetic system and antioxidantsystem under the compound stress were not the simple addictive effects as that under the singlestress, while they were a complex interaction. When the concentration of formaldehyde was lessthan1mg/m~3, the physiological indexes of plants would be relieved, and such effects woulddecrease while the concentration of benzene and formaldehyde increases. When theconcentration of formaldehyde was more than1mg/m~3, the physiological indexes of plants wouldbe synergistic inhibited under the compound stress of benzene and formaldehyde.
     Through the principle component analysis, the ordered resistance to the compound stress ofbenzene and formaldehyde from the strongest to weakest was Chlorophytum comosum var.mediopictum, Sansevieria trifasciata var. laurentii and Adiantum capillus-veneris, when underthe compound stress of formaldehyde in high concentration (Treatment3:3mg/m~3, Treatment4:5mg/m~3) and benzene.
     4. Response mechanism to the stress of benzene and formaldehyde in indoor plants
     The production and elimination of reactive oxygen types in plants were in dynamic balanceunder the normal growth conditions. The membrane could not be destroyed and kept the normalstructure when it was under the stress of benzene and formaldehyde in low concentration, and theaccumulation of free radical was in the scope that the antioxidant enzyme was normal. As theconcentration increasing, the reactive oxygen types of the six plants would be over accumulated. Once they were out of the elimination ability of antioxidant enzyme (SOD, POD and CAT), theirsynthesis would be limited and the activities would decrease, and lipid peroxidation of cellswould lead to the content of MDA increase, then the cell structure and physiological functionwould be destroyed, the photosynthesis would be limited and the content of Chl would decrease,or even the plant would die if the situation was serious.
     5. Purification effect of indoor plants under the compound stress of benzene and formaldehyde
     When treated with0.1,1,3mg/m~3formaldehyde and benzene (single or compoundtreatment) for24hours, the fumigation box and soil absorbed benzene and formaldehydeincreasingly as the time prolonging. In the same condition, the adsorption capacity of fumigationbox was weaker than that of soil, and the adsorption capacity to benzene was weaker than toformaldehyde.
     The purifying effects of plants were highly related to the stress concentration, and the higherconcentration, the worse purifying effects. Under stress of benzene or formaldehyde,37.61%benzene and41.64%formaldehyde were removed by Adiantum capillus-veneris. The averageremoval rates of benzene and formaldehyde byScindapsus aureum and Sansevieria trifasciatavar. laurentii were more than49%. Under compound stress of benzene and formaldehyde,41.06%formaldehyde and41.28%benzene were removed by Adiantum capillus-veneris, in themeantime, average more than45%formaldehyde and benzene were removed by Scindapsusaureum and Sansevieria trifasciata var. laurentii.
引文
[1]龚圣,黄肖荣,隋贤栋.室内空气净化技术[J].环境污染治理技术与设备,2004,5(4):55-58.
    [2]Matsumaura T. The indoor air contamination by chemicals:VOCs and formaldehyde[J].Journal of JapanSociety for Atmospheric Environment,1996,(31):A154-A164.
    [3]Dai H, Asakawa F, Suna S, et al. The VOCs concentration in the living environment and individualexposure in university [J].Journal of Shikoku Public Health Society,2000,45(1):75-78.
    [4]天津网-数字报刊.新居装修污染要注意甲醛和苯[DB/OL]. http://epaper.tianjinwe.com/mrxb/mrxb/2010-12/06/content_6315527.htm,2010-12-06.
    [5]王玲玲,朱叙超,多克辛等.郑州市装修后室内空气中甲醛污染调查[J].环境与健康杂志,2004,21(4):236-237.
    [6]周建平,纪晓红,何建平.黄石市室内空气中甲醛污染的调查与研究[J].湖北师范学院学报,2005,25(3):57-59.
    [7]卢网珍.室内装修后空气中甲醛浓度的变化趋势[J].现代预防医学,2004,31(2):177-178.
    [8]余江.室内装修中甲醛浓度分析与控制研究[J].四川师范大学学报,2005,28(4):489-491.
    [9]王诗哲,赵文奎,赵彤.关于室内甲醛和氨污染状况调查[J].北方环境,2004,27(3):4-5.
    [10]田世爱,于自强,张宏.室内甲醛污染状况调查及防治措施[J].洁净与空调技术,2005,1:41-43.
    [11]国家环报总局科标司.室内环境与健康[M].北京:中国环境科学出版社,2002.
    [12]刘伟,翟德华,于洋等.装修室内空气污染现状分析及控制途径[J].城市环境与城市生态,2003,16(5):53-55.
    [13]Cunningham S D, Ow D W. Promises and prospects of phytoremediation[J].Plant Physiol,1996,110:715-719.
    [14]Garrett M H, Hooper M A, Hooper, B M, et al. Increased risk of allergy in children due to formaldehydeexposure in homes [J].Allergy,1999,54:330-337.
    [15]Wantke F, Demmer C M, Tappler P, et al. Exposure to gaseous formaldehyde induces IgE-mediatedsensitization to formaldehyde in schoolchildren[J].Clinical and Experimental Allergy,1996,26:276-280.
    [16]Leila S R, Jari N C, Francisco R. Distriutions of indoor and outdoor air pollutants in Rio deJaneiro,Brizil: Implications to indoor air quality in bayside offices[J].Environmental Science andTechnology,1998,32(22):3485-3490.
    [17]Gilbert N. Proposed residential indoor air quality guidelines for formaldehyde[M].Ottawa, Canada,2005.
    [18]Vaughan T L, Strader C, Davis S, et al. Formaldehyde and cancers of the pharynx, sinus and nasal cavity:I. Occupational exposures[J].Internatial Journal of cancer,1986,38:677-683.
    [19]翟淑妙,徐晓俨,张玖乾,等.甲醛的暴露与健康效应[J].环境与健康杂志,1994,11(5):238-239.
    [20]余亚白,陈源,赖呈纯等.室内空气净化植物的研究与利用现状及应用前景[J].福建农业学报,2006,21(4):425-429.
    [21]Environmental health criteria89[S]. Geneva: World Health Organization, international programme onchemical safety,1989.
    [22]肖红侠,王岳人,张海青.室内甲醛污染现状及防治措施[J].中国住宅设施,2004,6:31-35.
    [23]王桂芳,陈烈贤,宋瑞.办公室内空气污染的调查[J].环境与健康杂志,2000,17(3):156-157.
    [24]刘建昌.观赏植物在防治室内空气污染中的作用探讨[J].环境,2006,(S2):35-36.
    [25]段鹏.室内装修苯污染对机体的遗传损伤效应及机制探讨[D].南宁:广西医科大学,2010.
    [26]Guo H., Lee S. C., Li W. M., et al. Source characterization of BTEX in indoor microenvironments inHong Kong [J]. Atmospheric Environment,2003,37(1):73-82.
    [27]European Parliament and Council. Directive2000/69/EC Relating to limit values for benzene and carbonmonoxide in ambient Air[Z].2000-12-13.
    [28]中华人民共和国国家标准GB/T18883-2002.室内空气质量标准[S].北京:国家质量监督检验检疫局,卫生部,国家环境保护总局,2002.
    [29]李新,石建屏,魏锡文等.建筑材料对室内空气质量影响的数学模型研究[J].长春理工大学学报,2007,30(1):92-95.
    [30]Menzies R, Tamblyn R, Farant J P, et al. The effect of varying levels of outdoor-air supply on thesymptoms of sick building syndrome[J].The New England Journal of Medicine1993,328(12):821-827.
    [31]Jorgensen, R. B. Sorption of VOCs on material surfaces as the deciding factor when choosing aventilation strategy[J].Building and Environment,2007,42(5):1913-1920.
    [32]李艳莉,尹诗,黄宝妍.室内甲醛污染来源及其对人体的危害[J].佛山科学技术学院学报(自然科学版),2003,21(1):49-52.
    [33]韩天香,王逢瑚.室内空气的净化技术[J].家具与室内装饰,2004,10,81-83.
    [34]陈俐侃,李励,王玲.国内消毒与净化室内空气方法概述[J].预防医学,2006,17(6):109-113.
    [35]Kwang J K, Mi J K, Jeong S S, et al. Efficiency of volatile formaldehyde removal by indoor plants:contribution of aerial plant parts versus the root zone [J].Horticultural Science,2008,133:479-627.
    [36]吴平.几种植物对室内污染气体甲醛的净化能力研究[D].南京:南京林业大学,2006.
    [37]王笑然,马勇,陈丽.利用植物的吸收净化能力改善城市生态环境[J].太原科技,2003(3):21-22.
    [38]Balsberg-Paehlsson A.M. Effects of heavy-metal and SO2pollution on the concentration of carbohydratesandnitrogen in tree leaves[J]. Canadian Journal of Botany,1988,67:2106-2113.
    [39]Hove L W A, Bossen M E, Bok F A M, et al. The uptake of O3by poplar leaves: the impact of along-term exposure to low O3-concentrations [J].Atmospheric Environment,1999,33(6):907-917.
    [40]Ugrekhelidze D,Korte F, Kvesitadze G. Uptake and trans-formation of benzene and toluene in plantleaves[J].Eeotoxicology and Environment Safety,1997,37(1):24-29.
    [41]Cornejo J J, Munoz F G, Ma C Y, et al. Studies on the decontamination of air by plant [J].Ecotoxicology,1999,8:311-320.
    [42]Christopher D, Collins C D, Bell J N B, et al. Benzene accumulation in horticultural crops[J].Chemosphere,2000,40:109-114.
    [43]Keymeulen R, Schamp N, Van Langenhove H. Factors affecting airborne monocyclic aromatichydrocarbon uptake by plants[J]. Atmos. Environ.1993,27a (2):175-180.
    [44]Jen M S, Hoylman A M, Edwards N T, et al. Experimental method to measure the gaseous uptake oftoluene by foliage[J].Environmental and Experimental Botany,1995,35(3):389-398.
    [45]Keymeulen R, Schamp N, Langenhove H. Uptake of gaseous toluene in plant leaves: a two compartmentmodel [J].Chemosphere,1995,31(8):3961-3975.
    [46]Calamari D, Tremolada P, Di Guardo A, et al. Chlorinated hydrocarbons in pine needles in Europe:Fingerprint for the past and recent use[J].Environmental Science and Technolgy,1994a,28:429-434.
    [47]Wagrowski D M, Hites R A. Polycyclic aromatic hydrocarbon accumulation in urban, suburban and ruralvegetation [J].Environmental Science and Technology,1997,31:279-282.
    [48]Wolverton B C, Mcdonald R C, Watkins E A. Foliage plants for removing indoor air pollutants fromenergy-efficient homes[J].Economic Botany,1984,38(2):224-228.
    [49]Giese M, Bauer-Doranth U, Langebartels C, et al. Detoxificationunder formaldehyde stress by the spiderplant(Chlorophytum comosum L.) and by soybean(Glycine max L.) cell-suspension cultures[J].PlantPhysiology,1994,104:1301-1309.
    [50]Onodera T, Hirobayashi S, Yamabuchi T, et al. A modeling of purification process of Epipremnumaureum for formaldehyde using gas sensor[C].电气学会论文志.E,センサマイクロマシン部门志,120-E(1):26-27.(In Japanese)
    [51]胡海红,戴修道.室内绿化植物净化功能的研究[J].上海建设科技,1996,(6):37-38.
    [52]黄爱葵.几种盆栽观赏植物对室内空气空气净化能力的研究[D].南京:南京林业大学,2005.
    [53]LiuY J, Mu Y J, Zhu Y G, et al. Which ornamental plant species effectively remove benzene from indoorair[J]. Atmospheric Environment,2007,41:650-654.
    [54]李庆军.观赏植物吸收居室甲醛能力的比较[D].哈尔滨:东北林业大学,2006.
    [55]白雁斌,刘兴荣.吊兰净化室内甲醛污染的研究[J].海峡预防医学杂志,2003,9(3):49-50.
    [56]郭秀珠,黄品湖,王月英等.几种观叶植物对室内污染物的净化效果研究[J].环境工程学报,2007,1:101-106.
    [57]杨华,刘庆阳,刘艳菊.6种盆栽植物在单一及复合苯/甲苯气体胁迫下的净化效果及应用分析[J].环境化学,2011,30(4):786-791.
    [58]谷岩,潘黎.室内观赏植物的生态保健作用[J].家具与室内装饰,2010,(10):86-87.
    [59]胡羡聪,张德强,孔国辉等.大气SO2、氟化物对植物生理生态指标的影响[J].热带亚热带植物学报,2003,11(4):372-378.
    [60]郝辉芳,冀瑞萍.3种室内观赏植物对甲醛污染的响应[J].山西农业科学,2010,38(8):30-32.
    [61]刘栋,史宝胜,魏文欣.甲醛气体胁迫对3种观赏植物的形态及部分生理指标的影响[J].河北农业大学学报,2011,34(2):66-70.
    [62]徐爱菊,朱秀华.有机废气对植物叶片组织伤害的研究[J].中国环境科学,1996,16(5):377-381.
    [63]王佳佳.4种CAM植物对室内苯净化能力研究[D].哈尔滨:东北林业大学,2009.
    [64]张衡锋,陆小青,汤庚国.苯胁迫下冬青属植物叶片细胞ATPase活性动态变化[J].林业科技开发,2010,24(4):61-63.
    [65]刘娟娟. C02浓度升高与干旱胁迫对苗木水分运输的影响[D].北京:北京林业大学,2009.
    [66]于海秋,武志海,沈秀瑛等.水分胁迫下玉米叶片气孔密度、大小及显微结构的变化[J].吉林农业大学学报,2003,25(3):239-242.
    [67]张浩,王祥荣,王寿兵.城市胁迫环境下的二球悬铃木叶片气孔数量特征分析[J].复旦学报(自然科学版),2004,43(4):651-655.
    [68]王细娥,张丽军,谢锦云等.蛋白质组研究中细胞质膜的纯化和纯度鉴定研究进展[J].生命科学研究,2006,10(2):15-20.
    [69]任案芝,高玉葆,刘爽.青菜体内集中保护酶的活性对Pb、Cd、Cr胁迫的反应研究[J].应用生态学报,2002,13(4):510-512.
    [70]邱靖.三种垂直绿化植物净化大气中SO2能力研究[D].南京:南京林业大学,2009.
    [71]申亚梅,童再康,蔡建国等.植物抗旱机制的研究进展[J].安徽农业科学,2006,3(20):5214-5215,5238.
    [72]康敏明,陈红跃.几种鉴定植物抗大气污染能力指标的介绍[J].植物生理学通讯,2006,42(2):349-353.
    [73]孙守琴.环境指示植物苔藓对Pb-Ni复合胁迫的响应机理及其生物标志物研究[D].上海:上海交通大学,2008.
    [74]ilberstein L, Siegel B Z, Siegel S M, et al. Comparative studies on Xanthoria parietina, a pollutionresistant lichen, and Ramalina duriaei, a sensitive species. II. Evaluation of possible air pollutionprotection mechanisms[J].Lichenologist,1996,28(4):367-383.
    [75]安雪,李霞,潘会堂等.16种室内观赏植物对甲醛净化效果及生理生化变化[J].生态环境学报,2010,19(2):379-384.
    [76]赵辉,郝振萍,夏重立.3种室内观叶植物对甲醛的净化作用研究[J].中国农学通报,2010,26(6):212-215.
    [77]欧佳.观赏植物净化室内空气中甲醛的试验研究[D].绵阳:西南科技大学,2009.
    [78]邓瑜衡.盆栽植物吸收空气中苯系物的能力及其生理特性变化研究[D].上海:上海大学,2007.
    [79]刘会超.耐盐和盐生园林植物引种筛选利用及其耐盐机理的研究[D].博士后出站研究报告,中国林业科学研究院,2004,12.
    [80]田治国.陕西关中地区园林植物抗逆性研究[D].杨凌:西北农林科技大学,2009,5.
    [81]刘艳丽,陈能场,周建民等.观赏植物净化室内空气中甲醛的研究进展[J].工业催化,2008,16(9):6-11.
    [82]张翠萍,温琰茂.大气污染植物修复的机理和影响因素研究[J].云南地理环境研究,2005,17(6):82-83.
    [83]Barber J L, Thomas G O,Kerstielu G, et a1. Air-side and plant-side ltsistanees influence the uptake ofairborne PCBs by evergreen plants[J].Environmental Science and Technology,2002,36(15):3224-3229.
    [84]Edward W T,John D,Gareth O, et a1.Visualizing the Air-to-leaf transfer and wimiIl leaf movement anddistribution of phenanthrene:further studies utilizing two photon excitation microscopy[J].EnvironmentalScience and Technology,2006,40(3):907-916.
    [85]Meredith M L, Hites R A. Polychlorinated biphenyl accumulation in tree bark and wood growthrings[J].Environmental Science and Technolgy,1987,21:709-712.
    [86]周杰良,闫文德,王建湘.7种盆栽观赏植物室内滞尘能力研究[J].现代农业科技,2009,(8):7-8,10.
    [87]姚超英.化学性大气污染的植物修复技术[J].工业安全与环保,2007,33(9):52-53.
    [88]Treshow M., Bell J. N. B.. Air pollution and plant life[M].2nd Edition,New York: Wiley,2002.
    [89]Traap S, Miglior A K, MOSBEK H. Sorption of lipophilic organic compounds to wood and implicationfor their environmental fate[J].Environmental Science and Technology,2001,35(8):1561-1566.
    [90]徐迪,梅岩,年洪娟等.观赏植物叶片对甲醛吸收能力的研究[J].安徽农业科学,2009,37(12):5459-5462.
    [91]崔玉侠,陈玉成,邢赜等.大气污染植物修复的研究进展[J].微量元素与健康研究,2009,26(2):58-60.
    [92]Schoor J L, Light L A, McCutcheon S C, et al. Phyremedaition of organic and nutrient contaminants[J].Environmental Science and Technology,1995,29:318-323.
    [93]Harms N, Ras J, Reijingder W N M, et al. S-formylglutathione hydrolase of Paracoccus denitrificans ishomologous to human esterase D: a universal pathway for formaldehyde detoxification[J].Journal ofBacteriology,1996,178(21):6296-6299.
    [94]Gordon M, Choe N, Duffy J, et al. Phytoremediation of trichloroethylene with hybrid poplars[J].Environmental Health Perspectives,1998,106(Suppl4):1001-1004.
    [95]Doty S L, Shang T Q, Wilson A M, et al. Enhanced metabolism of halogenated hydrocarbons intransgenic plants containing mammalian cytochrome P4502E1[J].Proceedings of the National Academyof Sciences,2000,97:6287-6291.
    [96]Morikawa H, Higaki A, Nohno M, et al. More than a600-fold variation in nitrogen dioxide assimilationamong217plant taxa[J].Plant,Cell and Environment,1998,21:180-190.
    [97]Alkorta I, Garbisu C. Phytoremediation of organic contaminants in soils[J]. Bioresource Technology,2001,79:273-276.
    [98]Devi U, Friedhelm K, George K. Uptake and transformation of benzene and toluene by plant leaves[J].Ecotoxicology and Environmental Safety,1997,37(1):24-29.
    [99]Schmitz H, Hilgers U, Weidner M. Assimilation and metabolismunder formaldehyde stress by leavesappear unlikely to be of value for indoor air purification[J].New Phytologist,2000,147(2):307-315.
    [100]Achkor H, Díaz M, Fernández M R, et al. Enhanced formaldehyde detoxification by overexpression ofglutathione-dependent formaldehyde dehydrogenase from Arabidopsis[J]. Plant Physiology,2003,132(8):2248-2255.
    [101]骆永明,查宏光,宋表等.大气污染的植物修复[J].土壤,2002,3:113-117.
    [102]Omasa K, Saji H, Youssefian S, et al. Air pollution and plant biotechnology-prospects forphytomonitoring and phytoremediation [M]. Tokyo: Springer-Verlag,2002.
    [103]李玫,章金鸿.大气污染的植物修复及其机理研究的进展[J].广州环境科学,2006,21(2):39-43.
    [104]Korte F, Ugrekhelidze K D, Gordeziani M, et al. Organic toxicants and plants[J]. Ecotoxicology andEnvironmental Safety,2000,47:1-26.
    [105]田英翠,曹受金.观赏植物净化室内甲醛效果的研究进展[J].江苏农业科学,2010(2):387-389.
    [106]周晓晶.室内观赏植物净化甲醛效果的研究[D].北京:北京林业大学,2007.
    [107]Orwell R L, Wood O R, Tarran J, et al. Removal of benzene by the indoor plant/substrate microcosmand implications for air quality[J].Water, Air, and Soil Pollution,2004,157:193-207.
    [108]Wood R A, Orwell R L, Burchett M D. Study of absorption of VOCs by commonly used indoorplants[C].Edinburgh,Scotland:AIVC20th Conference and Indoor Air,1999.
    [109]赵玉峰.浅议绿色植物对室内空气污染物的净化作用[EB/OL].[2007-2-13].http://bbs.co188.com/content/1855_643645_1.htmL
    [110]朱栗琼,王勇,招礼军.8种榕属植物叶片解剖构造及抗逆性的数量分析[J].广西科学,2012,19(1):88-92.
    [111]梁双燕.室内观赏植物吸收甲醛效果的初步研究[D].北京:北京林业大学,2006.
    [112]安雪.观赏植物对甲醛气体的净化能力及耐受性研究[D].北京:北京林业大学,2010.
    [113]邵茂清.重庆建筑室内空气中甲醛污染调查及植物净化甲醛的实验研究[D].重庆:重庆大学,2005.
    [114]董丽丽.7种室内观赏植物主要生态效益研究[D].合肥:安徽农业大学,2008.
    [115]刘艳菊,葛红.室内观赏植物对苯和甲醛的净化研究及养护技术[M].北京:科学出版社,2010.
    [116]靳曙光,石磊.吉林市公共场所室内空气中甲醛浓度水平分析[J].现代预防医学,2010,37(4):641-642,648.
    [117]李飞,郑双来,项橘香等.杭州市余杭区部分居室装修后室内空气污染调查分析[J].中国预防医学杂志,2010,11(9):952-953.
    [118]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2001.
    [119]Dionisio-Sese M, Tobita S. Antioxidant responses of rice seedlings to salinity stress[J].Plant Science,1998,135:1-9.
    [120]史树德,孙亚卿,魏磊.植物生理学实验指导(1-1)[M]北京:中国林业出版社,2011.
    [121]吴世军.大气SO2对植物叶绿素含量的影响研究[J].泉州师范学院学报(自然科学),2006,(24)4:110-113.
    [122]王会霞,石辉,李秧秧.城市大气环境下绿化植物叶片比叶重和光合色素含量[J].中国环境科学,2011,37(7):1134-1142.
    [123]Stoeva N, Berova M, Zlatev Z. Physiological response of maize to arsenic contamination[J]. BiolPlant,2004,47:449-452.
    [124]姜虎生,石德成. Hg、Cd复合污染对玉米生理指标的影响[J].陕西农业科学,2005,(6):7-9,105.
    [125]陈少裕.膜脂过氧化对植物细胞的伤害[J].植物生理学报,1991,27(2):84-90.
    [126]焦蓉,刘好宝,刘贯山等.论脯氨酸累积与植物抗渗透胁迫[J].中国农学通报,2011,27(7):216-221.
    [127]陶玲,任王君,杜忠等.兰州市大气污染对植物中游离脯氨酸含量的影响[J].环境化学,2002,27(4):499-502.
    [128]Smimoff N. The role of active oxygen in the response of plants to water deficit and desiccation[J].NewPhytologist,1993,125:27-31.
    [129]韩晓玲.小冠花抗L-羟基脯氨酸(Hyp)变异系离体筛选及其耐盐性研究[D].西安:西北大学,2006.
    [130]Anjum F,Rishi V, Ahmad F. Compatibility of osmolytes with Gibbs energy of stabilization of proteins[J].Biochimica and Biophysica Acta,2000,1476-1484.
    [131]Bowler C, Montagu M V, Inze D. Superoxide dismutase and stress tolerance[J].Review of PlantPhysiology and Plant Molecular Biology,1992,43:53-116.
    [132]瓜谷郁三(日本)著.植物逆境生物化学及分子生物学[M].谢国生,李合生译.北京:中国农业出版社,2004.
    [133]周希琴,莫灿坤.植物重金属胁迫及其抗氧化系统[J].新疆教育学院学报,2003,6(2):103-108.
    [134]Takahama U, OnikiT. A peroxidase, phenolies, aseorbate system can seavenge hydrogen peroxide inplant cells[J]. Plant Physiology,1997,101:845-852.
    [135]梁淑英.部分城市绿化树种的生理特性及其对大气污染的响应[D].南京:南京林业大学,2008.
    [136]令狐昱慰,黎斌,李思锋.3种观赏植物对室内甲醛污染的净化及生长生理响应[J].西北植物学报,2011,31(4):776-782.
    [137]Raza S H, Shylaja G. Different abilities of certain succulent plants in removing CO2from the indoorenvironment of a hospital[J].Environment International,1995,21(4):465-469.
    [138]左闻韵,贺金生,韩梅等.植物气孔对大气CO2浓度和温度升高的反应——基于:在CO2浓度和温度梯度中生长的l0种植物的观测[J].生态学报,2005,25(3):565-574.
    [139]组成分分析方法[DB/OL].http://geoc.awardspace.com/geocomput/kj/jldl/3.5.ppt
    [140]罗立新,孙铁晰,靳月华.镉胁迫对小麦叶片细胞膜脂过氧化的影响[J].中国环境科学,1998,18(1):72-75
    [141] Stobart A K, Griffths W T, Ameen-Bukhari I, et al. The effects of Cd2+on the biosynthesis ofchlorophyll in leaves of barley[J]. Plant Physiology,1985,63:293-298.
    [142]赵菲佚,翟禄新,陈荃等. Cd、Pb复合处理下对植物膜的伤害初探[J].兰州大学学报(自然科学版),2002,38(2):115-120.
    [143]赵明珠.几种常见室内观赏植物降醛能力的研究[D].南京:南京林业大学,2007.
    [144]马树华,王庆成,李亚藏.汽车尾气污染对四种北方阔叶树苗木膜脂过氧化和保护酶活性的影响[J].应用生态学报,2004,15(12):2330-2336.
    [145]黄媛媛,单爱琴,李海花等.四氯乙烯污染对大豆幼苗抗氧化特征的影响[J].大豆科学,2010,29(4):721-726.
    [146]黄玉源,黄益宗,李秋霞等.臭氧对南方3种木本植物的急性伤害症状及其生理指标变化[J].生态环境,2006,15(4):674-681.
    [147]汪贵斌.落羽杉抗性生理机制的研究[D].南京:南京林业大学,2003.
    [148]李彦慧,李向应,白瑞琴等.4种李属彩叶树木对SO2的抗性[J].林业科学,2008,44(2):28-33.
    [149]马丁.气孔[M].张崇浩译.北京:科学出版社:1987.
    [150] Wolverton B C, Wolverton J D. Plants and soil microorganisms--removalunder formaldehyde stress,xylene and ammonia from the indoor environment[J].Journal of the Mississippi Academy of Sciences,1993,38(2):11-15.
    [151]Sharkey T D, Raschke K. Separation and measurement of direct and indirect effects of light on stomata[J]. Plant Physiology,1981,68(1):3340.
    [152]Ro H M, Kim P G, Lee I B, et al. Photosynthetic characteristics and growth responses of dwarf apple(Malus domestica Borkh. cv. Fuji) saplings after3years of exposure to elevated atmospheric carbondioxide concentration and temperature[J].Trees,2001,15(4):195-203.
    [153]刘萍.两种补血草的营养器官结构及耐盐生理的适应性研究[D].石河子:石河子大学,2006.
    [154]崔大练,马玉心,王俊.干旱胁迫下紫穗槐叶片解剖特征的变化[J].广西植物,2011,31(3):332-337.
    [155]王明.外源植物生长调节剂提高番茄幼苗弱光逆境适应性的生理效应[D].北京:中国农业科学院,2008.
    [156]陆亚芳.大气污染梯度下树木附生苔藓植物体内生理生化指标的变化[D].南京:南京林业大学,2005.
    [157]赵福庚,刘友良.胁迫条件下高等植物体内脯氨酸代谢及调节的研究进展[J].植物学通报,1999,16(5):540-546
    [158]时忠杰,胡哲森,李荣生.水分胁迫与活性氧代谢[J].贵州大学学报,2002,21(2):140-145.
    [159]李合生.现代植物生理[M].北京:高等教育出版社,2002.
    [160] Chiou C T, Porter P E, Schmedding D W. Partition equilibrium of nonionic organic compoundsbetween soil organic matter and water[J].Environmental Science and Technology,1983,l7:227-231.
    [161]Mingelgrin U, Gerstl Z. Reevaluation of partitioning as a mechanism of nonionic chemicals adsorptionin soils[J]Journal of Environmental Quality,198312:1-11.
    [162]Unger D, Lam T, Schaefer C E, et al. Predicting the effect of moisture on vapor-phase sorption ofvolatile organic compounds to soils[J].Environmental Science and Technology,1996,30(4):1081-1091.
    [163]杨萍,陈景文.植物叶片在大气持久性有机污染物监测中的应用[J].中国科技论文在线,2009,10:1-4.
    [164]McCrady J K. Vapor-phase2,3,7,8-TCDD sorption to plant foliage-A species comparison[J].Chemosphere,1994,28(1):207-216.
    [165]McLachlan M S. Framework for the interpretation of measurements of SOCs in plants[J].Environmental Science and Technology,1999,33(11):1799-1804.
    [166]Tolls J, McLachlan M S. Partitioning of semivolatile organic compounds between air and Loliummultiflorum (Welsh ray grass)[J].Environmental Science and Technology,1994,28(1):159-166.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700