用户名: 密码: 验证码:
连续波光学参量振荡器及受激拉曼散射现象的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尽管激光已经出现了50多年,但获得从紫外和可见光波段到近红外和中红外波段宽光谱范围的连续波激光输出仍然是一大难题。光学参量振荡器(OPO)作为一种可调谐相干光源,拓宽了激光输出波长范围,已成为非线性光学频率变换与激光调谐技术领域的重要组成部分。将在高分辨率光谱、军事和激光医疗领域有重要的应用价值。
     论文在理论分析的基础上,研制光束质量好、效率高、结构紧凑的Nd:YVO4激光器作为泵浦源,采用周期极化掺氧化镁铌酸锂(PPMgLN)晶体作为非线性晶体,实现了准相位匹配连续波光学参量振荡器,获得了近红外波段和中红外波段低阈值、宽连续调谐范围、高功率、高效率的稳定输出。
     理论方面:从非线性光学的基本原理出发,推导了介质中的三波相互作用的耦合波方程;介绍了基于周期极化晶体的准相位匹配理论和PPMgLN晶体的特性;根据光学参量振荡器的基本原理,分析了单谐振连续波光学参量振荡器的增益,讨论了平面波近似和高斯光束近似下光学参量振荡器的阈值和转换效率;基于PPMgLN晶体,对光学参量振荡器的泵浦波长调谐、周期调谐、温度调谐和角度调谐的调谐特性进行了模拟计算,并结合实验对周期和温度调谐进行了深入分析;对常规Nd:YVO4晶体和键合Nd:YVO4晶体的热透镜效应进行了对比分析;对伴随产生的受激拉曼散射的阈值及耦合波方程进行了推导和分析。
     实验方面:首先对连续波光学参量振荡器的泵浦源进行研究。实验采用激光二极管阵列(LDA)端面泵浦方式和两镜直线腔结构,通过选择单端键合Nd:YVO4晶体降低由晶体端面形变引起的热透镜效应,实现了转换效率高、光束质量好、最大输出功率达到11.79W的1064nm连续波激光输出,满足了连续波光学参量振荡器对泵浦源的要求。
     然后,在理论分析的基础上,采用连续波1064nm激光器和两镜线性腔结构,对基于周期间隔为0.5μm的PPMgLN晶体的连续波光学参量振荡器进行了实验研究。通过优化模式匹配,提高了光学参量振荡器的输出功率和转换效率。连续波光学参量振荡器的工作阈值仅为0.3W;通过周期调谐,实现了连续波光学参量振荡器在近红外1.43~1.67μm和中红外2.93~4.12μm宽波段可调谐输出;当泵浦功率为11.79W时,在30.5μm周期处,总输出功率达到4.29W,光-光转换效率为36.4%,信号光1.55μm和闲频光3.40μm输出功率分别为3.14W和1.15W。
     其次,对高功率连续波光学参量振荡器中伴随输出的受激拉曼散射现象进行了研究和分析。研究发现,受激拉曼散射的产生对闲频光的输出存在重要影响。通过调整光学参量振荡器的输出镜,增加受激拉曼散射的振荡阈值,可有效抑制高阶受激拉曼散射的出现,同时将闲频光3.40μm的输出功率由1.15W提高到1.98W,光-光转换效率达到16.8%;由于受到低光子能量和非谐振等因素的影响,在闲频光波段没有发现受激拉曼散射。
     最后,对连续光学参量振荡器的连续调谐输出特性进行了实验研究。泵浦源为连续波Nd:YVO4激光器,基于0.2μm间隔的PPMgLN晶体的29.8~31.4μm极化周期,在周期调谐的基础上进行温度调谐,实现了信号光1.49~1.68μm和闲频光2.88~3.68μm连续无分离可调谐输出。采用小周期间隔的非线性晶体,大大降低了组合调谐所需的温度范围,有效提高了组合调谐的调谐速度和效率。该套装置的最大特点是调谐范围宽,速度快,可实现宽波段范围连续无分离的激光输出。
While lasers have been in use for more than50years, it is still difficult todevelop laser output wavelength that can cover the regions of the optical spectrum,from the ultraviolet and visible to the near-infrared and mid-infrared wavelengthrange. As the broadly tunable coherent laser source, continuous wave (CW) opticalparametric oscillators (OPO) have become an important part of the nonlinear opticalfrequency conversion and laser tuning technology fields by virtue of its many merits.Especially, CW OPO will have more important applications in many fields such ashigh resolution spectroscopy analysis, military, laser medicine, and so on.
     In this thesis, CW OPO based on quasi-phase-matched (QPM) periodicallypoled MgO-doped lithium niobate crystal (PPMgLN) is studied on the basis oftheoretical analysis and experiments. Using the PPMgLN crystal as the nonlinearconverter, we have accomplished low threshold, high power and highly efficient CWOPO, driven by high beam quality, efficient and compact diode-end-pumped CWNd:YVO4laser.
     Theoretically, the coupled wave equations of three-wave interaction are deducedfrom the basic principles of nonlinear optical. The fundamental theory of QPMtechnique based on periodically poled crystal and properties of PPMgLN crystal areintroduced. The gain of single resonant continuous wave OPO (SRO) is analyzed, and the threshold and conversion efficiency in the plane wave approximation andGaussian beam approximation are discussed according to the fundamental theory onOPO system. The tuning characters of four tuning modes of thequasi-phase-matching OPO, namely, pump wavelength tuning, grating period tuning,temperature tuning and angle tuning, are numerical calculated and analyzed based onPPMgLN crystal, and a thorough analysis on period tuning and temperature tuning isgiven according to the experiments. A contrastive analysis of the thermal lens effectbetween conventional Nd:YVO4crystal and bonding Nd:YVO4crystal is made atcertain pump power. The threshold and coupled wave equations of the coexistentstimulated Raman scattering (SRS) are derivated.
     Experimentally, a CW Nd:YVO4laser end-pumped by laser diode array (LDA)is investigated as the pump source of CW OPO. A two-mirror linear cavity isdesigned, and by choosing a single-ended bonding Nd:YVO4crystal to reduce thethermal lens effect caused by end deformation, a CW1064nm laser with highconversion efficiency, good quality of light beam and maximum output power of11.79W is realized, which is suitable for pumping CW PPMgLN OPO.
     The output characteristics of high power CW OPO is studied in the dissertation.An experiment using CW1064nm laser and two-mirror linear cavity is carried outbased on the PPMgLN crystal with0.5μm cycle interval. In the experiments, theOPO cavity is resonant for the signal frequency. Optimized pattern matching forpump beam is taken into account to improve the output power and conversionefficiency of CW OPO. Experimental results indicate that the OPO’s threshold is justonly0.3W, and the OPO is able to yield laser spectrum from1.43μm to1.67μmand mid-infrared spectrum from2.93μm to4.12μm. The maximum total signal andidler output power at30.5μm poling period is4.29W by pumping power11.79W,which corresponds to an optical-optical efficiency of36.4%.1.55μm signal and3.40μm idler output powers are3.14W and1.15W, respectively.
     The coexistent stimulated Raman scattering (SRS) in CW OPO is researched.The study finds that there is an important impact on the generation of idler. The higher order SRS can be inhibited by enhancing the threshold of SRS with adjustingthe output mirror. With the loss of SRS increasing,1.98W of the maximum idleroutput power at3.40μm is obtained, corresponding to an optical-optical efficiencyof16.8%. Due to the impact of factors such as low photon energy and non-resonant,SRS phenomenon is not found in the idler wavelength.
     Finally, the output characteristics of a multi-wavelength tunable CW OPO areinvestigated experimentally. The pump source is a CW Nd:YVO4laser emitting1064nm. The PPMgLN crystal with0.2μm cycle interval is adopted for the OPO. Awidely and continuously without separation tunable near-infrared spectrum from1.49μm to1.68μm and mid-infrared spectrum from2.88μm to3.68μm areobtained by changing crystal grating periods from29.8μm to31.4μm and thecrystal temperature from30℃to100℃. By using nonlinear crystal with smallperiodic intervals, the needed temperature range can be greatly reduced, and thespeed and efficiency of the combined tuning are improved effectively. The mostimportant features of the CW OPO are widely tunable range, high speed, and widelyspectrum range without separation.
引文
[1] M. Ebrahim-Zadeh. Solid-State Mid-Infrared Laser Sources [M]. Berlin:Springer-Verlag,2003.179-224
    [2] Y. J. Ding, I. B. Zotova. Coherent and tunable terahertz oscillators, generators,and amplifiers [J]. J of Nonlinear Optical Physics&Materials,2002,11(1):75-97
    [3] Kodo Kawase Jun-ichi Shikata, Hiromasa Ito. Terahertz wave parametric source[J]. J Phys D: Appl Phys,2001(34): R1-R14
    [4] J. Nishizawa. History and characteristics of semiconductor laser [J]. DenshiKagaku,1963,14:17-31
    [5] J. Nishizawa. Esaki diode and long wavelength laser [J]. Denshi Gijutu,1965,7:101-106
    [6] C. H. Henry, J. J. Hopfield. Raman scattering by polaritons [J]. Phys Rev Lett,1965,15(25):964-966
    [7] J. M. Yarborough, S. S. Sussman, H. E. Purhoff, et al. Efficient, tunable opticalemission from LiNbO3without resonator [J].Appl Phys lett,1969,15(3):102-105
    [8] K. Imai, K. Kawase. A frequency-agile terahertz-wave parametric oscillator [J].Opt Express,2001,8(13):699-704
    [9] R. Sowade, I. Breunig, I. C. Mayorga, et al. Continuous-wave optical parametricterahertz source [J]. Opt Express,2009,17(25):22303-22310
    [10]D. Molter, M. Theuer, R. Beigang R. Nanosecond terahertz optical parametricoscillator with a novel quasi phase matching scheme in lithium niobate [J]. OptExpress,2009,17(8):6623-6628
    [11]T. Ikari, R. Guo, H. Minamide, et al. Energy scalable terahertz-wave parametricoscillator using surface-emitted configuration [J] J Eur Opt Soc Rap Pub,2010,5:10054
    [12]胡永钊,赵铭军,沈严,等.激光技术在主动红外对抗中的应用[J].激光与红外,2004,34(1):62-64
    [13]任国光,黄裕年.用激光红外干扰系统保护军用和民航机[J].激光与红外,2006,36(1):1-6
    [14]V. Karaganov, M. Law, M. Kaesler, et al. Engineering Development of a DirectedIR Countermeasure Laser [C]. Proceedings of SPIE,2004,5615:48-53
    [15]D. H. Terton. A review of the development of optical countermeasures [C].Proceedings of SPIE,2004,5615:1-15
    [16]B. Molocher. Countermeasure laser development [C]. Proceedings of SPIE,2005,5989:1-10
    [17]淦元柳,徐世录.美国直升机载红外干扰系统的现状与发展[J].激光与红外,2006,36(1):7-10
    [18]李斌,范东启,乔广林.红外干扰机原理简析[J].红外技术,1999,21(3):33-36
    [19]钟荣焕.美国导弹防御系统中使用的红外技术[J].激光与红外(增刊),2006,36:771-775
    [20]钟鸣,任钢.3-5μm中红外激光对抗武器系统[J].专家论坛,2007,1:3-6
    [21]周伯勋.红外技术在空空导弹中的应用现状及发展趋势[J].红外技术,1996,18(5):1-4
    [22]G. Anderson. Diode-pumped Parametric Oscillator/Laser Simplifies Lidar System[J]. Laser Focus World,1995,31(4):46-47
    [23]P. G. Philippov, Y. A. Bakhirkin, V. N. Moiseev, et al. DIAL infrared lidar formonitoring of main pipelines and gas industry objects [J]. Proc SPIE Int Soc Opt Eng,1998,3504:119-127
    [24]A. Fix, V. Weiss, G. Ehret. Injection-seeded optical parametric oscillator forairborne water vapor DIAL [J]. PureAppl Opt,1998,7:837-852
    [25]P. Weibring, H. Edner, S. Svanberg. Versatile Mobile Lidar System forEnvironmental Monitoring [J]. Applied Optics,2003,42(18):3583-3594
    [26]M. J. Johnson, J. G. Haub, B. J. Orr. Continuously tunable narrow-band operationof an injection-seeded ring-cavity optical parametric oscillator: spectroscopicapplications [J]. Opt Lett,1995,20(11):1277-1279
    [27]G. V. Basum, D. Halmer, P. Hering, et al. Parts per trillion sensitivity for ethane inair with an optical parametric oscillator cavity leak-out spectrometer [J]. Opt Lett,2004,29(8):797-799
    [28]庆应义塾.光力学治疗装置、光力学治疗装置的控制方法及光力学治疗方法[P].中国专利,200380110380.4,2006-07-12
    [29]邹意会,张荣康.光参量振荡器在光化学治疗中的应用[J].激光与光电子学进展,1995(10):22-24
    [30]崔永甲.光参量振荡器在光化学治疗方面的应用[J].光机电信息,1995,12(6):32-33
    [31]P. A. Franken, A. E. Hill, C. W. Peters, et al. Generation of optical harmonics [J].Phys Revs Lett,1961,7(4):118-119
    [32]M. Bass, P. A. Franken, A. E. Hill, et al. Optical mixing [J]. Phys Rev Lett,1962,8(1):18-19
    [33]D. W. Faries, K. A. Gehring, P. L. Richards, et al. Tunable far-infrared radiationGenerated from the difference frequency between two ruby lasers [J]. Phys Rev,1969,180(2):363-365
    [34]N. M. Kroll. Parametric amplification in spatially extended media and applicationto the design of tunable oscillators at optical frequencies [J]. Phys Rev,1962,127(4):1207-1211
    [35]R. H. Kingston. Parametric amplification and oscillation at optical frequencies [J].Proc IRE,1962,50(4):472-476
    [36]J. A. Armstrong, N. Bloembergen, J. Ducuing, et al. Interaction between lightwaves in a nonlinear dielectric [J]. Phys Rev,1962,127(6):1918-1939
    [37]C. C. Wang, G. W. Racette G W. Measurement of parametric gain accompanyingoptical difference frequency generation [J]. Appl Phys Lett,1965,6(8):169-171
    [38]J. A. Giordmaine, R. C. Miller. Tunable coherent parametric oscillation inLiNbO3at optical frequencies [J]. Phys Rev Lett,1965,14(24):973-976
    [39]R. G. Smith, J. E. Geusic, H. J. Levinstein, et al. Continuous Optical ParametricOscillation in Ba2NaNb5O15[J].Applied Physics Letters,1968,12(5):308-310
    [40]G. T. Moore, K. Koch. Efficient high-gain two-crystal optical parametricoscillator [J]. IEEE J Q E,1995,31(5):761-768
    [41]K. Kato, N. U. Memura, E. Tanaka.90oPhase-matched mid-infrared Parametricoscillation in undoped KTiOAsO4[J]. Jpn JAppl Phys,1997,36(4A):403-405
    [42]G. T. Moore, K. Koch, M. E. Dearborn, et al. A simultaneously phase-matchedtandem optical parametric oscillator [J]. IEEE J Q E,1998,34(5):803-810
    [43]I. D. Lindsay, G. A. Turnbull, M. H. Dunn, et al. Doubly resonantcontinuous-wave optical parametric oscillator pumped by a single-mode diode laser[J]. Opt Lett,1998,23(24):1889-1891
    [44]Y. Yashkir, H. M. Van Driel. Passively Q-switched1.57μm intracavity opticalparametric oscillator [J]. Appl Opt,1999,38(12):2554-2559
    [45]S. T. Yang, R. C. Eckardt, R. L. Byer.1.9W cw ring-cavity KTP singly resonantoptical parametric oscillators [J]. Opt Lett,1994,19(7):475-477
    [46]H. Komine, J. M. Fukumoto, W. H. Long, et al. Noncritically phase matchedmid-infrared generation in AgGaSe2[J]. IEEE J S T Q E,1995, l(l):44-49
    [47]P. P. Boon, W. R. Fen, C. T. Chong, et al. Nanosecond AgGaS2optical parametricoscillator with more than4micron output [J]. Jpn J Appl Phys,1997,36(12B):1661-1664
    [48]S. T. Yang, R. C. Eckardt, R. L. Byer. Continuous-wave singly resonant opticalparametric oscillator pumped by a single-frequency resonantly doubled Nd:YAG laser[J]. Optics Letters,1993,18(12):971-973
    [49]S. Kumar, R. Das, G. K. Samanta. Optimally-output-coupled,17.5W,fiber-laser-pumped continuous-wave optical parametric oscillator [J]. Applied PhysicsB,2011,102(1):31-35
    [50]G. K. Samanta, M. Ebrahim-Zadeh. High-power, continuous-wave, opticalparametric oscillator pumped by an optically pumped semiconductor laser at532nm[J]. Optics Letters,2010,35(12):1986-1988
    [51]Angus Henderson, Ryan Stafford. Spectral broadening and stimulated Ramanconversion in a continuous-wave optical parametric oscillator [J]. Optics Letters,2007,32(10):1281-1283
    [52]Vainio Markku, Peltola Jari, Persijn Stefan, et al. Singly resonant cw OPO withsimple wavelength tuning [J]. Optics Express,2008,16(15):11141-11146
    [53]Markku Vainio, Mikael Siltanen, Tuomas Hieta, et al. Continuous-wave opticalparametric oscillator based on a Bragg grating [J]. Optics Letters,2010,35(10):1527-1529
    [54]R. Sowade, I. Breunig, J. Kiessling, et al. Influence of the pump threshold on thesingle-frequency output power of singly resonant optical parametric oscillators [J].Applied Physics B,2009,96(1):25-28
    [55]I. D. Lindsay, C. Petridis, M. H. Dunn, et al. Continuous-wave pump-enhancedsingly resonant optical parametric oscillator pumped by an extended-cavity diodelaser [J]. Applied Physics Letters,2001,78(7):871-873
    [56]F. G. Colville, M. Ebrahimzadeh, W. Sibbett, et al. Continuous-wave LiB3O5optical parametric oscillator pumped by a tunable Ti:sapphire laser [J]. AppliedPhysics Letters,1994,64(14):1765-1767
    [57]Siltanen Mikael, Vainio Markku, Halonen Lauri. Pump-tunable continuous-wavesingly resonant optical parametric oscillator from2.5to4.4μm [J]. Optics Express,2010,18(13):14087-14092
    [58]A. Rihan, E. Andrieux, T. Zanon-Willette, et al. A pump-resonant signal-resonantoptical parametric oscillator for spectroscopic breath analysis [J]. Applied Physics B,2011,102(2):367-374
    [59]P. Gross, I. Lindsay, C. Lee, et al. Frequency control of a1163nm singly resonantOPO based on MgO:PPLN [J]. Optics Letters,2010,35(6):820-822
    [60]S. Zaske, D. H. Lee, C. Becher. Green-pumped cw singly resonant opticalparametric oscillator based on MgO:PPLN with frequency stabilization to an atomicresonance [J]. Applied Physics B,2010,98(4):729-735
    [61]Lee Dong-Hoon, Kim Seung Kwan, Park Seung-Nam, et al. Continuous-wave532nm pumped MgO:PPLN optical parametric oscillator with external powerregulation and spatial mode filtering [J]. Applied Optics,2009,48(1):37-42
    [62]Takeshi Ikegami, Hajime Inaba. Atomic and molecular spectroscopy with acontinuous-wave, doubly resonant, monolithic optical parametric oscillator [J]. OpticsCommunications,2007,269(1):188-193
    [63]G. K. Samanta, S. Chaitanya Kumar, Ritwick Das, et al. Continuous-wave opticalparametric oscillator pumped by a fiber laser green source at532nm [J]. OpticsLetters,2009,34(15):2255-2257
    [64]T-H. My, O. Robin, O. Mhibik, et al. Stimulated Raman scattering in an opticalparametric oscillator based on periodically poled MgO-doped stoichiometric LiTaO3[J]. Optics Express,2009,17(7):5912-5918
    [65]Melkonian Jean-Michel, My Thu-Hien, Bretenaker Fabien, et al. High spectralpurity and tunable operation of a continuous singly resonant optical parametricoscillator emitting in the red [J]. Optics Letters,2007,32(5):518-520
    [66]U. Strossner, J. P. Meyn, R. Wallenstein, et al. Single-frequency continuous-waveoptical parametric oscillator system with an ultra wide tuning range of550to2830nm [J]. JOSAB,2002,19(6):1419-1424
    [67]R. L. Byer, M. K. Oshman, J. F. Young, et al. Visible cw parametric oscillator [J].Applied Physics Letters,1968,13(3):109-111
    [68]F. G. Colville, M. J. Padgett, A. J. Henderson, et al. Continuous-wave parametricoscillator pumped in the ultraviolet [J]. Optics Letters,1993,18(13):1065-1067
    [69]T. Petelski, R. S. Conroy, K. Bencheikh, et al. All-solid-state, tunable,single-frequency source of yellow light for high-resolution spectroscopy [J]. OpticsLetters,200126(13):1013-1015
    [70]Mhibik Oussama, My Thu-Hien, Pab uf David, et al. Frequency stabilization atthe kilohertz level of a continuous intracavity frequency-doubled singly resonantoptical parametric oscillator [J]. Optics Letters,2010,35(14):2364-2366
    [71]My Thu-Hien, Drag Cyril, Bretenaker Fabien. Single-frequency and tunableoperation of a continuous intracavity-frequency-doubled singly resonant opticalparametric oscillator [J]. Optics Letters,2008,33(13):1455-1457
    [72]G. K. Samanta, M. Ebrahim-Zadeh. Continuous-wave, single-frequency,solid-state blue source for the425-489nm spectral range [J]. Optics Letters,2008,33(11):1228-1230
    [73]S. T. Lin, Y. Y. Lin, R. Y. Tu, et al. Fiber-laser-pumped CW OPO for red, green,blue laser generation [J]. OptIics Express.201018(3):2361-2367
    [74]A. Carleton, D. J. M. Stothard, I. D. Lindsay, et al. Compact, continuous-wave,singly resonant optical parametric oscillator based on periodically poled RbTiOAsO4in a Nd:YVO4laser [J]. Opt Lett2003,28(7):555-557
    [75]M. M. J. W. V. Herpen, S. E. Bisson, F. J. M. Harren. Continuous-wave operationof a single-frequency optical parametric oscillator at4-5μm based on periodicallypoled LiNbO3[J]. Opt Lett,2003,28(24):2497-2499
    [76]J. Yu, Y. Baib, N. P. Barnesa, et al. Intra-cavity pumped periodically poledLiNbO3optical parametric oscillator with double ring configuration [J]. OSA Trendsin Optics and Photonics Series,2004,94:390-393
    [77]D. W. Chen, T. S. Rose. Low Noise10-W CW OPO Generation near3μm withMgO Doped PPLN [C]. Conference on Lasers and Electro-Optics (CLEO),2005,3:1829-1831
    [78]Henderson Angus, Ryan Stafford. Low threshold, singly-resonant CW OPOpumped by an all-fiber pump source [J]. Opt Express,2006,14(2):767-772
    [79]Henderson Angus, Ryan Stafford.8.6Watt, single frequency CW OPO [J]. ProcOf SPIE,2007,6455:64550E
    [80]Liu Jianli, Li Yongmin, Liu Qin, et al. Continuous-wave, single-frequencyintracavity singly resonant optical parametric oscillator at1.5-μm wavelength [J].Chinese Optics Letters,2009,7(3):244-245
    [81]K. Ioakeimidi, J. R. Schwesyg, C. R. Phillips, et al. Singly resonant CW Mid-IRoptical parametric oscillator pumped by a tunable C-band source for free spacecoherent optical communications [C]. Conference on Lasers and Electro-Optics(CLEO),2010: CTH1
    [82]Sheng Quan, Ding Xin, Shi Chunpeng, et al. Continuous-wave mid-infraredintra-cavity singly resonant PPLN-OPO under880nm in-band pumping [J]. OpticsExpress,2012,20(7):8041-8046
    [83]L. Palfalvi, J. Hebling, J. Kuhl, et al. Temperature dependence of the absorptionand refraction of Mg-doped congruent and stoichiometric LiNbO3in the THz range[J]. Journal ofApplied Physics,2005,97(12):123505-123510
    [84]J. Hebling, A. G. Stepanov, G. Almaasi, et al. Tunable THz pulse generation byoptical rectification of ultra short laser pulses with tilted pulse fronts [J]. AppliedPhysics B: Lasers and Optics,2004,78(5):593-599
    [85]R. Sowade, I. Breunig, C. Tulea, et al. Nonlinear coefficient and temperaturedependence of the refractive index of lithium niobate crystals in the terahertz regime[J]. Applied Physics B: Lasers and Optics,2010,99(1-2):63-66
    [86]A. Henderson, R. Stafford. Intra-cavity power effects in singly resonant cw OPOs[J]. Applied Physics B: Lasers and Optics,2006,85(2-3):181-184
    [87]J. Kiessling, R. Sowade, I. Breunig, et al. Cascaded optical parametric oscillationsgenerating tunable terahertz waves in periodically poled lithium niobate crystals [J].Optics Express,2009,17(1):87-91
    [88]I. Breunig, J. Kiessling, R. Sowade, et al. Generation of tunable continuous-waveterahertz radiation by photo mixing the signal waves of a dual-crystal opticalparametric oscillator [J]. New Journal of Physics,2008,10:073003-073008
    [89]A. A. Savchenkov, A. B. Matsko, M. Mohageg, et al. Parametric oscillations in awhispering gallery resonator [J]. Optics Letters,2007,32(2):157-159
    [90]V. Pasiskevicius, A. Fragemann, F. Laurell, et al. Enhanced stimulated Ramanscattering in optical parametric oscillators from periodically poled KTiOPO4[J].Applied Physics Letters,2003,82(3):325-327
    [91]A. V. Okishev, J. D. Zuegel. Intracavity-pumped Raman laser action in a mid-IR,continuous-wave (cw) MgO:PPLN optical parametric oscillator [J]. Optics Express,2006,14(25):12169-12173
    [92]Liu Zhaojun, Wang Qingpu, Zhang Xingyu, et al. Coexistent optical parametricoscillation and stimulated Raman scattering in KTiOAsO4[J]. Optics Express,2008,16(21):17092-17097
    [93]闵乃本.介电体超晶格与微结构研究[J].自然科学进展,1994,4(5):543-555
    [94]张超,魏洪,朱永元,等.准周期三倍频超晶格的结构设计与实验验证[J].材料研究学报,2001,15(1):125-129
    [95]赵伟,纪峰,张百钢,等.PPLN准相位匹配内腔光学参量振荡器的实验研究[J].科学技术与工程,2007,7(16):4009-4013
    [96]纪峰,姚建铨,张百钢,等.低阈值宽调谐的内腔调Q Nd:YVO4/PPLN光学参量产生[J].中国激光,2007,34(12):1644-1648
    [97]赫文哲,李喜福,耿优福,等.基于掺氧化镁周期性极化铌酸锂的光学参量产生器[J].科学技术与工程,2007,7(15):3645-3648
    [98]X. Ding, S. M. Zhang, H. M. Ma, et al. Continuous-Wave Mid-InfraredIntracavity Singly Resonant Optical Parametric Oscillator Based on PeriodicallyPoled Lithium Niobate [J]. Chinese Physics B,2008,17(1):211-216
    [99]檀慧明,林洪沂,张搏麟.基于PPMgLN的中红外全固态可调谐光学参量振荡器[J].中国激光,2010,37(5):2303-2308
    [100] T. Umeki, M. Asobe, Y. Nishida, et al. Widely tunable3.4μm banddifference frequency generation using apodized χ(2)grating [J]. Opt Lett,2007,32(9):1129-1132
    [101] K. Mizuuchi, K. Yamamoto. Waveguide second-harmonic generation devicewith broadened flat quasi-phase-matching response by use of a grating structure withlocated phase-shifts [J]. Opt Lett,1998,23(24):1880-1882
    [102] X. Liu, H. Zhang, Y. Guo, et al. Optimal design and applications forquasi-phase-matching three-wave mixing [J]. IEEE. J Quantum Electron,2002,38(9):1225-1233
    [103] P. A. Franken, J. F. Ward. Optical harmonics and nonlinear phenomena [J].Review of Modern Physics,1963,35(1):23-39
    [104] M. Yamada, N. Nada, K. Watanable. First-order quasi-phase matched LiNbO3waveguide periodically poled by applying an external field for efficient field bluesecond-harmonic generation [J]. Applied Physics Letters,1993,62(5):435-436
    [105]张百钢,姚建铨,王鹏,等.周期极化晶体倍频的允许极化周期的研究[J].光电子·激光,2002,13(4):405-408
    [106]姚江宏,李冠告,许京军,等.准相位匹配(QPM)技术研究新进展[J].量子电子学报,1999,16(4):289-294
    [107] J. E. Bjorkholm. Analysis of the doubly resonant optical parametric oscillatorwithout power-dependent reflections [J]. IEEE J Quantum Electron,1969,5(6):293-295
    [108] J. E. Bjorkholm, A. Ashkin, R. G. Smith. Improvement of optical parametricoscillators by nonresonant pump reflection [J]. IEEE J Quantum Electron,1970,6(12):797-799
    [109] W. R. Bosenberg, A. Drobshoff, J. Alexander, et al.93%pump depletion3.5W continuous-wave singly resonant optical parametric oscillator [J]. Opt Lett,1996,21(17):1336-1338
    [110] M. Martinelli, K. S. Zhang, T. Coudreau1, et al. Ultra-low threshold CWtriply resonant OPO in the near infrared using periodically poled lithium niobate [J]. JOpt A: PureAppl Opt,2001,3(4):300-303
    [111] R. L. Byer. Nonlinear optics and solid-state laser:2000[J]. IEEE J SelectTopics Quantum Electron,2000,6(6):911-930
    [112] P. Suret, D. Derozier, M. Lefranc, et al. Incompatibility of cavity resonanceswith wave-vector matching: influence on threshold and beam structures of opticalparametric oscillators [J]. J Opt SocAm B,2002,19(3):395-404
    [113] A. V. Smith, W. J. Alford, T. D. Raymond, et al. Comparison of a numericalmodel with measured performance of a seeded, nanosecond KTP optical parametricoscillator [J]. J Opt SocAm B,1995,12(11):2253-2267
    [114] W. R. Bosenberg, D. R. Guyer. Broadly tunable, single-frequency opticalparametric frequency-conversion system [J]. J Opt SocAm B,1993,10(9):1716-1722
    [115] M. Bode, P. K. Lam, I. Freitag, et al. Continuously-tunable doubly resonantoptical parametric oscillator [J]. Opt Commun,1998,148(1-3):117-121
    [116] R. B. Weisman, S. A. Rice. Tunable infrared ultra short pulses from amode-locked parametric oscillator [J]. Opt Commun,1976,19(1):28-32
    [117] K. A. Tillman, D. T. Reid, D. Artigas, et al. Low-threshold,high-repetition-frequency femtosecond optical parametric oscillator based onchirped-pulse frequency conversion [J]. J Opt SocAm B,2003,20(6):1309-1316
    [118] H. M. V. Driel. Synchronously pumped optical parametric oscillators [J].Appl Phys B,1995,60(5):411-420
    [119] W.克希耐尔.固体激光工程[M].孙文等译.北京:科学出版社,2002.545
    [120] R. L. Sutherland. Handbook of nonlinear optics [M]. Second Edition, NewYork: Marcel Dekker Inc,1996.325-330
    [121] V. G. Dimitriev, G. G. Gurzadyan, D. N. Nikogosyan. Handbook of NonlinearOptical Crystals [M]. Berlin: Springer-Verlag,1991.32-35
    [122] L. E. Myers, R. C. Eekardt, M. M. Fejer, et al. MultigratingQuasi-Phase-Matched Optical Parametric Oscillator in Periodically Poled LiNbO3[J],Optics Letters,1996,21(8):591-593
    [123] A. Kuroda, S. Kurimura, Y. Uesu. Domain inversion in ferroelectricMgO:LiNbO3by applying electric field [J]. App1Phys Lett,1996,69:1565-1567
    [124] T. Hatanaka, K. Nakamura, T. Taniuchi, et al. Quasi-Phase-Matched OpticalParametric Oscillation with Periodically Poled Stoichiometric LiTaO3[J]. OpticsLetters,2000,25(9):651-653
    [125] P. Xu, S. H. Ji, S. N. Zhu, et al. Conical Second Harmonic Generation in aTwo-Dimensional χ(2)Photonic Crystal: A Hexagonally Poled LiTaO3Crystal [J].Physics Review Letters,2004,93(13):133904-133908
    [126]孔勇发,许京军,张光寅,等.多功能光电材料——铌酸锂晶体[M].北京:科学出版社,2005.5-300
    [127]张永安.光折变效应的机理和研究进展[J].运城学院学报,2003,21(3):14-15
    [128]刘思敏,郭儒,许京军.光折变非线性光学及其应用[M].北京:科学出版社,2004.2-10,265-273
    [129]邢丹.镁含量对镁锰铌酸锂晶体结构及性能的影响[D]:[硕士学位论文].哈尔滨:哈尔滨工业大学材料物理与化学系,2006
    [130]五机部209所铌酸锂组,南开大学物理系光伤组.掺镁铌酸锂光折变的测定[J].激光技术,1980(3):l-6
    [131]汪进,杨昆,金婵.掺镁铌酸锂晶体结构的研究[J].物理学报,1999,48(6):1103-1106
    [132]徐浩,曾政东,林文雄,等.高掺镁铌酸锂晶体的主折射率及其温度系数的测定[J].光学学报,1992,12(10):925-927
    [133] O. Paul, A. Quosig, T. Bauer, et al. Temperature-dependent Sellmeierequation in the MIR for the extraordinary refractive index of5%MgO dopedcongruent LiNbO3[J]. Appl Phys B,2007,86(1):111-115
    [134] M. Ebrahim-zadeh, A. J. Henderson, M. H. Dunn. An excimer-pumped-BaB2O4optical parametric oscillator tunable from354nm to2.370μm [J]. IEEEJournal of Quantum Electronics,1990,26:1241-1252
    [135] Walter Koechner. Solid-State Laser Engineering [M]. New York: SpringerScience+Business Media, Inc,2006,69-73
    [136]孟宪林,张怀金,祝俐,等.掺钕钒酸钇单晶光谱与激光特性[J].人工晶体学报,1999,28(2):135-139
    [137]吕乃光.傅里叶光学[M].第一版.北京:机械工业出版社,1998.132
    [138] A. G. S. Smekal. The quantum theory of dispersion [J]. Naturwiss,1923,11:873-875
    [139] C. V. Raman, and Krishnan K S. A new type of secondary radiation [J].Nature,1928,121(3048):501-502
    [140] G. S. Landsberg, L. I. A. Mandelshtam. A novel effect of light scattering incrystals [J]. Naturwiss,1928,16:557-558
    [141] E. J. Wbodbury, W. K. Ng. Ruby laser operation in the near IR [J]. Proc IRE,1962,50:2367-2368
    [142] D. C. D. Deshpande, A. P. Malshe, E. A. Stach, et al. Investigation offemtosecond laser assisted nano and micro scale modifications in lithium niobate [J]. JAppl Phys,2005,97(7):074316-074324
    [143]林洪沂,许英朝,黄晓桦,等.内腔中红外低阈值PPMgLN光学参量振荡器[J].激光与红外,2011,41(10):1098-1100
    [144] S. A. Akhmanov, R. V. Khokh1ov. Concerning one possibility ofamplification of light waves [J]. Sov Phys-JETP,1962,16:252-254
    [145] S. A. Althmanov, A. I. Kovrigin, V. A. Koslolv, et al. Tunable parametric lightgeneration with KDP crystal [J]. JETP Lett,1966,3(9):372-378
    [146] S. E. Harris, M. K. Oshman, R. L. Byer. Observation of tunable opticalparametric fluorescence [J]. Phys Rev Lett,1967,18(18):732-734
    [147] W. H. Louisell, A. Yariv, A. E. Siegman. Quantum fluctuations and noise inparametric processes I [J]. Phys Rev,1961,124(6):1646-1654
    [148] J. P. Gordon, W. H. Louisell, L. R. Walker. Quantum fluctuations and noise inparametric processes. II [J]. Phys Rev,1963,129(1):481-485
    [149] W. G. Wagner, R. W. Hellwarth. Quantum noise in a parametric amplifierwith Lossy modes [J]. Phys Rev,1964,133(4A): A915-A920

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700