用户名: 密码: 验证码:
丙戊酸对大鼠臂丛根性撕脱伤后脊髓神经元存活和再生的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
臂丛根性撕脱伤是临床最严重的周围神经损伤类型,常见于交通事故或产瘫,它导致上肢感觉的完全丧失和所有肌群的麻痹,给病人带来严重的身心障碍外,也带来沉重的社会负担。与其它类型的神经损伤(如钳夹、切断等)相比,根性撕脱伤由于最靠近脊髓的神经元胞体,会引起大量神经元细胞死亡。而周围神经损伤后,只有神经元细胞体存活,神经才能再生,如果神经损伤后相应的神经元细胞体死亡,那么神经再生将成为不可能。大量脊髓神经元的死亡大大限制了臂丛撕脱伤外科修复后神经的再生和功能的恢复,导致临床治疗效果非常差。因此,对于臂丛撕脱伤,寻找能既能保护脊髓神经元而减少其死亡,同时又可以促进残存神经元再生的药物或方法是非常有价值的。传统的神经生长因子家族,虽然已被证实有明确的神经保护和促进再生作用,但由于其属于肽类物质,难以通过血脑及血神经屏障进入脊髓,而且由于其生物半衰期短,临床长期大量给药容易引起副作用,因此目前临床应用还有许多问题需要解决。
     丙戊酸(valproic acid,VPA)神经保护作用的发现给这一难题带来希望。由于其属于小分子无机化合物,易于通过血脑屏障,且不容易被酶降解,因此相对于神经生长因子具有较大优势。VPA在临床用于抗癫痫治疗30余年,1995年又被FDA批准用于抑郁症,安全性已得到广泛验证。现已证实VPA对坐骨神经切断伤导致的脊髓运动神经元损伤具有保护作用,而且能促进切断的坐骨神经再生和功能恢复。但对于导致大量神经元死亡的臂丛撕脱伤,VPA是否能一样发挥神经保护和促进神经再生作用呢?为了明确这一问题,本研究设计了大鼠臂丛根性撕脱伤的动物模型,通过对大鼠口服给予VPA,观察VPA对脊髓神经元的影响,以明确VPA是否可以对臂丛撕脱伤后的脊髓神经元起到保护和促进再生作用,并对其神经保护作用的机制进行探讨。
     研究证实神经型一氧化氮合酶(neuronal NOS, nNOS)与神经根撕脱后脊髓前角运动神经元的死亡密切相关,根性撕脱伤后nNOS的大量表达会导致神经元的死亡。而已经明确的是在神经损伤导致的神经元死亡中,细胞内Ca~(2+)超载是主要机制之一。nNOS发挥活性依赖于细胞内Ca~(2+),但同时nNOS自身的表达也受到细胞内Ca~(2+)的调控。因此,在臂丛撕脱伤导致的脊髓神经元死亡过程中,nNOS以及细胞内Ca~(2+)的变化起到了至关重要的作用。生长相关蛋白(Growth Associated Protein,GAP-43)是目前研究神经元再生能力的理想指标,神经元内GAP-43表达的升高即提示神经元再生能力的增强。
     因此,本研究通过TUNEL法检测确定VPA对臂丛撕脱伤后脊髓神经元具有保护作用后,进一步通过检测VPA对脊髓神经元内nNOS以及细胞内Ca~(2+)的影响来探索VPA发挥神经保护作用的机制。另外,通过检测脊髓神经元内GAP-43的变化,来明确VPA对撕脱伤后的神经元是否有促进再生的作用。
     本试验建立Wistar大鼠臂丛根性撕脱伤的动物模型,随机分为空白组(仅暴露臂丛,不做神经损伤),对照组(行臂丛撕脱)和VPA组(撕脱伤后口服给予VPA)。三组动物在D1、D2、D3、D7、D14、D28(D表示天)6个时间点进行脊髓中运动神经元凋亡、nNOS表达、细胞内Ca~(2+)浓度、GAP-43四个指标的检测。对脊髓运动神经元凋亡的检测采用TUNEL法,对nNOS的检测采用Real-time PCR、Western blot法和免疫组化染色法,对细胞内Ca~(2+)浓度采用荧光指示剂Fura-2/AM检测,对GAP-43的检测采用Real-time PCR和Western blot法。实验结果显示:1.空白组没有神经元的凋亡出现。空白组大鼠脊髓中nNOS、GAP-43在整个实验中均呈低水平表稳态表达,细胞内Ca~(2+)浓度无明显变化。2.对照组在撕脱伤后的28天内,凋亡神经元的比例、脊髓中nNOS的表达和细胞内Ca~(2+)浓度、以及GAP-43的表达均出现先升高后下降的过程,其中凋亡神经元峰值出现在D7,nNOS峰值出现在D2,细胞内Ca~(2+)浓度峰值出现在D2,GAP43峰值出现在D14。3.与空白组相比,VPA组在撕脱伤后,凋亡神经元的比例、nNOS表达、细胞内Ca~(2+)浓度和GAP-43的变化趋势及峰值时间同对照组类似。但相对于对照组,VPA在D3、7时明显减少了凋亡神经元的数目,在D1、2、3、7时明显下调了nNOS的表达,在D2、3、7时明显降低了细胞内Ca~(2+)浓度,且在D2~D28明显上调了GAP-43的表达。
     分析以上结果,可以得出结论:1.大鼠臂丛根性撕脱伤后,口服VPA可以减少脊髓神经元的凋亡,对神经元产生保护作用。2.大鼠臂丛根性撕脱伤后,VPA可以通过下调脊髓神经元中nNOS的表达对神经元产生保护作用。3.大鼠臂丛根性撕脱伤后,VPA可以通过降低脊髓神经元内Ca~(2+)浓度对神经元产生保护作用。另外,VPA对nNOS表达的下调可能是通过降低神经元内Ca~(2+)浓度来实现的。4.大鼠臂丛根性撕脱伤后,VPA可以通过上调脊髓神经元中GAP-43表达来促进受损神经元的再生。该结论为在临床应用VPA治疗神经损伤提供了更丰富的理论支持。
Brachial plexus root avulsion is the most serious type of peripheral nerve injury. It isencountered commonly in victims of traffic accident and children after obstetriccomplications, leads to totally paralysis of the corresponding muscle groups and severesensory deficits in the arm on the lesion side. Compared with other types of nerve damage(such as clamping, cutting, etc.), root avulsion cause a large number of neuronal death as thedamage site is closer to the neuronal cell bodies in the spinal cord. After peripheral nerveinjury, the survival of motoneurons is an essential prerequisite of nerve regeneration andfunction recovery. The loss of neurons may significantly restrict the achievement of themuscle reinnervation after a surgical repair of the ventral root connection. Therefore, aneffective agent to reduce the neuronal death and promote the survival neuron to regeneratewill be very important and valuable for brachial plexus root avulsion. An increasing numberof neurotrophic factors have been found to support the motoneuron survival and enhanceaxonal regrowth in a variety of experimental paradigms.However, as the neurotrophinsbelong to peptide, their benefits are largely limited by the poor ability to cross theblood-nerve and blood-brain barrier and by enzymatic degradation. Besides, a long time andfrequent administration with high-dose neurotrophic factor may have unexpected side effects.There is still a long way to go before the neurotrophin can be effectively used in clinicalpatients.
     The discovery of the neuroprotective effects of valproic acid brings hope to this problem.Since VPA is an inorganic compound with small molecules allowing easily penetrating theblood-brain barrier, and is not easily degraded by enzymes, it has a great advantage relative toneurotrophic factors. The security of VPA has been widely validated because it has been usedfor antiepileptic therapy clinically for more than30years, and approved by the FDA in1995for antidepressant. Clinical studies have found that VPA can protect neurons against death inthe sciatic nerve transection model in rats. However, as to the brachial plexus root avulsion, which induces much more neuronal injury and death, whether the VPAcan exert its protectiveeffect on the neuron? In order to clarify this problem, we designed this study.
     In the present study, after the brachial plexus root avulsions of rats were made, the ratswere orally administrated with water containing VPA. First, we detected the neuronalapoptosis in the spinal cord to verify the neuronal protection role of VPA. Then we detectedthe expression of nNOS and Ca~(2+)concentration in the spinal cord neurons to explore theprotective mechanism of VPA. Besides, we want to know whether VPA can enhance theneural regeneration by detecting the GAP-43expression in spinal cord.
     Rats were randomly divided to sham group (exposure the brachial plexus root withoutinjury), control group (brachial plexus root avulsion) and VPAgroup (administered with VPAafter avulsion). At different time points, the apoptosis of neurons, expression of nNOS,intracellular Ca~(2+)concentration and GAP-43expression were investigated. Apoptosis ofneurons was inspected by TUNEL method. Detection of nNOS used Real-time PCR, Westernblot method and immunohistochemical staining and GAP-43was by the Real-time PCR andWestern blot method. The intracellular Ca~(2+)concentration were tested by Fura-2/AM method.
     Results were showed as follows. In the sham group, there was no neuron apoptosis,expression of nNOS and GAP-43in spinal cord are in low level, and intracellular Ca~(2+)concentration has no obvious change at all time points. In the control group, within28daysafter injury, the proportion of apoptosis neurons, the expression of nNOS in the spinal cordand intracellular Ca~(2+)concentration, as well as the expression of GAP43-all appear to dropafter rising first. The process of apoptosis of neuron spikes at D7; nNOS expression waspeaked at D2; intracellular Ca~(2+)concentration peak appeared at D2, and GAP-43peakappeared at D14. The four indicators in the VPA group had similar changes and peak time asin the sham group. But relative to the control group, the VPA significantly reduced thenumber of apoptotic neurons at D3, significantly lowered the expression of nNOS at D1, D2,D3, and D7, significantly reduced intracellular Ca~(2+)concentration at D2, D3, and D7, andobviously up-regulated the expression of GAP-43between D2and D28.
     The results indicated four conclusions as follows. First, VPA is able to protect neuronsagainst cell death induced by brachial plexus root avulsion in rats. Second, VPA may exertneuronal protection through decreasing the nNOS expression. Third, VPA may down regulate the intracellular Ca~(2+)concentration to protect neurons. The down regulation of nNOS may beattributed to the decrease of intracellular Ca~(2+)concentration induced by VPA. Four, VPA canpromote neural regeneration by up regulate the expression of GAP-43. The conclusionsprovide theory supports for the clinical application of VPAto treat nerve injury.
引文
[1] Zhou L, Zhu D Y. Neuronal nitric oxide synthase: structure, subcellular localization,regulation, and clinical implications [J]. Nitric Oxide,2009,20(4):223-230.
    [2] Bredt D S. Endogenous nitric oxide synthesis: biological functions andpathophysiology [J]. Free Radic Res,1999,31(6):577-596.
    [3] Alderton W K, Cooper C E, Knowles R G. Nitric oxide synthases: structure, functionand inhibition [J]. Biochem J,2001,357(Pt3):593-615.
    [4] Chartrain N A, Geller D A, Koty P P, et al. Molecular cloning, structure, andchromosomal localization of the human inducible nitric oxide synthase gene [J].Journal of Biological Chemistry,1994,269(9):6765-6772.
    [5] Calabrese V, Mancuso C, Calvani M, et al. Nitric oxide in the central nervous system:neuroprotection versus neurotoxicity [J]. Nat Rev Neurosci,2007,8(10):766-775.
    [6] Wang Y, Newton D C, Robb G B, et al. RNA diversity has profound effects on thetranslation of neuronal nitric oxide synthase [J]. Proceedings of the National Academyof Sciences,1999,96(21):12150-12155.
    [7] Boissel J P, Zelenka M, Godtel-Armbrust U, et al. Transcription of different exons1ofthe human neuronal nitric oxide synthase gene is dynamically regulated in a cell-andstimulus-specific manner [J]. Biol Chem,2003,384(3):351-362.
    [8] Schuman E M, Madison D V. Arequirement for the intercellular messenger nitric oxidein long-term potentiation [J]. Science,1991,254(5037):1503-1506.
    [9] Guix F X, Uribesalgo I, Coma M, et al. The physiology and pathophysiology of nitricoxide in the brain [J]. Prog Neurobiol,2005,76(2):126-152.
    [10] Mccann S M. The nitric oxide hypothesis of brain aging [J]. Exp Gerontol,1997,32(4-5):431-440.
    [11] Rivier C. Role of gaseous neurotransmitters in the hypothalamic-pituitary-adrenal axis[J]. Ann N YAcad Sci,2001,933(254-264.
    [12] Kalb R G, Agostini J. Molecular evidence for nitric oxide-mediated motor neurondevelopment [J]. Neuroscience,1993,57(1):1-8.
    [13] Li H, Gu X, Dawson V L, et al. Identification of calcium-and nitric oxide-regulatedgenes by differential analysis of library expression (DAzLE)[J]. Proc Natl Acad Sci US A,2004,101(2):647-652.
    [14] Andoh T, Lee S Y, Chiueh C C. Preconditioning regulation of bcl-2and p66shc byhuman NOS1enhances tolerance to oxidative stress [J]. FASEB J,2000,14(14):2144-2146.
    [15] Szabo C, Ischiropoulos H, Radi R. Peroxynitrite: biochemistry, pathophysiology anddevelopment of therapeutics [J]. Nat Rev Drug Discov,2007,6(8):662-680.
    [16] Love S. Oxidative stress in brain ischemia [J]. Brain Pathol,1999,9(1):119-131.
    [17] Luo C X, Zhu X J, Zhou Q G, et al. Reduced neuronal nitric oxide synthase is involvedin ischemia-induced hippocampal neurogenesis by up-regulating inducible nitric oxidesynthase expression [J]. J Neurochem,2007,103(5):1872-1882.
    [18] Luo C X, Zhu D Y. Research progress on neurobiology of neuronal nitric oxidesynthase [J]. Neurosci Bull,2011,27(1):23-35.
    [19]杨惠光,周枫,张云庆, et al.大鼠颈神经根受压后一氧化氮合酶Ⅰ型在脊髓及背根神经节中的变化[J].南京医科大学学报(自然科学版),2007, No.150(12):1384-1386+1402+1344.
    [20]李国君.中枢神经系统中一氧化氮和一氧化氮合酶研究进展[J].国外医学(卫生学分册),1999,02):3-6+15.
    [21] Dawson V, Dawson T, Bartley D, et al. Mechanisms of nitric oxide-mediatedneurotoxicity in primary brain cultures [J]. The Journal of Neuroscience,1993,13(6):2651-2661.
    [22] Maiese K, Boniece I, Demeo D, et al. Peptide growth factors protect against ischemiain culture by preventing nitric oxide toxicity [J]. J Neurosci,1993,13(7):3034-3040.
    [23]朱家恺,罗永湘,陈统一.现代周围神经外科学[M].上海:上海科学技术出版社,2007.
    [24]陈春美,杨卫忠,王春华, et al. NOS、p38MAPK、Caspase-3介导大鼠脑缺血神经细胞凋亡可能通路的实验研究[J].国际神经病学神经外科学杂志,2008,02):107-111.
    [25] Zhang Z G, Chopp M, Gautam S, et al. Upregulation of neuronal nitric oxide synthaseand mRNA, and selective sparing of nitric oxide synthase-containing neurons afterfocal cerebral ischemia in rat [J]. Brain Res,1994,654(1):85-95.
    [26]姜泓,王玲,张义和, et al.葛根素在新生鼠缺氧缺血性脑损伤中的神经保护作用[J].第四军医大学学报,2008,03):245-247.
    [27]王建社,李凯丽,董大翠, et al.大鼠脑缺血再灌注后大脑皮层神经细胞NOS表达与细胞凋亡及复方丹参的保护作用[J].解剖学杂志,2009, v.32(02):200-203.
    [28] Yick L W, Wu W, So K F, et al. Time course of NOS expression and neuronal death inClarke's nucleus following traumatic injury in adult rat spinal cord [J]. Neurosci Lett,1998,241(2-3):155-158.
    [29] Winkler T, Sharma H S, Stalberg E, et al. Spinal cord evoked potentials and edema inthe pathophysiology of rat spinal cord injury. Involvement of nitric oxide [J]. AminoAcids,1998,14(1-3):131-139.
    [30]李红宇,王莹,袁文, et al.重组pEGFP-N1-IGF-1体内转基因预处理对脊髓损伤后一氧化氮合酶活性的影响[J].中国组织工程研究与临床康复,2007,06):1031-1034.
    [31] Sunico C R, Portillo F, Gonzalez-Forero D, et al. Evidence for a detrimental role ofnitric oxide synthesized by endothelial nitric oxide synthase after peripheral nerveinjury [J]. Neuroscience,2008,157(1):40-51.
    [32] Sunico C R, Portillo F, Gonzalez-Forero D, et al. Nitric-oxide-directed synapticremodeling in the adult mammal CNS [J]. J Neurosci,2005,25(6):1448-1458.
    [33] Chang H M, Ling E A, Lue J H, et al. Melatonin attenuates neuronal NADPH-d/NOSexpression in the hypoglossal nucleus of adult rats following peripheral nerve injury [J].Brain Res,2000,873(2):243-251.
    [34] Yu W H. Nitric oxide synthase in motor neurons after axotomy [J]. J HistochemCytochem,1994,42(4):451-457.
    [35] Yu W H. Regulation of nitric oxide synthase expression in motoneurons followingnerve injury [J]. Dev Neurosci,1997,19(3):247-254.
    [36]游思维,苏国辉,叶嘉勋, et al.一氧化氮/一氧化氮合酶与神经创伤[J].中国神经科学杂志,2000,02):166-169.
    [37] Yu W H. Spatial and temporal correlation of nitric oxide synthase expression withCuZn-superoxide dismutase reduction in motor neurons following axotomy [J]. Ann NYAcad Sci,2002,962(111-121.
    [38] Liu Z, Martin L J. Motor neurons rapidly accumulate DNAsingle-strand breaks after invitro exposure to nitric oxide and peroxynitrite and in vivo axotomy [J]. J CompNeurol,2001,432(1):35-60.
    [39] Gonzalez-Hernandez T, Rustioni A. Nitric oxide synthase and growth-associatedprotein are coexpressed in primary sensory neurons after peripheral injury [J]. J CompNeurol,1999,404(1):64-74.
    [40] Levy D, Hoke A, Zochodne D W. Local expression of inducible nitric oxide synthase inan animal model of neuropathic pain [J]. Neurosci Lett,1999,260(3):207-209.
    [41] Wu W, Liuzzi F J, Schinco F P, et al. Neuronal nitric oxide synthase is induced inspinal neurons by traumatic injury [J]. Neuroscience,1994,61(4):719-726.
    [42]周丽华,袁群芳,李方澜, et al.神经根撕脱后脊髓运动神经元的病理表现[J].中国病理生理杂志,2002,04):57-59+114.
    [43] Zhang X, Verge V, Wiesenfeld-Hallin Z, et al. Nitric oxide synthase-likeimmunoreactivity in lumbar dorsal root ganglia and spinal cord of rat and monkey andeffect of peripheral axotomy [J]. J Comp Neurol,1993,335(4):563-575.
    [44] Hoang T X, Nieto J H, Tillakaratne N J K, et al. Autonomic and motor neuron death isprogressive and parallel in a lumbosacral ventral root avulsion model of cauda equinainjury [J]. The Journal of Comparative Neurology,2003,467(4):477-486.
    [45] Martin L J, Kaiser A, Price a C. Motor neuron degeneration after sciatic nerve avulsionin adult rat evolves with oxidative stress and is apoptosis [J]. J Neurobiol,1999,40(2):185-201.
    [46] Gu Y, Spasic Z, Wu W. The effects of remaining axons on motoneuron survival andNOS expression following axotomy in the adult rat [J]. Dev Neurosci,1997,19(3):255-259.
    [47]姬钢,贺西京,李浩鹏.犬马尾神经受压后腰骶髓中一氧化氮合酶活性与神经细胞凋亡的相关性[J].中国脊柱脊髓杂志,2007,01):55-58+83.
    [48] Wu W. Expression of nitric-oxide synthase (NOS) in injured CNS neurons as shown byNADPH diaphorase histochemistry [J]. Exp Neurol,1993,120(2):153-159.
    [49] Wu Y, Li Y, Liu H, et al. Induction of nitric oxide synthase and motoneuron death innewborn and early postnatal rats following spinal root avulsion [J]. Neurosci Lett,1995,194(1-2):109-112.
    [50] Li L, Oppenheim R W, Lei M, et al. Neurotrophic agents prevent motoneuron deathfollowing sciatic nerve section in the neonatal mouse [J]. J Neurobiol,1994,25(7):759-766.
    [51] Wu W, Li L. Inhibition of nitric oxide synthase reduces motoneuron death due to spinalroot avulsion [J]. Neuroscience Letters,1993,153(2):121-124.
    [52] Wu W, Li Y, Schinco F P. Expression of c-jun and neuronal nitric oxide synthase in ratspinal motoneurons following axonal injury [J]. Neurosci Lett,1994,179(1-2):157-161.
    [53] Ma J, Novikov L N, Wiberg M, et al. Delayed loss of spinal motoneurons afterperipheral nerve injury in adult rats: a quantitative morphological study [J]. Exp BrainRes,2001,139(2):216-223.
    [54] Chai H, Wu W, So K F, et al. Survival and regeneration of motoneurons in adult rats byreimplantation of ventral root following spinal root avulsion [J]. Neuroreport,2000,11(6):1249-1252.
    [55]刘佛林,周丽华,林浩添, et al.神经根撕脱后3种鼠类脊髓运动神经元的再生反应(英文)[J].中国临床康复,2004,16):3190-3191+3219.
    [56] Rydh-Rinder M, Holmberg K, Elfvin L G, et al. Effects of peripheral axotomy onneuropeptides and nitric oxide synthase in dorsal root ganglia and spinal cord of theguinea pig: an immunohistochemical study [J]. Brain Res,1996,707(2):180-188.
    [57] Colton C A. Induction of nitric oxide in cultured microglia: evidence for acytoprotective role [J]. Adv Neuroimmunol,1995,5(4):491-503.
    [58] Li L, Houenou L J, Wu W, et al. Characterization of spinal motoneuron degenerationfollowing different types of peripheral nerve injury in neonatal and adult mice [J]. JComp Neurol,1998,396(2):158-168.
    [59] Li L, Wu W, Lin L F, et al. Rescue of adult mouse motoneurons from injury-inducedcell death by glial cell line-derived neurotrophic factor [J]. Proc Natl Acad Sci U S A,1995,92(21):9771-9775.
    [60] Wu W. Potential roles of gene expression change in adult rat spinal motoneuronsfollowing axonal injury: a comparison among c-jun, off-affinity nerve growth factorreceptor (LNGFR), and nitric oxide synthase (NOS)[J]. Exp Neurol,1996,141(2):190-200.
    [61]段文娟,卫涛涛.神经型一氧化氮合酶的活性调控[J].生物物理学报,2012,v.28(04):278-286.
    [62] Wu W, Li L, Yick L W, et al. GDNF and BDNF alter the expression of neuronal NOS,c-Jun, and p75and prevent motoneuron death following spinal root avulsion in adultrats [J]. J Neurotrauma,2003,20(6):603-612.
    [63] He J-W, Hirata K, Kuraoka A, et al. An improved method for avulsion of lumbar nerveroots as an experimental model of nitric oxide-mediated neuronal degeneration [J].Brain Research Protocols,2000,5(3):223-230.
    [64] Keilhoff G, Fansa H, Wolf G. Neuronal NOS deficiency promotes apoptotic cell deathof spinal cord neurons after peripheral nerve transection [J]. Nitric Oxide,2004,10(2):101-111.
    [65] Zhao X, Ross M E, Iadecola C. L-Arginine increases ischemic injury in wild-type micebut not in iNOS-deficient mice [J]. Brain Research,2003,966(2):308-311.
    [66] Franklin A, Parmentier-Batteur S, Walter L, et al. Palmitoylethanolamide increasesafter focal cerebral ischemia and potentiates microglial cell motility [J]. The Journal ofNeuroscience,2003,23(21):7767-7775.
    [67] Zhou L, Li F, Xu H-B, et al. Treatment of cerebral ischemia by disruptingischemia-induced interaction of nNOS with PSD-95[J]. Nature medicine,2010,16(12):1439-1443.
    [68]韩曙,周丽华,谢元云, et al.条件性损伤对脊神经根撕脱伤后脊髓运动神经元一氧化氮合酶表达和细胞死亡的影响[J].中华显微外科杂志,2000,04):41-44.
    [69]韩曙,周丽华,吴武田, et al.条件性损伤的时间与频次对神经根撕脱伤后脊髓前角运动神经元死亡及NOS表达的影响[J].解剖学研究,2000,02):116-119+164.
    [70] Wu W, Han K, Li L, et al. Implantation of PNS graft inhibits the induction of neuronalnitric oxide synthase and enhances the survival of spinal motoneurons following rootavulsion [J]. Experimental Neurology,1994,129(2):335.
    [71] You S, Tay D, So K, et al. Effects of nitric oxide synthase inhibitor on the neuronalsurvival and axonal regeneration of retinal ganglion cells in hamsters; proceedings ofthe ProcAust Neuroscience Soc, F,1998[C].
    [72] Kl cker N, Cellerino A, B hr M. Free radical scavenging and inhibition of nitric oxidesynthase potentiates the neurotrophic effects of brain-derived neurotrophic factor onaxotomized retinal ganglion cells in vivo [J]. The Journal of Neuroscience,1998,18(3):1038-1046.
    [73] Lu Y-C, Liu S, Gong Q-Z, et al. Inhibition of nitric oxide synthase potentiateshypertension and increases mortality in traumatically brain-injured rats [J]. Molecularand chemical neuropathology,1997,30(1-2):125-137.
    [74] González‐Hernández T, Rustioni A. Expression of three forms of nitric oxidesynthase in peripheral nerve regeneration [J]. Journal of neuroscience research,1999,55(2):198-207.
    [75] Moreno-López B, Romero-Grimaldi C, Noval J A, et al. Nitric oxide is a physiologicalinhibitor of neurogenesis in the adult mouse subventricular zone and olfactory bulb [J].The Journal of Neuroscience,2004,24(1):85-95.
    [76] Packer M A, Stasiv Y, Benraiss A, et al. Nitric oxide negatively regulates mammalianadult neurogenesis [J]. Proceedings of the National Academy of Sciences,2003,100(16):9566-9571.
    [77] Temple S. The development of neural stem cells [J]. Nature,2001,414(6859):112-117.
    [78] Horner P J, Gage F H. Regenerating the damaged central nervous system [J]. Nature,2000,407(6807):963-970.
    [79] Zhu D Y, Liu S H, Sun H S, et al. Expression of inducible nitric oxide synthase afterfocal cerebral ischemia stimulates neurogenesis in the adult rodent dentate gyrus [J].The Journal of Neuroscience,2003,23(1):223-229.
    [80] Kokaia Z, Lindvall O. Neurogenesis after ischaemic brain insults [J]. Curr OpinNeurobiol,2003,13(1):127-132.
    [81] Zhu D Y, Lau L, Liu S H, et al. Activation of cAMP-response-element-binding protein(CREB) after focal cerebral ischemia stimulates neurogenesis in the adult dentate gyrus[J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(25):9453-9457.
    [82] Arvidsson A, Collin T, Kirik D, et al. Neuronal replacement from endogenousprecursors in the adult brain after stroke [J]. Nature medicine,2002,8(9):963-970.
    [83] Nakatomi H, Kuriu T, Okabe S, et al. Regeneration of hippocampal pyramidal neuronsafter ischemic brain injury by recruitment of endogenous neural progenitors [J]. Cell,2002,110(4):429-441.
    [84] Chen J, Magavi S S, Macklis J D. Neurogenesis of corticospinal motor neuronsextending spinal projections in adult mice [J]. Proc Natl Acad Sci U S A,2004,101(46):16357-16362.
    [85] Magavi S S, Leavitt B R, Macklis J D. Induction of neurogenesis in the neocortex ofadult mice [J]. Nature,2000,405(6789):951-955.
    [86] Scott D E, Wu W, Slusser J, et al. Neural regeneration and neuronal migrationfollowing injury I. The endocrine hypothalamus and neurohypophyseal system [J].Experimental Neurology,1995,131(1):23-38.
    [87] Chung H-T, Pae H-O, Choi B-M, et al. Nitric oxide as a bioregulator of apoptosis [J].Biochemical and Biophysical Research Communications,2001,282(5):1075-1079.
    [88] Thippeswamy T, Jain R, Mumtaz N, et al. Inhibition of neuronal nitric oxide synthaseresults in neurodegenerative changes in the axotomised dorsal root ganglion neurons:evidence for a neuroprotective role of nitric oxide in vivo [J]. Neuroscience research,2001,40(1):37-44.
    [89] Ernst a F, Gallo G, Letourneau P C, et al. Stabilization of growing retinal axons by thecombined signaling of nitric oxide and brain-derived neurotrophic factor [J]. TheJournal of Neuroscience,2000,20(4):1458-1469.
    [90] Van Wagenen S, Rehder V. Regulation of neuronal growth cone filopodia by nitricoxide depends on soluble guanylyl cyclase [J]. Journal of neurobiology,2001,46(3):206-219.
    [91] Zochodne D W, Misra M, Cheng C, et al. Inhibition of nitric oxide synthase enhancesperipheral nerve regeneration in mice [J]. Neuroscience Letters,1997,228(2):71-74.
    [92] Urushitani M, Inoue R, Nakamizo T, et al. Neuroprotective effect of cyclic GMPagainst radical‐induced toxicity in cultured spinal motor neurons [J]. Journal ofneuroscience research,2000,61(4):443-448.
    [93] Kim J-M, Chung Y H, Shin C-M, et al. Spatial and temporal distribution of Bax in ratspinal cord during normal aging [J]. Neurological research,2001,23(1):83-86.
    [94] Kim P K M, Kwon Y G, Chung H T, et al. Regulation of caspases by nitric oxide [J].Annals of the New YorkAcademy of Sciences,2002,962(1):42-52.
    [95] Chan Y-M, Wu W, Yip H K, et al. Caspase inhibitors promote the survival of avulsedspinal motoneurons in neonatal rats [J]. Neuroreport,2001,12(3):541-545.
    [96] Liu L, Stamler J S. NO: an inhibitor of cell death [J]. Cell death and differentiation,1999,6(10):937-942.
    [97] Monastyrskaya E, Folarin N, Malyshev I, et al. Application of the nitric oxide donorSNAP to cardiomyocytes in culture provides protection against oxidative stress [J].Nitric Oxide,2002,7(2):127-131.
    [98] Kalmár B, Burnstock G, Vrbová G, et al. The effect of neonatal nerve injury on theexpression of heat shock proteins in developing rat motoneurones [J]. Journal ofneurotrauma,2002,19(5):667-679.
    [99] Bao F, Liu D. Peroxynitrite generated in the rat spinal cord induces apoptotic cell deathand activates caspase-3[J]. Neuroscience,2003,116(1):59.
    [100] Fischmann T O, Hruza A, Da Niu X, et al. Structural characterization of nitric oxidesynthase isoforms reveals striking active-site conservation [J]. Nature Structural&Molecular Biology,1999,6(3):233-242.
    [101] Kamada Y, Jenkins G J, Lau M, et al. Tetrahydrobiopterin depletion and ubiquitylationof neuronal nitric oxide synthase [J]. Molecular brain research,2005,142(1):19-27.
    [102] Lajoix a-D, Pugnière M, Roquet F, et al. Changes in the dimeric state of neuronal nitricoxide synthase affect the kinetics of secretagogue-induced insulin response [J].Diabetes,2004,53(6):1467-1474.
    [103] Song T, Hatano N, Horii M, et al. Calcium/calmodulin-dependent protein kinase Iinhibits neuronal nitric-oxide synthase activity through serine741phosphorylation [J].FEBS letters,2004,570(1):133-137.
    [104] Craig D H, Chapman S K, Daff S. Calmodulin activates electron transfer throughneuronal nitric-oxide synthase reductase domain by releasing an NADPH-dependentconformational lock [J]. Journal of Biological Chemistry,2002,277(37):33987-33994.
    [105] Song Y, Zweier J L, Xia Y. Determination of the enhancing action of HSP90onneuronal nitric oxide synthase by EPR spectroscopy [J]. American Journal ofPhysiology-Cell Physiology,2001,281(6): C1819-C1824.
    [106] Ishii H, Shibuya K, Ohta Y, et al. Enhancement of nitric oxide production byassociation of nitric oxide synthase with N‐methyl‐d‐aspartate receptors viapostsynaptic density95in genetically engineered Chinese hamster ovary cells:real‐time fluorescence imaging using nitric oxide sensitive dye [J]. Journal ofneurochemistry,2006,96(6):1531-1539.
    [107] Tomita S, Nicoll R A, Bredt D S. PDZ protein interactions regulating glutamatereceptor function and plasticity [J]. The Journal of cell biology,2001,153(5): F19-F24.
    [108] Rameau G A, Chiu L-Y, Ziff E B. NMDAreceptor regulation of nNOS phosphorylationand induction of neuron death [J]. Neurobiology of aging,2003,24(8):1123-1133.
    [109] Schuh K, Uldrijan S, Telkamp M, et al. The plasmamembrane calmodulin–dependentcalcium pump a major regulator of nitric oxide synthase I [J]. The Journal of cellbiology,2001,155(2):201-206.
    [110] Jaffrey S R, Snowman a M, Eliasson M J L, et al. CAPON: a protein associated withneuronal nitric oxide synthase that regulates its interactions with PSD95[J]. Neuron,1998,20(1):115-124.
    [111] Firestein B L, Bredt D S. Interaction of neuronal nitric-oxide synthase andphosphofructokinase-M [J]. Journal of Biological Chemistry,1999,274(15):10545-10550.
    [112] Xia Y, Berlowitz C O, Zweier J L. PIN inhibits nitric oxide and superoxide productionfrom purified neuronal nitric oxide synthase [J]. Biochimica et Biophysica Acta(BBA)-General Subjects,2006,1760(9):1445-1449.
    [113] Jaffrey S R, Snyder S H. PIN: an associated protein inhibitor of neuronal nitric oxidesynthase [J]. Science,1996,274(5288):774-777.
    [114] Dreyer J, Schleicher M, Tappe A, et al. Nitric oxide synthase (NOS)-interacting proteininteracts with neuronal NOS and regulates its distribution and activity [J]. The Journalof Neuroscience,2004,24(46):10454-10465.
    [115] Abu-Soud H M, Wang J, Rousseau D L, et al. Neuronal nitric oxide synthaseself-inactivates by forming a ferrous-nitrosyl complex during aerobic catalysis [J].Journal of Biological Chemistry,1995,270(39):22997-23006.
    [116] Ravi K, Brennan L A, Levic S, et al. S-nitrosylation of endothelial nitric oxide synthaseis associated with monomerization and decreased enzyme activity [J]. Proceedings ofthe National Academy of Sciences of the United States of America,2004,101(8):2619-2624.
    [117] García-Carde a G, Fan R, Stern D F, et al. Endothelial nitric oxide synthase is regulatedby tyrosine phosphorylation and interacts with caveolin-1[J]. Journal of BiologicalChemistry,1996,271(44):27237-27240.
    [118] Feron O, Belhassen L, Kobzik L, et al. Endothelial nitric oxide synthase targeting tocaveolae specific interactions with caveolin isoforms in cardiac myocytes andendothelial cells [J]. Journal of Biological Chemistry,1996,271(37):22810-22814.
    [119] L scher W. Basic pharmacology of valproate [J]. CNS drugs,2002,16(10):669-694.
    [120] Kuendgen A, Gattermann N. Valproic acid for the treatment of myeloid malignancies[J]. Cancer,2007,110(5):943-954.
    [121] Bradbury C A, Khanim F L, Hayden R, et al. Histone deacetylases in acute myeloidleukaemia show a distinctive pattern of expression that changes selectively in responseto deacetylase inhibitors [J]. Leukemia,2005,19(10):1751-1759.
    [122] Karagiannis T C, Kn H, El-Osta A. The epigenetic modifier, valproic acid, enhancesradiation sensitivity [J]. Epigenetics,2006,1(3):131-137.
    [123] Jeong M R, Hashimoto R, Senatorov V V, et al. Valproic acid, a mood stabilizer andanticonvulsant, protects rat cerebral cortical neurons from spontaneous cell death: arole of histone deacetylase inhibition [J]. FEBS letters,2003,542(1):74-78.
    [124] Manji H K, Bebchuk J M, Moore G J, et al. Modulation of CNS signal transductionpathways and gene expression by mood-stabilizing agents: therapeutic implications [J].Journal of Clinical Psychiatry,1999,60(27-41.
    [125] Raivich G, Behrens A. Role of the AP-1transcription factor c-Jun in developing, adultand injured brain [J]. Progress in neurobiology,2006,78(6):347-363.
    [126] Chen G, Yuan P, Hawver D B, et al. Increase in AP-1transcription factor DNAbindingactivity by valproic acid [J]. Neuropsychopharmacology,1997,16(3):238-245.
    [127] Asghari V, Wang J F, Reiach J S, et al. Differential effects of mood stabilizers onFos/Jun proteins and AP-1DNA binding activity in human neuroblastoma SH-SY5Ycells [J]. Brain Res Mol Brain Res,1998,58(1-2):95-102.
    [128] Chen G, Yuan P X, Jiang Y M, et al. Valproate robustly enhances AP-1mediated geneexpression [J]. Brain Res Mol Brain Res,1999,64(1):52-58.
    [129] Yuan P X, Huang L D, Jiang Y M, et al. The mood stabilizer valproic acid activatesmitogen-activated protein kinases and promotes neurite growth [J]. J Biol Chem,2001,276(34):31674-31683.
    [130] Sullivan N R, Burke T, Siafaka-Kapadai A, et al. Effect of valproic acid onserotonin-2A receptor signaling in C6glioma cells [J]. J Neurochem,2004,90(5):1269-1275.
    [131] Arinze I J, Kawai Y. Sp family of transcription factors is involved in valproicacid-induced expression of Gαi2[J]. Journal of Biological Chemistry,2003,278(20):17785-17791.
    [132] Ryu H, Lee J, Olofsson B A, et al. Histone deacetylase inhibitors prevent oxidativeneuronal death independent of expanded polyglutamine repeats via an Sp1-dependentpathway [J]. Proc NatlAcad Sci U S A,2003,100(7):4281-4286.
    [133] Ichiyama T, Okada K, Lipton J M, et al. Sodium valproate inhibits production ofTNF-alpha and IL-6and activation of NF-kappaB [J]. Brain Res,2000,857(1-2):246-251.
    [134] Wang J F, Asghari V, Rockel C, et al. Cyclic AMP responsive element binding proteinphosphorylation and DNA binding is decreased by chronic lithium but not valproatetreatment of SH-SY5Y neuroblastoma cells [J]. Neuroscience,1999,91(2):771-776.
    [135] Casu M A, Sanna A, Spada G P, et al. Effects of acute and chronic valproate treatmentson p-CREB levels in the rat amygdala and nucleus accumbens [J]. Brain Res,2007,1141(15-24.
    [136] Rao J S, Bazinet R P, Rapoport S I, et al. Chronic treatment of rats with sodiumvalproate downregulates frontal cortex NF-kappaB DNA binding activity and COX-2mRNA[J]. Bipolar Disord,2007,9(5):513-520.
    [137] Sinn D I, Kim S J, Chu K, et al. Valproic acid-mediated neuroprotection inintracerebral hemorrhage via histone deacetylase inhibition and transcriptionalactivation [J]. Neurobiol Dis,2007,26(2):464-472.
    [138] Dong E, Guidotti A, Grayson D R, et al. Histone hyperacetylation inducesdemethylation of reelin and67-kDa glutamic acid decarboxylase promoters [J]. ProcNatlAcad Sci U S A,2007,104(11):4676-4681.
    [139] Milutinovic S, D'alessio a C, Detich N, et al. Valproate induces widespread epigeneticreprogramming which involves demethylation of specific genes [J]. Carcinogenesis,2006,28(3):560-571.
    [140] Marchion D C, Bicaku E, Daud a I, et al. Valproic acid alters chromatin structure byregulation of chromatin modulation proteins [J]. Cancer Res,2005,65(9):3815-3822.
    [141] Kim S H, Jeong J W, Park J A, et al. Regulation of the HIF-1alpha stability by histonedeacetylases [J]. Oncol Rep,2007,17(3):647-651.
    [142] Wu X, Chen P S, Dallas S, et al. Histone deacetylase inhibitors up-regulate astrocyteGDNF and BDNF gene transcription and protect dopaminergic neurons [J]. Int JNeuropsychopharmacol,2008,11(8):1123-1134.
    [143] Rocchi P, Tonelli R, Camerin C, et al. p21Waf1/Cip1is a common target induced byshort-chain fatty acid HDAC inhibitors (valproic acid, tributyrin and sodium butyrate)in neuroblastoma cells [J]. Oncology reports,2005,13(6):1139-1144.
    [144] Li X N, Shu Q, Su J M, et al. Valproic acid induces growth arrest, apoptosis, andsenescence in medulloblastomas by increasing histone hyperacetylation and regulatingexpression of p21Cip1, CDK4, and CMYC [J]. Mol Cancer Ther,2005,4(12):1912-1922.
    [145] Laeng P, Pitts R L, Lemire a L, et al. The mood stabilizer valproic acid stimulatesGABA neurogenesis from rat forebrain stem cells [J]. J Neurochem,2004,91(1):238-251.
    [146] Kim H J, Rowe M, Ren M, et al. Histone deacetylase inhibitors exhibitanti-inflammatory and neuroprotective effects in a rat permanent ischemic model ofstroke: multiple mechanisms of action [J]. J Pharmacol Exp Ther,2007,321(3):892-901.
    [147] Einat H, Manji H K, Gould T D, et al. Possible involvement of the ERK signalingcascade in bipolar disorder: behavioral leads from the study of mutant mice [J]. DrugNews Perspect,2003,16(7):453-463.
    [148] Shaltiel G, Shamir A, Shapiro J, et al. Valproate decreases inositol biosynthesis [J]. BiolPsychiatry,2004,56(11):868-874.
    [149] Xu X, Muller-Taubenberger A, Adley K E, et al. Attenuation of phospholipid signalingprovides a novel mechanism for the action of valproic acid [J]. Eukaryot Cell,2007,6(6):899-906.
    [150] Liang M H, Wendland J R, Chuang D M. Lithium inhibits Smad3/4transactivation viaincreased CREB activity induced by enhanced PKA and AKT signaling [J]. Mol CellNeurosci,2008,37(3):440-453.
    [151] Chen J, Ghazawi F M, Bakkar W, et al. Valproic acid and butyrate induce apoptosis inhuman cancer cells through inhibition of gene expression of Akt/protein kinase B [J].Molecular cancer,2006,5(1):71.
    [152] Miloso M, Scuteri A, Foudah D, et al. MAPKs as mediators of cell fate determination:an approach to neurodegenerative diseases [J]. Current medicinal chemistry,2008,15(6):538-548.
    [153] Einat H, Yuan P, Gould T D, et al. The role of the extracellular signal-regulated kinasesignaling pathway in mood modulation [J]. J Neurosci,2003,23(19):7311-7316.
    [154] Siafaka-Kapadai A, Patiris M, Bowden C, et al. Incorporation of [3 H]Valproic Acid into Lipids in GT1–7Neurons [J]. Biochemical pharmacology,1998,56(2):207-212.
    [155] Hao Y, Creson T, Zhang L, et al. Mood stabilizer valproate promotes ERKpathway-dependent cortical neuronal growth and neurogenesis [J]. J Neurosci,2004,24(29):6590-6599.
    [156] Gould T D, Manji H K. Glycogen synthase kinase-3: a putative molecular target forlithium mimetic drugs [J]. Neuropsychopharmacology,2005,30(7):1223-1237.
    [157] Jonathan Ryves W, Dalton E C, Harwood a J, et al. GSK‐3activity in neocorticalcells is inhibited by lithium but not carbamazepine or valproic acid [J]. Bipolardisorders,2005,7(3):260-265.
    [158] Chen G, Huang L D, Jiang Y M, et al. The mood-stabilizing agent valproate inhibits theactivity of glycogen synthase kinase-3[J]. J Neurochem,1999,72(3):1327-1330.
    [159] Kozlovsky N, Nadri C, Belmaker R H, et al. Lack of effect of mood stabilizers orneuroleptics on GSK-3protein levels and GSK-3activity [J]. Int JNeuropsychopharmacol,2003,6(2):117-120.
    [160] Gould T D, Chen G, Manji H K. In vivo evidence in the brain for lithium inhibition ofglycogen synthase kinase-3[J]. Neuropsychopharmacology,2004,29(1):32-38.
    [161] Roh M S, Eom T Y, Zmijewska a A, et al. Hypoxia activates glycogen synthasekinase-3in mouse brain in vivo: protection by mood stabilizers and imipramine [J].Biol Psychiatry,2005,57(3):278-286.
    [162] Coyle J T, Manji H K. Getting balance: drugs for bipolar disorder share target [J]. NatMed,2002,8(6):557-558.
    [163] Watterson J M, Watson D G, Meyer E M, et al. A role for protein kinase C and itssubstrates in the action of valproic acid in the brain: implications for neural plasticity[J]. Brain Res,2002,934(1):69-80.
    [164] Montezinho L P, Mork A, Duarte C B, et al. Effects of mood stabilizers on theinhibition of adenylate cyclase via dopamine D(2)-like receptors [J]. Bipolar Disord,2007,9(3):290-297.
    [165] Stahl S M. Anticonvulsants as mood stabilizers and adjuncts to antipsychotics:valproate, lamotrigine, carbamazepine, and oxcarbazepine and actions at voltage-gatedsodium channels [J]. Journal of Clinical Psychiatry,2004,65(6):738-739.
    [166] Farber N B, Jiang X P, Heinkel C, et al. Antiepileptic drugs and agents that inhibitvoltage-gated sodium channels prevent NMDA antagonist neurotoxicity [J]. Molecularpsychiatry,2002,7(7):726-733.
    [167] Yamamoto R, Yanagita T, Kobayashi H, et al. Up‐Regulation of Sodium ChannelSubunit mRNAs and Their Cell Surface Expression by Antiepileptic Valproic Acid:Activation of Calcium Channel and Catecholamine Secretion in Adrenal ChromaffinCells [J]. Journal of neurochemistry,1997,68(4):1655-1662.
    [168] Walden J, Altrup U, Reith H, et al. Effects of valproate on early and late potassiumcurrents of single neurons [J]. Eur Neuropsychopharmacol,1993,3(2):137-141.
    [169] Zona C, Avoli M. Effects induced by the antiepileptic drug valproic acid upon the ioniccurrents recorded in rat neocortical neurons in cell culture [J]. Experimental BrainResearch,1990,81(2):313-317.
    [170] Costa C, Martella G, Picconi B, et al. Multiple mechanisms underlying theneuroprotective effects of antiepileptic drugs against in vitro ischemia [J]. Stroke,2006,37(5):1319-1326.
    [171] Bown C D, Wang J F, Young L T. Attenuation of N-methyl-D-aspartate-mediatedcytoplasmic vacuolization in primary rat hippocampal neurons by mood stabilizers [J].Neuroscience,2003,117(4):949-955.
    [172] Kurita M, Nishino S, Ohtomo K, et al. Sodium valproate at therapeutic concentrationschanges Ca2+response accompanied with its weak inhibition of protein kinase C inhuman astrocytoma cells [J]. Progress in neuro-psychopharmacology&biologicalpsychiatry,2007,31(3):600-604.
    [173] Schurch B, Dollfus P. The 'Dejerines': an historical review and homage to two pioneersin the field of neurology and their contribution to the understanding of spinal cordpathology [J]. Spinal Cord,1998,36(2):78-86.
    [174]顾玉东.臂丛神经根性撕脱伤的治疗[J].中华创伤骨科杂志,2004,01):3-7.
    [175] Rich K M, Yip H K, Osborne P A, et al. Role of nerve growth factor in the adult dorsalroot ganglia neuron and its response to injury [J]. J Comp Neurol,1984,230(1):110-118.
    [176] Berger A, Mail nder P. Advances in peripheral nerve repair in emergency surgery of thehand [J]. World journal of surgery,1991,15(4):493-500.
    [177]涂致远,张文明,朱维钦.脊神经损伤后脊髓前角运动神经元保护研究进展[J].福建医药杂志,2005,01):124-127.
    [178] Farlie P G, Dringen R, Rees S M, et al. bcl-2transgene expression can protect neuronsagainst developmental and induced cell death [J]. Proceedings of the NationalAcademy of Sciences,1995,92(10):4397-4401.
    [179] Yamada M, Natsume A, Mata M, et al. Herpes simplex virus vector-mediatedexpression of Bcl-2protects spinal motor neurons from degeneration following rootavulsion [J]. Experimental Neurology,2001,168(2):225-230.
    [180]苏振刚,曹晓建,陈骐, et al.神经生长因子透过血脑屏障的研究进展[J].国外医学(脑血管疾病分册),2003,04):290-293.
    [181] Mora A, González-Polo R A, Fuentes J M, et al. Different mechanisms of protectionagainst apoptosis by valproate and Li+[J]. European Journal of Biochemistry,1999,266(3):886-891.
    [182] Cui S S, Yang C P, Bowen R C, et al. Valproic acid enhances axonal regeneration andrecovery of motor function after sciatic nerve axotomy in adult rats [J]. Brain Res,2003,975(1-2):229-236.
    [183]吴飞,邢丹谋,彭正人, et al.丙戊酸钠对大鼠坐骨神经损伤后脊髓运动神经元的保护作用[J].武汉大学学报(医学版),2007,05):605-607+692.
    [184] Van Bergeijk J, Haastert K, Grothe C, et al. Valproic Acid Promotes Neurite Outgrowthin PC12Cells independent from Regulation of the Survival of Motoneuron Protein [J].Chemical Biology&Drug Design,2006,67(3):244-247.
    [185]李凌云,秦正红,梁中琴.丙戊酸盐的神经保护作用及其机制的研究进展[J].中国药理学通报,2007,03):295-298.
    [186] Koliatsos V E, Price W L, Pardo C A, et al. Ventral root avulsion: an experimentalmodel of death of adult motor neurons [J]. Journal of Comparative Neurology,1994,342(1):35-44.
    [187]张立群,张文明,朱维钦, et al.大鼠不同类型臂丛根性损伤后脊髓运动神经元NOS的表达[J].福建医科大学学报,2002,02):157-160+239.
    [188] Chen P S, Peng G S, Li G, et al. Valproate protects dopaminergic neurons in midbrainneuron//glia cultures by stimulating the release of neurotrophic factors from astrocytes[J]. Mol Psychiatry,2006,11(12):1116-1125.
    [189] Weihl C C, Connolly a M, Pestronk A. Valproate may improve strength and function inpatients with type III/IV spinal muscle atrophy [J]. Neurology,2006,67(3):500-501.
    [190] Peng G S, Li G, Tzeng N S, et al. Valproate pretreatment protects dopaminergicneurons from LPS-induced neurotoxicity in rat primary midbrain cultures: role ofmicroglia [J]. Brain Res Mol Brain Res,2005,134(1):162-169.
    [191]江慧,田舜莲,曾艳, et al. Nerve Growth Factor Inhibits Gd~(3+)-sensitive CalciumInflux and Reduces Chemical Anoxic Neuronal Death [J]. Journal of HuazhongUniversity of Science and Technology(Medical Sciences),2008,04):379-382.
    [192]顾萍,唐金荣,苏建华, et al.大鼠坐骨神经损害c-fos基因表达及Ca~(2+)阻滞剂的保护作用[J].南京医科大学学报(自然科学版),2006,10):898-901+876.
    [193]郭静,蒲咏梅,张东才.钙离子信号与细胞凋亡[J].生物物理学报,2005,01):1-18.
    [194] Sulpice J C, Zachowski A, Devaux P F, et al. Requirement for phosphatidylinositol4,5-bisphosphate in the Ca (2+)-induced phospholipid redistribution in the humanerythrocyte membrane [J]. Journal of Biological Chemistry,1994,269(9):6347-6354.
    [195] Ellis H M, Horvitz H R. Genetic control of programmed cell death in the nematode C.elegans [J]. Cell,1986,44(6):817-829.
    [196] Sasaki M, Gonzalez-Zulueta M, Huang H, et al. Dynamic regulation of neuronal NOsynthase transcription by calcium influx through a CREB family transcriptionfactor-dependent mechanism [J]. Proceedings of the National Academy of Sciences,2000,97(15):8617-8622.
    [197] Macdermid V, Neuber‐Hess M, Short C, et al. Alterations to neuronal polarityfollowing permanent axotomy: A quantitative analysis of changes to MAP2a/b andGAP‐43distributions in axotomized motoneurons in the adult cat [J]. Journal ofComparative Neurology,2002,450(4):318-333.
    [198] Chen Z-Y, Chai Y-F, Cao L, et al. Glial cell line-derived neurotrophic factor enhancesaxonal regeneration following sciatic nerve transection in adult rats [J]. Brain Research,2001,902(2):272.
    [199] Mcphail L T, Fernandes K J L, Chan C, et al. Axonal reinjury reveals the survival andre-expression of regeneration-associated genes in chronically axotomized adult mousemotoneurons [J]. Experimental Neurology,2004,188(2):331-340.
    [200] Fernandes K J L, Fan D P, Tsui B J, et al. Influence of the axotomy to cell bodydistance in rat rubrospinal and spinal motoneurons: Differential regulation of GAP‐43,tubulins, and neurofilament‐M [J]. Journal of Comparative Neurology,1999,414(4):495-510.
    [201] Manji H K, Moore G J, Chen G. Clinical and preclinical evidence for the neurotrophiceffects of mood stabilizers: implications for the pathophysiology and treatment ofmanic–depressive illness [J]. Biological psychiatry,2000,48(8):740-754.
    [202] Yuan P-X, Huang L-D, Jiang Y-M, et al. The Mood Stabilizer Valproic Acid ActivatesMitogen-activated Protein Kinases and Promotes Neurite Growth [J]. Journal ofBiological Chemistry,2001,276(34):31674-31683.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700