用户名: 密码: 验证码:
鄂尔多斯盆地吴堡地区长7致密储层成岩演化与成藏过程耦合机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据岩心观察、常规薄片、铸体薄片、荧光薄片、扫描电镜、粒度分析、高压压汞、包裹体测温等分析测试手段,系统研究了鄂尔多斯盆地吴堡地区长7致密油储层特征、成岩作用特征及成岩演化、储层致密史及其与成藏史耦合关系、致密油分布主控因素,并指出该区下一步勘探方向及有利区。取得的认识有如下几点:
     延长组长7油层组沉积时期吴堡地区为半深湖-深湖沉积,重力流砂体比较发育且规模大、储层物性好,为长7致密油最有利储集体。其中,长73时期主要为深湖相泥岩夹薄层浊积砂岩沉积,长72和长71时期逐渐演变为半深湖泥岩与重力流砂体互层沉积,具有良好的生储盖组合配置。
     长7储层砂岩类型为长石砂岩和岩屑质长石砂岩,填隙物主要为水云母和方解石。砂岩的孔隙度平均为7.49%,渗透率平均为0.173×10-3μm2,为典型的致密储层。储层孔隙类型主要为残余粒间孔和各种溶蚀孔隙,以长石溶孔为主,总面孔率平均约3%。孔隙与喉道连通性较差,主要以纳米级孔喉系统为主,孔喉系统复杂,依据压汞参数将孔隙结构分为3种类型,其中Ⅰ类和Ⅱ类为致密油储产量的主要贡献者。
     长7储层成岩作用强烈,普遍达到中成岩阶段A期。原始沉积组构中黑云母、塑性岩屑及粒度细是形成致密储层的基础,强压实作用和碳酸盐类胶结物等成岩作用使储层致密化,长石等易溶颗粒的溶解作用增加了孔隙而使部分砂岩成为有效储层。
     储层成岩演化序列与孔隙度演化历史研究表明,在早成岩B期长7储层即已致密。依据包裹体岩相学和均一温度,结合埋藏-热演化史,研究区石油大规模运聚时间在早白垩世,储层具有边致密边成藏的特征。
     通过对油气质点进行受力分析,在不考虑异常压力和水动力条件下,当浮力和毛管阻力相等时确定的储层致密上限孔隙度为12%;依据录井含油产状及地质综合分析法,确定的本区长7致密储层成藏孔隙度下限为5%。
     包裹体研究表明,长7致密油为1期连续充注成藏,石油在致密储层中运移的动力为生烃增压形成的异常高压,运移方式为混相涌流,带有幕式成藏特点,主要为垂向近源运移聚集,其运移通道为储层微裂缝与孔喉组成的网络系统。由于成藏时储层已经致密化,油水基本没有分异。
     长7致密油成藏时油源是第一位的,长73优质油源岩高强度生排烃,强充注进致密储层中,优先向着阻力小的相对低势区运聚,形成准连续型油气聚集模式;致密储层的分布控制着致密油的分布,储层非均质性控制致密油纵向富集层位;半深湖-深湖相泥岩和油页岩广泛发育,对致密油聚集起到重要作用。
Based on core observation, conventional section, cast thin section, fluorescence thin section, SEM, particle size analysis, high-pressure mercury injection, inclusion temperature testing method, a systematic study was performed on tight oil reservoir characteristics, diagenesis and diagenetic evolution, the coupling relationship between the history of the tight sandstone reservoir and oil accumulation and the main control factors of tight oil distribution of Chang-7tight oil reservoir in Wubao area. We also pointed out where was the next favorable exploration area. The following results were obtained:
     The sedimentary period of Chang-7reservoir of Yanchang Formation in Wubao area was the deposition of the semi-deep lake to deep lake, at that time, the gravity flow sand bodies developed well, the reservoir quality was better so that it became one of the most favorable reservoir. The most favorable ones in Chang-7tight oil reservoir, that was Chang-73, was mainly in the deep lake facies mudstone within thin turbidite sandstone sedimentary, at Chang-72and Chang-71period, they gradually evolved into the semi-deep lake mudstone and gravity flow sandbody layers sedimentary, and have a good assemblage within source rocks, reservoir and caprock.
     The sandstone type of Chang-7reservoir was the feldspar sandstone and the lithic arkose sandstone, the fillings was mainly water mica and calcite. The average porosity was7.49%and the average permeability was0.173×10-3μm2, so it was a typical tight sandstone reservoir. The types of the reservoir pore are mainly all kinds of dissolved and remaining intergranular pores, that mainly refered to feldspar, the average rate of total pore amount was about3%. The connectivity of pore and throat is poor, mainly by the complex nano pore throat system, on the basis of mercury injection parameters, the pore structure is divided into3types, including I type and II type, as the main contribution of tight reservoir yield.
     The diagenesis of Chang-7reservoir is very strong, generally up to the stage A of the middle diagenetic stage. The original sedimentary fabric of biotite, plastic debris and fine grain size is the main foundation of tight sandstone reservoir. The reservoir further densification was caused by the strong compaction and carbonate cementation and so diagenetic production. However, dissolution of feldspar grains including those easy solution particles increased pore and easily make it an effective reservoir.
     On account of the porosity evolution curve in the Chang-7reservoir diagenetic evolution of sequences showed that the reservoir had been the densification in the early diagenetic stage B. According to the homogenization temperature of fluid, inclusion petrography, combining with the burial and thermal evolution history, the time of the petroleum migration and accumulation was determined in Early Cretaceous, the reservoir had a feature of densification and accumulation at the same time occuring.
     Through analyzing the stress of oil particles, without considering the abnormal pressure and hydrodynamic conditions, when the buoyancy and capillary resistance was equal, we could determine the upper porosity of the tight sandstone reservoir, that was12%; On the basis of the logging in oil occurrence and comprehensive geological analysis method, we also might determine the lower limit of Chang-7forming physical reservoir, that was5%.
     Study on inclusion showed that the Chang-7tight oil was the one stage charging continuous accumulation, dynamic migration of petroleum in the tight reservoir was abnormal high pressure formation from hydrocarbon generation, the type of migration was the mixing flow, with episodic reservoiring characteristics, that was mainly the vertical and near the source rock, their migration and accumulation pathway was a network and a system of micro cracks and pore throat, as the accumulation formed before the reservoir has been densified, oil-water was basically no difference.
     Chang-73of high quality oil source rocks in high intensity of hydrocarbon generation and expulsion, strong charging into the tight reservoir, priority to small resistance relatively low potential area migration, formed an quasi-continuous oil accumulation mode; the distribution of tight reservoir controlled the distribution of tight oil, the reservoir heterogeneity of tight oil controlled vertical enrichment; there were extensive development of semi-deep to deep lake facies mudstone and oil shale, they played an important role in tight oil accumulation.
引文
1. Athy L.F.. Density,Porosity and Compaction of Sedimentary Rocks [J]. AAPG Bulletin,1930,4:1-24
    2. Beard D.C., Weyl P.K.. Influence of texture on porosity and permeability of unconsolidated sand [J]. AAPG Bulletin,1973,57(2):349-369
    3. Philip H N. Pore-throat sizes in sandstones, tight sandstones, and shales[J]. AAPG Bulletin,2009, 93(3):329-340
    4. Chuhan F A, Bjorlykke K, Lowrey C. The role of provenance in illitization of deeply buried reservoir sandstones from Haltenbanken and north Viking Graben, offshore Norway [J]. Mar Petrol Geol, 2000,17(6):673-689
    5. Gautier, D. L., Dolton, G. L., Takahashi, K. I.et al, eds.1995 national assessment of United States oil and gas resources—results, methodology, and supporting data[R]. U.S. Geological Survey Digital DataSeries DDS-30,1995:1 CD-ROM
    6. George S C, Ruble T E, Dutkiewicz A, et al. Assessing the maturity of oil tyapped in fluid inclusions using molecular geochemistry data and visually-determined fluorescence colours [J]. Applied Geochemistry,2001,16:451-473
    7. Gluyas J G, Cade C.Prediction of porosity in compacted sands[G]//Kupecz J A.Gluyas J QBloch S.Reservoir quality prediction in sandstones and carbonates.AAPG Memoir 69,1997:19-271
    8. Holditch. Tight gas sands [J]. Journal of Petroleum Technology,2006,58 (6):88-94
    9. Hans G.Machel, Beate Elisabeth Buschkuehle. Diagenesis of the Devonian southesk-cairn carbonate complex, Alberta, Canada:Marine cementation, burial dolomitization, thermochemical sulfate reduction, anhydritization, and squeegee fluid flow[J]. Journal of sedimentary research,2008,78, 366-389
    10. Johnson, R.H. The cementation process in sandstones. AAPG Bulletin,1920,4:33-35
    11. Karen E.Higgs, Horst Zwingmann, Agnes G.Reyes, et al. Diagenesis, porosity evolution, and petroleum emplacementin tight gas reservoirs, Taranaki Basin, New Zealand[J]. Journal of sedimentary research,2007,77:1003-1025
    12. Law B E et al. Basin-centered gas systems [J]. AAPG Bulletin,2002,86(11):1891-1919
    13. Mark Wilkinson, R.Stuart Haszeldine. Oil charge preserves exceptional porosity in deeply buried, overpressured, sandstones:Central North Sea, UK[J]. Journal of the Geological Society, London, 2011,168:1285-1295
    14. Marchand A M E, Haseldine R S, Macaulay C I, et al. Quartz cementation inhibited by crestal oil charge:Miller deep water sandstone, UK North Sea[J]. Clay Minerals,2000,35:201-210
    15. Marchand A M E, Haseldine R S, Smalley P C, et al. Evidence for reduced quartz-cementation rates in oil-filled sandstones[J]. Geology,2001,29 (10):915-918
    16. Marchand A M E, Smalley P C, Haseldine R S, et al. Note on the importance of hydrocarbon fill for reservoir qualityprediction in sandstones[J]. AAPG Bulletin,2002,86 (9):1561-1571
    17. Maxwell J.C.. Influence of depth, temperature, and geologic age on porosity of quartzose sandstone[J]. AAPG Bulletin,1964,48 (5):697-709
    18. Midtbφ R E A, Rykkje J M, Ramm M. Deep burial diagenesis and reservoir quality along the eastern flank of the Viking Graben. Evidence for illitization and quartz cementation after hydrocarbon emplacement[J]. Clay Minerals,2000,35:227-237
    19. Richard H.Worden, Norman H.Oxtoby, P.Craig Smalley. Can oil emplacement prevent quartz cementation in sandstones?[J]. Petroleum Geoscience,1998,98:129-137
    20. Scherer M. Parameters influencing porosity in sandstones:A model for sandstone porosity prediction[J]. AAPG Bulletin,1987,71(5):485-491
    21. Schmoker, J. W. Method for assessing continuous-type (unconventional) hydrocarbon accumulations, in D. L.Gautier, G. L. Dolton, K. I. Takahashi, and K. L. Varnes, eds.,1995 National Assessment of United States Oil and Gas Resources— Results, methodology, and supporting data[R]. U.S.Geological SurveyDigital Data Series DDS-30 (CD-ROM),1995
    22. Schmoker, J.W. A resource evaluation of the Bakken Formation (Upper Devonian and Lower Mississippian) continuous oil accumulation, Williston Basin, North Dakota and Montana[J]. The Mountain Geologist,1996,33(1):1-10
    23. Schmoker, J.W., Fouch, T.D., and Charpentier, R.R. Gas in the Uinta Basin, Utah—Resources incontinuous accumulations[J]. The Mountain Geologist,1996,33(4):95-104
    24. Schmoker, J.W. Resource-assessment perspectives for unconventional gas systems[J]. AAPG Bulletin,2002,86(11):1993-1999
    25. Schmoker, J.W. U.S. Geological aurvey assessment concepts for continuous petroleum accumulations. Chapter 13 of Petroleum Systems and Geologic Assessment of Oil and Gas in the Southwestern Wyoming Province, Wyoming, Colorado, and Utah (USGS Southwestern Wyoming Province Assessment Team ed.) [R]. U.S.Geological Survey Digital Data Series DDS-69-D, U.S. Geological Survey, Denver, Colorado, Versionl,2005:7pp
    26. Schenk, C. J. Geologic definition and resource assessment of continuous (unconventional) gas accumulationsthe U.S. experience. AAPG ICE,2002. http://www. searchanddiscovery. com/ documents/abstracts/cairo2002/schenk.htm
    27. Schenk, C. J. Geologic definition of conventional and continuous accumulations in select U.S. Basins-The 2001 approach. AAPG Hedberg,2005. http://www. searchanddiscovery. com/ documents/abstracts/2005hedberg_vail/abstracts/short/schenk.htm
    28. Scherer M.Parameters influencing porosity in sandstones:A model for sandstone porosity prediction[J].AAPG Bulletin,1987,71 (5):485-491
    29. SPE、AAPG、WPC、SPEE. Petroleum Resources management system,2007,1-47
    30. Storvoll V, Bjorly kkea K, Karlsen D, et al.Porosity preservation in reservoir sandstones due to grain-coating illite:A study of the Jurassic Garn Formation from the Kristin and Lavrans fields, off-shore Mid-Norway[J].Marine and Petroleum Geology,2002,19(6):767-781
    31. Taylor T R, Giles M R, Hathon L A, et al. Sandstone diagenesis and reservoir quality prediction: Models, myths, and reability[J]. AAPG Bulletin,2010,94(8):1093-1132
    32. Walderhaug O. Kinetic modeling of quartz cementation and porosity loss in deeply buried sandstone reservoirs[J]. AAPG Bulletin,1996,80(5):732-745
    33. Walderhaug O. Molenaar N, Cyziene J, Sliaupa S, et al. Lack of inhibiting effect of oil emplacement on quartz cementation:Evidence from Cambrian reservoir sandstones, Paleozoic Baltic Basin[J]. GSA Bulletin,2008,120(9/10):1280-1295
    34白玉彬,赵靖舟,章爱成,等.蟠龙油田三叠系长2油组油气富集规律[J].西南石油大学学报(自然科学版),2010,32(4):67-71
    35 白玉彬,赵靖舟,方朝强,等.优质烃源岩对鄂尔多斯盆地延长组石油聚集的控制作用[J].西安石油大学学报(自然科学版),2012,27(2):1-5
    36. 白玉彬,罗静兰,张天杰,等.鄂尔多斯盆地吴堡地区延长组烃源岩特征及评价[J].兰州大学学报(自然科学版),2012,48(5):22-28
    37 白玉彬,张海.鄂尔多斯盆地A油田低渗透储层物性特征及其主控因素[J].沉积与特提斯地质,2010,30(5):104-108
    38 白玉彬,赵靖舟,方朝强,等.鄂尔多斯盆地长6油层组准连续型致密砂岩油藏形成机理[J].石油实验地质,2013,35(1):65-71
    39 白玉彬,赵靖舟,赵子龙,等.鄂尔多斯盆地志丹地区延长组长7致密油成藏条件与成藏特征[J].石油与天然气地质,2013,35(5):632-639
    40. 白玉彬,罗静兰,刘新菊,等.鄂尔多斯盆地吴堡地区上三叠统延长组原油地球化学特征及油源对比[J].沉积学报,2013,31(2):374-383
    41. 白玉彬,罗静兰,王少飞,等.鄂尔多斯盆地吴堡地区延长组长8致密砂岩油藏成藏主控因素[J].中国地质,2013,40(4):1159-1168
    42.白玉彬,赵靖舟,高振东,等.鄂尔多斯盆地杏子川油田长9烃源岩特征及油气勘探意义[J].中国石油大学学报(自然科学版),2013,37(4):38-45
    42陈刚,孙建博,周立发,等.鄂尔多斯盆地西南缘中生代构造事件的裂变径迹年龄记录[J].中国科学D辑:地球科学,2007,37(增刊Ⅰ):110-118
    43 陈刚,王志维,白国绢,等.鄂尔多斯盆地中新生代峰值年龄事件及其沉积-构造响应[J].中国地质,2007,34(3):375-383
    44陈占坤,吴亚生,罗晓容,等.鄂尔多斯盆地陇东地区长8段古输导格架恢复[J].地质学报,2006,80(5):718-722
    45 陈瑞银,罗晓容,陈占坤,等.鄂尔多斯盆地中生代地层剥蚀量估算及其地质意义[J].地质学报,2006,80(5):685-693
    46蔡春芳,顾家裕,蔡洪美.塔中地区志留系烃类侵位对成岩作用的影响[J].沉积学报,2001,19(1):60-65
    47丁晓琪,张哨楠.鄂尔多斯盆地西南缘中生界成岩作用及其对储层物性的影响[J].石油实验地质,2011,18(1):18-22
    48丁燕云.鄂尔多斯盆地北部航磁反映的构造特征[J].物探与化探,2000,24(3):197-202
    49邓军,王庆飞,黄定华,等.鄂尔多斯盆地基底演化及其对盖层控制作用[J].地学前缘,2005,12(3):91-99
    50邓秀芹,刘新社,李士祥.鄂尔多斯盆地三叠系延长组超低渗透储层致密史与油藏成藏史[J].石油与天然气地质,2009,30(2):156-161
    51 邓秀芹.鄂尔多斯盆地三叠系延长组超低渗透大型岩性油藏成藏机理研究[D].西安:西北大学,2011
    52冯胜斌,牛小兵,刘飞,等.鄂尔多斯盆地长7致密油储集空间特征及其意义探讨[J].低渗透油气田,2012
    53 葛云锦,陈勇,周瑶琪.不同成岩条件下油气充注对碳酸盐岩成岩作用的影响[J].中国石油大学学报(自然科学版),2009,33(1):18-22
    54葛云锦,陈勇,周瑶琪,等.实验模拟碳酸盐岩储层包裹体对油气充注的响应[J].地球科学进展,2011,26(10):1050-1056
    55国土资源部油气资源战略研究中心.全国石油天然气资源评价(上册)[J].北京:中国大地出版社,2010:163-165
    56郭正权,齐亚林,楚美娟,等.鄂尔多斯盆地上三叠统延长组储层致密史恢复[J].石油实验地质,2012,34(6):594-598
    57郭忠铭,张军,于忠平.鄂尔多斯地块油区构造演化特征[J].石油勘探与开发,1994,21(2):22-29
    58高岗,沈霞,韩永林.低孔低渗背景下砂体输导物性下限及其对石油运聚的影响:以鄂尔多斯盆地胡尖山地区延长组长4+5段和长6段为例[J].高校地质学报,2010,16(3):351-357
    59胡海燕.油气充注对成岩作用的影响[J].海相油气地质,2004,9(1-2):85-89
    60何自新,等著.鄂尔多斯盆地演化与油气[M].北京:石油工业出版社,2003
    61 胡作维,李云,黄思静,等.砂岩储层中原生孔隙的破坏与保存机制研究进展[J].地球科学进展,2012,27(1):14-25
    62胡文瑞.低渗透油气田概论[M].北京:石油工业出版社,2009:246
    63侯瑞云,柳林旺.镇泾油田长8油层组特低渗岩性油藏成藏机制研究[J].石油实验地质,2011,33(4):378-383
    64黄思静,龚业超,黄可可,等.埋藏历史对碳酸盐溶解—沉淀的影响—以四川盆地东北部三叠系飞仙关组合塔里木盆地北部奥陶系为例[J].地球科学进展,2010,25(4):381-390
    65姜振强,徐波,潘伟义.气藏与油藏储层孔隙度下限计算及对比研究——以辽河油田东部凹陷为例[J].石油天然气学报,2008,30(5):41-43
    66姜福杰,庞雄奇,武丽.致密砂岩气藏成藏过程中的地质门限及其控气机理[J].石油学报,2010,31(1):49-54
    67贾承造,郑民,张永峰.中国非常规油气资源与勘探开发前景[J].石油勘探与开发,2012,39(2):129-136
    68贾承造,邹才能,李建忠,等.中国致密油评价标准、主要类型、基本特征及资源前景[J].石油学报,2012,33(3):343-350
    69刘池洋,赵红格,桂小军,等.鄂尔多斯盆地演化-改造的时空坐标及其成藏(矿)响应[J].地质学报,2006,80(5):617-638
    70刘震,黄艳辉,潘高峰,等.低孔渗砂岩储层临界物性确定及其石油地质意义[J].地质学报,2012,86(11):1815-1825
    71 刘震,刘静静,王伟,等.低孔渗砂岩石油充注临界条件实验—以西峰油田为例[J].石油学报,2012,33(6):996-1002
    72刘德汉,卢焕章,肖贤明.油气包裹体及其在石油勘探开发中的应用[M].广东:广东科技出版社,2007
    73柳广弟,高先志,付广,等.石油地质学[M].北京:石油工业出版社,2009
    74林森虎,邹才能,袁选俊,等.美国致密油开发现状及启示[J].岩性油气藏,2011,23(4):25-30
    75李荣西,段立志,陈宝簧,等.鄂尔多斯盆地三叠系延长组砂岩钠长石化与热液成岩作用[J].岩石矿物学杂志,2012,31(2):173-180
    76李荣西,段立志,张少妮,等.鄂尔多斯盆地低渗透油气藏形成研究现状及展望[J].地球科学与环境学报,2011,33(4):364-372
    77李荣西,席胜利,邸领军,等.用储层油气包裹体岩相学确定油气成藏期次—以鄂尔多斯盆地陇东油田为例[J].石油与天然气地质,2006,27(2):194-199
    78李相博,付金华,陈启林,等.砂质碎屑流概念及其在鄂尔多斯盆地延长组深水沉积研究中的应用[J].地球科学进展,2011,26(3):286-294
    79李道品.低渗透砂岩油田开发[M].北京:石油工业出版社,1997
    80李德生.重新认识鄂尔多斯盆地油气地质学[J].石油勘探与开发,2004,31(1):1-7
    81 李明,高建荣.鄂尔多斯盆地基底断裂与火山岩的分布[J].中国科学:地球科学,2010,40(8): 1005-1013
    82李明诚,李剑.“动力圈闭”—低渗透致密储层中油气充注成藏的主要作用[J].石油学报,2010,31(5):718-722
    83李忠,陈景山,关平.含油气盆地成岩作用的科学问题及研究前沿[J].岩石学报,2006,22(8):2113-2122
    84李艳霞,刘洪军,袁东山,等.石油充注对储层成岩矿物演化的影响[J].石油与天然气地质,2003,24(3):274-280
    85李茹,葛云锦,陈勇,等.储层石英生长影响因素的实验证据[J].中国石油大学学报(自然科学版),2010,34(2):13-18
    86李红,柳益群,刘林玉.鄂尔多斯盆地西峰油田延长组长81低渗透储层成岩作用[J].石油实验地质,2006,27(2):209-217
    87刘建清,赖兴运,于炳松,等.成岩作用的研究现状及展望[J].石油实验地质,2006,28(1):65-72
    88罗静兰,李忠兴,史成恩,等.鄂尔多斯盆地西南部上三叠统延长组长8、长6油层组的沉积体系与物源方向[J].地质通报,2008,27(1):101-111
    89罗静兰,S.Morad,阎世可,等.河流-湖泊三角洲相砂岩成岩作用的重建及其对储层物性演化的影响.—以延长油区侏罗系-上三叠统砂岩为例[J].中国科学(D辑),2001,31(12):1006-1016
    90罗静兰,刘小洪,林潼,等.成岩作用与油气侵位对鄂尔多斯盆地延长组砂岩储层物性的影响[J].地质学报,2006,80(5):664-672
    91 罗晓容,张刘平,杨华,等.鄂尔多斯盆地陇东地区长8]段低渗油藏成藏过程[J].石油与天然气地质,2010,31(6):770-778
    92卢焕章,范宏瑞,倪培,等.流体包裹体[M].北京:科学出版社,2004
    93马杏垣,吴正文,谭应佳,等.华北地台基底构造[J].地质学报,1979,53(4):293-304
    94马艳萍,刘立,闫建萍,等.松辽盆地齐家—古龙凹陷扶杨油层次生孔隙特征及其与烃类侵位的关系[J].世界地质,2003,22(1):36-40
    95孟元林,潘雪梅,吴河勇,等.松辽盆地北部中浅层含油饱和度和孔隙度的关系与油气侵位对成岩作用的抑制[J].矿物岩石地球化学通报,2010,29(1):11-16
    96孟元林,王志国,杨俊生,等.成岩作用过程综合模拟及其应用[J].石油实验地质,2003,25(2):211-220
    97欧光习,李林强,孙玉梅.沉积盆地流体包裹体研究的理论与实践[J].矿物岩石地球化学通报,2006,25(1):1-11
    98庞军刚,李文厚,石硕,等.陕北地区长7沉积相特征及石油地质意义[J].西北大学学报(自然科学版),2010,40(3):488-492
    99庞雄奇,陈冬霞,李丕龙,等.砂岩透镜体成藏门限及控油气作用机理[J].石油学报,2003, 24(3):38-41
    100潘爱芳,赫英,黎荣剑,等.鄂尔多斯盆地基底断裂与能源矿产成藏成矿的关系[J].大地构造与成矿学,2005,29(4):459-464
    101 潘高峰,刘震,赵舒,等.鄂尔多斯盆地镇泾地区长8段致密砂岩油藏成藏孔隙度下限研究[J].现代地质,2011,25(2):271-278
    102邱楠生,万晓龙,金之钧,等.渗透率极差对透镜状砂体成藏的控制模式[J].石油勘探与开发,2003,30(3):48-52
    103任战利,张盛,高胜利,等.鄂尔多斯盆地热演化程度异常分布区及形成时期探讨[J].地质学报,2006,80(5):674-684
    104任战利,赵重远,张军,等.鄂尔多斯盆地古地温研究[J].沉积学报,1994,12(1):56-65
    105任战利.利用磷灰石裂变径迹法研究鄂尔多斯盆地地热史[J].地球物理学报,1995,38(3):339-349
    106任战利.鄂尔多斯盆地热演化史与油气关系的研究[J].石油学报,1996,17(1):17-24
    107任战利,张盛,高胜利,等.鄂尔多斯盆地构造热演化史及其成藏成矿意义[J].中国科学D辑:地球科学,2007,37(增刊Ⅰ):23-32
    108孙肇才,谢秋元.叠合盆地的发展特征及其含油气性—以鄂尔多斯盆地为例[J].石油实验地质,1980,第1期:13-21
    109宋凯,吕剑文,杜金良,等.鄂尔多斯盆地中部上三叠统延长组物源方向分析与三角洲沉积体系[J].古地理学报,2002,4(3):59-66
    110史基安,王金鹏,毛明陆,等.鄂尔多斯盆地西峰油田三叠系延长组长6-长8段储层砂岩成岩作用研究[J].沉积学报,2003,21(3):373-380
    111 史建南,郑荣才,韩永林,等.鄂尔多斯盆地姬塬地区长8油层组岩性油藏成藏机理研究[J].岩性油气藏,2009,21(3):129-133
    112时保宏,张艳,张雷,等.鄂尔多斯盆地延长组长7致密储层流体包裹体特征与成藏期次[J].石油实验地质,2012,34(6):599-603
    113寿建峰,朱国华.砂岩储层孔隙保存的定量预测研究[J].地质科学,1998,33(2):244-250
    114陶士振.包裹体应用于油气地质研究的前提条件和关键问题[J].地质科学,2004,39(1):77-91
    115陶士振.自生矿物序次是确定包裹体期次的根本依据[J].石油勘探与开发,2006,33(2):154-160
    116武富礼,赵靖舟,闫世可,等.陕北地区中生界石油补偿成藏规律研究[J].石油学报,2007,28(3): 23-26
    117武富礼,李文厚,李玉宏,等.鄂尔多斯盆地上三叠统延长组三角洲沉积及演化[J].古地理学报,2004,6(3):307-315
    118武富礼,王(?)阳,赵靖舟,等.鄂尔多斯盆地油藏序列特征及成因[J].石油学报,2008,29(5): 639-642
    119魏斌,魏红红,陈全红,等.鄂尔多斯盆地上三叠统延长组物源分析[J].西北大学学报(自然科学版),2003,33(4):447-450
    120汪泽成,赵文智,门相勇,等.基底断裂“隐性活动”对鄂尔多斯盆地上古生界天然气成藏的作用[J].石油勘探与开发,2005,32(1):9-13
    121王瑞飞,陈明强,孙卫.鄂尔多斯盆地延长组超低渗透砂岩储层微观孔隙结构特征研究[J].地质论评,2008,54(2):270-277
    122王瑞飞,沈平平,赵良金.深层储集层成岩作用及孔隙度演化定量模型——以东濮凹陷文东油田沙三段储集层为例[J].石油勘探与开发,2011,38(5):552-559
    123王建民,王佳媛.鄂尔多斯盆地伊陕斜坡上的低幅度构造与油气富集[J].石油勘探与开发,2013,40(1):49-57
    124王同和,王喜双,韩宇春,等.华北克拉通构造演化与油气聚集[M].北京:石油工业出版社,1999
    125王芳,冯胜斌,何涛,等.鄂尔多斯盆地西南部延长组长7致密砂岩伊利石成因初探[J].西安石油大学学报(自然科学版),2012,27(4):19-22
    126王琪,史基安,肖立新,等.石油侵位对碎屑储集岩成岩序列的影响及其与孔隙演化的关系[J].沉积学报,1998,16(3):97-101
    127王学军,王志欣,陈杰,等.鄂尔多斯盆地镇北油田延长组低渗透储层成因及油气运移特征[J].油气地质与采收率,2010,17(1):15-18
    128王学军,王志欣,陈杰,等.鄂尔多斯盆地镇北油田延长组石油运聚机理[J].石油勘探与开发,2011,38(3):299-306
    129王震亮,孙明亮,耿鹏,等.准南地区异常地层压力发育特征及形成机理[J].石油勘探与开发,2003,30(1):32-34
    130王震亮,李耀华,张健.川西地区上三叠统异常流体压力的主要形成机制[J].石油与天然气地质,2007,28(1):43-50
    131杨华,窦伟坦,刘显阳,等.鄂尔多斯盆地三叠系延长组长7沉积相分析[J].沉积学报,2010,28(2):254-263
    132杨华,李士祥,刘显阳.鄂尔多斯盆地致密油、页岩油特征及资源潜力[J].石油学报,2013,34(1):1-11
    133杨通佑,范尚炯,陈元千,等.石油及天然气储量计算方法[M].北京:石油工业出版社,1990
    134杨俊杰.鄂尔多斯盆地构造演化与油气分布规律[M].北京:石油工业出版社,2002
    135杨俊杰,李克勤,张东生,等.中国石油地质志:卷十二:长庆油田[M].北京:石油工业出版社,1992
    136杨香华,叶加仁,孙永传.深部高孔渗碎屑岩储层的发育条件及其研究现状[J].地质科技情报,1996,15(2):57-62
    137叶聪林,郑国东,赵军.油气储层中水岩作用研究现状[J].矿物岩石地球化学通报,2010,29(1):89-97
    138袁东山,张枝焕,刘洪军.油气充注对晚期碳酸盐岩矿物胶结作用的影响[J].石油天然气学报,2005,27(2):298-300
    139袁东山,张枝焕,朱雷,等.油气聚集对石英矿物成岩演化的影响[J].岩石学报,2007,23(9):2315-2320
    140袁珍,李文厚,郭艳琴.鄂尔多斯盆地东南缘延长组石油充注对砂岩储层成岩演化的影响[J].高校地质学报,2011,17(4):594-604
    141 袁珍.鄂尔多斯盆地东南部上三叠统油气储层特征及其主控因素研究[D].西安:西北大学,2011
    142 闫建萍,刘池阳,马艳萍.成岩作用与油气侵位对松辽盆地齐家—古龙凹陷扶杨油层物性的影响[J].沉积学报,2009,27(2):212-220
    143 朱家俊.油气成藏的孔隙度门限及油藏充满度研究——以济阳坳陷为例[J].特种油气藏,2007,14(4):29-43
    144周海燕,庞雄奇,姜振学.油气成藏门限及其研究方法[J].石油学报,2003,24(6):40-44
    145张抗.鄂尔多斯地断块构造与资源[M].西安:陕西科学技术出版社,1989
    146赵孟为,汉斯·阿伦特,克劳斯·魏玛.鄂尔多斯盆地伊利石K-Ar等时线图解与年龄[J].沉积学报,1997,15(4):148-151
    147赵孟为.鄂尔多斯盆地油气形成与运移时间和运移方向的确定与勘探方向[J].石油实验地质,1996,18(4):341-347
    148赵孟为,H.J.Behr.鄂尔多斯盆地三叠系镜质体反射率与地热史[J].石油学报,1996,17(2):15-23
    149赵孟为,Hans Ahrendt, Klaus Wemmer. K-Ar测年法在确定沉积岩成岩时代中的应用—鄂尔多斯盆地为例[J].沉积学报,1996,14(3):11-21
    150赵文智,胡素云,汪泽成,等.鄂尔多斯盆地基底断裂在上三叠统延长组石油聚集中的控制作用[J].石油勘探与开发,2003,30(5):1-5
    151 赵俊兴,吕强,李凤杰,等.鄂尔多斯盆地南部延长组长6时期物源状况分析[J].沉积学报,2008,26(4):610-616
    152赵俊兴,李凤杰,申晓莉,等.鄂尔多斯盆地南部长6和长7油层浊流事件的沉积特征及发育模式[J].石油学报,2008,29(3):389-394
    153赵靖舟,王永东,孟祥振,等.鄂尔多斯盆地陕北斜坡东部三叠系长2油藏分布规律[J].石油勘探与开发,2007,34(1):23-27
    154赵靖舟,武富礼,闫世可,等.陕北斜坡东部三叠系油气富集规律研究[J].石油学报,2006,27(5):24-27
    155赵靖舟.非常规油气有关概念、分类及资源潜力[J].天然气地球科学,2012,23(3):393-406
    156赵靖舟,吴少波,武富礼.论低渗透储层的分类与评价标准[J].岩性油气藏,2007,19(3):28-31
    157赵靖舟,付金华,姚泾利,等.鄂尔多斯盆地准连续型致密砂岩大气田成藏模式[J].石油学报,2012,33(S1):37-52
    158赵靖舟,白玉彬,曹青,等.鄂尔多斯盆地准连续型低渗透-致密砂岩大油田成藏模式[J].石油与天然气地质,2012,33(6):811-827
    159赵靖舟,付金华,姚泾利,等.鄂尔多斯盆地致密砂岩大油气田形成及分布规律[M]//.李德生.中国多旋回叠合含油气盆地构造学[M].北京:科学出版社,2012:183-216
    160张文正,杨华.论鄂尔多斯盆地长7段优质油源岩在低渗透油气成藏富集中的主导作用:地质地球化学特征[J].地球化学,2005,34(2):147-154
    156张文正,杨华,李剑锋,等.论鄂尔多斯盆地长7段优质油源岩在低渗透油气成藏富集中的主导作用——强生排烃特征及机理分析[J].石油勘探与开发,2006,33(3):289-293
    161张润合,郑兴平,徐献高,等.鄂尔多斯盆地上三叠统延长组四、五段泥岩生烃潜力评价[J].西安石油大学学报(自然科学版),2003,18(2):9-13
    162邹才能,等.非常规油气地质[M].北京:地质出版社,2011
    163邹才能,陶士振,袁选俊,等.连续型油气藏形成条件与分布特征[J].石油学报,2009,30(3):324-331
    164邹才能,陶士振,袁选俊,等.“连续型”油气藏及其在全球的重要性:成藏、分布与评价[J].石油勘探与开发,2009,36(6):669-682
    165邹才能,朱如凯,吴松涛,等.常规与非常规油气聚集类型、特征、机理及展望——以中国致密油和致密气为例[J].石油学报,2012,33(2):173-187
    166邹才能,朱如凯,白斌,等.中国油气储层中纳米孔首次发现及其科学价值[J].岩石学报,2011,27(6):1857-1864
    167邹才能,杨智,陶士振,等.纳米油气与源储共生型油气聚集[J].石油勘探与开发,2012,39(1):13-26
    168邹才能,赵政璋,杨华,等.陆相湖盆深水砂质碎屑流成因机制与分布特征—以鄂尔多斯盆地为例[J].沉积学报,2009,27(6):1065-1075
    169赵澄林,朱筱敏.沉积岩石学(第三版)[M].北京:石油工业出版社,2001
    170周庆凡,杨国丰.致密油与页岩油的概念与应用[J].石油与天然气地质,2012,33(4):541-544
    171 朱家俊.低孔低渗油藏具高含油饱和度现象的地质成因分析—以胜利油区东营凹陷油藏为例[J].石油天然气学报,2008,30(3):64-67

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700