用户名: 密码: 验证码:
东亚飞蝗对有机磷杀虫剂的抗性及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
东亚飞蝗Locusta migratoria manilensis(Meyen)是为害严重的农业害虫,有机磷杀虫剂是防治这一害虫使用较广的杀虫剂,为了深入探讨东亚飞蝗对有机磷杀虫剂的抗性机制,针对东亚飞蝗不同种群制定相应的治理策略,更有效地进行抗性治理,本文通过东亚飞蝗田间种群对有机磷农药的敏感性分析,探讨了东亚飞蝗对有机磷农药产生抗性的现状;同时利用现代分子生物学技术,研究分析了抗性产生的生化和分子生物学机理,主要研究内容如下:
     一、东亚飞蝗对有机磷农药的敏感性分析和增效作用测定
     本研究针对我国东亚飞蝗发生规模、分布特点、农药使用背景差异和种群遗传特征,采集了河北黄骅、海南黄流和山东无棣田间种群,选择有代表性的有机磷农药进行敏感性分析。结果发现,东亚飞蝗无棣种群对马拉硫磷最为敏感,黄骅种群对毒死蜱和辛硫磷仅有5.4和2.9倍的抗药性,而黄骅和黄流两种群对马拉硫磷已产生了57.5和14.8倍的抗药性。可以看出,由于东亚飞蝗不同种群马拉硫磷选择压力的差异已经造成不同田间种群对其抗性程度产生了变化,而且不同的有机磷农药对同一种群的选择压力已产生不同的抗药性水平。由此说明,研究东亚飞蝗对常用杀虫剂抗性发生现状,建立有效的抗性治理策略,是十分必要的。
     通过增效剂磷酸三苯酯(TPP)、顺丁烯二酸二乙酯(DEM)及氧化胡椒基丁醚(PBO)在河北黄骅田间种群和敏感品系中对马拉硫磷的增效试验,结果发现,无论在黄骅种群还是敏感品系中,PBO对马拉硫磷都没有增效作用(增效比分别为0.9和1.1),但在黄骅种群中TPP和DEM对马拉硫磷表现出显著的增效作用(增效比分别为16.2和3.3),而在敏感品系中TPP和DEM没有明显的增效作用(增效比分别为1.4和1.2);由此推测,酯酶和谷胱甘肽S-转移酶与黄骅种群马拉硫磷抗性相关,而细胞色素P450与马拉硫磷抗性无关。
     二、东亚飞蝗有机磷抗性代谢解毒酶生化机制研究
     本研究分析了东亚飞蝗代谢解毒酶系(酯酶、谷胱甘肽S-转移酶和细胞色素P450氧化酶)的生化特性。东亚飞蝗河北黄骅种群和敏感品系代谢解毒酶活性表现出不同程度的差异,其中黄骅种群酯酶对α-NA、α-NB及β-NA三种底物的水解活性和谷胱甘肽S-转移酶对底物CDNB和DCNB水解活性显著高于敏感品系,分别是敏感品系的2.1-3.2倍和1.2-2.0倍。而对于细胞色素P450活性,两者之间没有显著差异。酯酶聚丙烯酰胺凝胶电泳结果显示,黄骅种群和敏感品系电泳图谱中条带带型没有差异,但黄骅种群条带染色明显深于敏感品系。据此推测,黄骅种群与敏感品系之间的酯酶活性和谷胱甘肽S-转移酶差异与河北黄骅东亚飞蝗的抗药性有关。
     用对氧磷、马拉氧磷两种有机磷抑制剂对东亚飞蝗海南黄流和山东无棣种群的羧酸酯酶进行体外抑制,实验结果表明,黄流和无棣种群的pI_(50)值有显著差异,黄流种群分别是山东种群的1.16和1.27倍,说明黄流种群对对氧磷和马拉氧磷的敏感性较低。然而黄流种群和无棣种群的羧酸酯酶活性测定结果表明,以α-NA和β-NA为底物时,无棣种群羧酸酯酶活性分别是黄流种群1.75和1.50倍,具有显著差异。动力学研究表明,无棣种群和黄流种群的羧酸酯酶K_和V_(max)值没有显著差异。据分析黄流种群和无棣种群羧酸酯酶活性的差异可能是由于生态环境的不同所导致的种群分化引起的。根据目前的研究结果尚难以断定对马拉硫磷生物测定中LD_(50)值较低的无棣种群对其它农药的敏感性如何。基于无棣种群较高的羧酸酯酶活性,我们推测,东亚飞蝗无棣种群可能对其它的农药具有较高的抗药性。
     三、东亚飞蝗有机磷抗性靶标酶生化机制研究
     本研究分析了东亚飞蝗有机磷靶标乙酰胆碱酯酶(acetylcholinesterase,AChE)的生化特性。对东亚飞蝗黄骅种群、黄流种群、无棣种群和敏感品系AChE活性和动力学比较结果表明,三个东亚飞蝗田间种群AChE活性与敏感品系相比有显著差异,黄骅种群、黄流种群和无棣种群AChE活性分别是敏感品系的4.04、9.55和1.99倍,并且三个田间种群的K_m值与敏感品系相比也有显著差异;根据有机磷杀虫剂对AChE的体外抑制结果,河北黄骅种群AChE对马拉氧磷、氧化毒死蜱及辛硫磷的敏感性与敏感品系相比分别下降了3.2、2.2和1.1倍。而海南黄流种群对马拉氧磷和氧化毒死蜱的敏感性分别下降了11.3和19.2倍。同时发现,对马拉硫磷生物测定中仅有1.8倍抗药性的山东无棣种群,其AChE对马拉氧磷和氧化毒死蜱的敏感性也分别下降了4.8和2.4倍。
     结合东亚飞蝗解毒酶的生化机制研究,本文认为黄骅种群对马拉硫磷的抗性机理主要包括酯酶、谷胱甘肽S-转移酶活性升高和乙酰胆碱酯酶的活性升高以及敏感性下降。黄流种群产生抗性主要是由于AChE的活性升高和敏感性降低引起的。而无棣种群可能对其它的农药有较高的抗药性,导致其AChE敏感性的显著下降。据此认为,东亚飞蝗不同种群抗性产生机制是不尽相同的,有可能包括多种不同的抗性机制。
     四、东亚飞蝗有机磷抗性分子机制研究
     本研究利用简并性引物和降落PCR技术从东亚飞蝗中克隆获得了3个东亚飞蝗羧酸酯酶(carboxylesterases,CarEs)基因的cDNA片段,分别命名为CarE1,CarE2和CarE3。根据昆虫羧酸酯酶和谷胱甘肽S-转移酶的保守区(motif),采用生物信息学方法对东亚飞蝗表达序列标签(expressing sequence tags,ESTs)数据库进行了全面搜索,并对其进行了羧酸酯酶和谷胱甘肽S-转移酶ESTs拼接、注释,获得了32条羧酸酯酶ESTs和12条谷胱甘肽S-转移酶ESTs,与克隆获得的3条羧酸酯酶基因片段同源比对和拼接后,共得到34条羧酸酯酶基因片段。采用实时定量PCR技术对上述羧酸酯酶和谷胱甘肽S-转移酶基因在黄骅种群和敏感品系中的表达量进行了比较,结果发现,羧酸酯酶基因CarE1、CarE4、CarE6、CarE12、CarE15、CarE19、CarE22、CarE23、CarE26、CarE27、CarE30和CarE32在黄骅种群中的表达量分别是敏感品系的3.29、1.13、8.78、3.16、3.17、11.84、2.24、4.92、6.24、4.66、4.47和4.73倍;谷胱甘肽S-转移酶基因GST1、GST2、GST3和GST12的表达量分别是敏感品系的1.25、1.33、2.47和1.61倍。据此认为这些羧酸酯酶基因和谷胱甘肽S-转移酶基因表达提高与东亚飞蝗的抗药性密切相关。
     对东亚飞蝗AChE基因克隆和Western blot分析结果认为直翅目昆虫AChE基因可能有其特殊性,尚有待进一步研究证实。
     本文通过东亚飞蝗不同种群对有机磷农药的敏感性分析,揭示了东亚飞蝗的田间抗性现状。通过生化和分子生物学方法分析了东亚飞蝗对有机磷的抗性机理,发现东亚飞蝗不同种群在产生抗性过程中的机制是不尽相同的,有可能包括多种不同的抗性机制。这些研究结果对于有效地进行抗性治理,延缓东亚飞蝗的抗性发展均具有重要的实践意义。
     本文首次借助现有的东亚飞蝗的ESTs数据库对抗性相关解毒酶基因进行了系统研究,用real-time PCR对代谢解毒酶羧酸酯酶基因和谷胱甘肽S-转移酶基因在抗性和敏感种群中差异表达进行了定量分析,确定了抗性形成过程中的关键代谢解毒酶基因,这将极大地推动东亚飞蝗抗性机制的系统深入研究。
     综上所述,本文研究结果对东亚飞蝗抗性机制和东亚飞蝗的抗性治理均具有重要的理论和实践意义。
Locusta migratoria manilensis(Meyen) is one of the seriously endangering agricultural pests.Organophosphate(OP)insecticides have been used extensively to control the locust.In order to delaying organophosphorus resistance and carrying out effective management strategies of different populations of L.migratoria manilensis,the objectives of this study were to evaluate the resistance spectrum of the field locust populations using the bioassay to OPs and investigate major biochemical and molecular mechanisms of resistance to OPs by the modem molecular biology technology.Elucidation of the resistance spectrum and resistance mechanisms in L.migratoria manilensis will be significantly important in theory and practice.
     1.Resistance spectrum to selected OP insecticides and synergism of TPP, PBO and DEM
     Based on the scale,distribution,history of insecticides control and population characteristics of L.migratoria manilensis,the field populations of the locust were collected from Huanghua County of Hebei Province, Huangliu County of Hainan Province and Wudi County of Shandong Province.The sensitivity analysis or resistance spectrums to the representative OP insecticides were evaluated.The results showed that, compared with the susceptible strain(SS),the population of Wudi population (WD) was the most sensitive to malathion and Huanghua population(HH) showed 2.9-fold to phoxim,5.4-fold to chlorpyrifos of resistance levels. However,HH and Huangliu population(HL) developed 57.5-fold and 14.8-fold resistant to malathion.In conclusion,As a consequence of the various malathion selective pressures,there has been developed different resistance to malathion in different locusts populations and various resistant levels in the same locust population has been developed by the different OPs. Consequently,it is significantly necessary to evaluate the resistance spectrum and detect the effective resistance management strategy of the field locust populations.
     The malathion resistance of the HH was significantly diminished by TPP (synergism ratio:16.2) and DEM(3.3),but was unchanged by PBO(0.9).In contrast,none of these synergists significantly affected the toxicity of malathion in the SS.These results suggested that both ESTs and GSTs were involved in OP resistance in the HH,whereas P450s were unlikely to be involved in the resistance simply because PBO did not synergize the toxicity of malathion by the synergism of triphenyl phosphate(TPP),diethyl meleate (DEM) and piperonyl butoxide(PBO) on malathion in the HH and SS of the locust.
     2.Biochemical mechanisms of organophosphate resistance mediated by metabolic detoxification enzymes in L.migratoria manilensis
     The metabolic detoxification enzymes(cytochrome P450 monooxygenases(P450s),general esterases(ESTs) and glutathione S-transferases(GSTs)) were biochemical characterized.The results showed that the mean of the ESTs activities in the HH was 2.1-3.2-fold significantly higher than that of the SS whenα-NA,α-NB andβ-NA were used as substrates,respectively.The GST activity was 1.2-2.0- fold significantly higher in the HH than in the LS when CDNB and DCNB were used as substrates,respectively.For P450 activity assay,there was no significant difference between the HH and SS of the locust.The non-denaturing PAGE analysis of ESTs in the HH displayed the similar bands but increased staining intensity compared with the LS.Therefore,ESTs and GSTs played major roles in conferring malathion resistance in the HH.
     Two organophosphorus inhibitors such as paraoxon and malaoxon were used to compare the sensitivity levels of carboxylesterases(CarEs) between the HL and WD.Significant differences were observed in pI_(50) values between HL and WD for all the two OP inhibitors.Specifically,CarEs from the HL were 1.16- and 1.27- fold less sensitive to inhibition by paraoxon and malaoxon,respectively,than that from the WD based on the differences in the pI_(50) values between the two populations.However,there were significant differences in CarEs specific activities between the WD and HL of the locust. CarEs specific activities in the WD were 1.75- and 1.50-fold higher than those in the HL whenα-NA andβ-NA were used as substrates,respectively. The increased CarEs specific activities in the WD appeared to be associated with a 1.8-fold decreased susceptibility to malathion.The differences of CarEs activities may attribute to the locust differentiation between HL and WD due to the different locust breeding environment.It is not known whether or not the WD can be resistant to other OPs,the WD might be resistant to other OPs due to the increased Care activity.
     3.Bichemical mechanisms of organophosphate resistance mediated by target enzyme in L.migratoria manilensis
     The biochemical characteristics of acetylcholinesterase(AChE,EC 1.1.1.7) were compared between the three populations and the susceptible strain of L. migratoria manilensis.AChE from the HH,HL and WD showed 4.04-,9.55-, and 1.99-fold significantly higher activity than that from the SS.Kinetic studies indicated that the K_m values of AChE from the three populations presented significantly difference compared with the SS.Inhibition kinetics revealed that AChE from the HH was 3.2-,2.2- and 1.1-fold less sensitive than that from the SS to malaoxon,chlorpyrfos oxon and phoxim respectively, AChE from the HL was 11.3- and 19.2-fold less sensitive to inhibition by malaoxon and chlopyrifos oxon,respectively,than that from the SS. Meanwhile,AChE from the WD was 4.8- and 2.4-fold less sensitive to inhibition by malaoxon and chlopyrifos oxon,respectively,in despite of 1.8-fold marginal resistance to malathion.
     Combined with the biochemical mechanisms of organophosphate resistance mediated by metabolic detoxification enzymes in L.migratoria manilensis,it was indicated that the malathion resistance in the HH was conferred by multiple mechanisms,including increased detoxification by ESTs and GSTs,and increased activity and reduced sensitivity of AChE to OP inhibition;the mild resistance to malathion in HL was associated with reduced sensitivity and increased catalytic activity of ACHE;the WD might be resistant to other OPs due to the decreased AChE sensitivity.Consequently, it was proposed that L.migratoria manilensis from different populations utilized different mechanisms,even including multiple mechanisms,to adapt to the OP insecticide selective pressure.
     4.Molecular mechanisms of organophosphate resistance in L.migratoria manilensis
     Three CarEs gene cDNA fragments of CarE1,CarE2 and CarE3 were cloned using the degenerate primers designed from conserved motifs in CarEs gene family and touchdown PCR program.According to the conservative regions(motifs) of CarEs and GSTs in insects,the database of expressing sequence tags(ESTs) in L.migratoria manilensis was searched, spliced,32 ESTs of CarEs and 12 ESTs of GSTs were obtained by bioinformatics methods.Total 34 CarEs gene fragments were produced by analyzing 32 ESTs of CarEs and 3 CarEs gene cDNA fragments cloned.The expression levels of these CarEs and GSTs gene were compared between the HH and SS using regular RT-PCR,then differential expression genes were further analyzed by real-time quantitative PCR.It was showed that CarE1, CarE4,CarE6,CarE12,CarE15,CarE19,CarE22,CarE23,CarE26,CarE27, CarE30 and CarE32 in the HH were expressed 3.29,1.13,8.78,3.16,3.17, 11.84,2.24,4.92,6.24,4.66,4.47 and 4.73- fold higher than that in the SS respectively;GST1,GST2,GST3 and GST12 in the HH were expressed 1.25, 1.33,2.47 and 1.61- fold higher than that in the SS respectively.These results indicated that higher expression level of CarEs and GSTs may contribute to the insecticides resistance of L.migratoria manilensis in HH.
     The gene cloning and Western blotting of acetylcholinesterase(ACHE) suggested that the AChE gene of insects from Orthoptera may be different from other insects.It will be necessary to be further confirmed.
     Elucidation of the resistance spectrum and resistance mechanisms in L. migratoria rnanilensis will help us to make knowledge-based selections of insecticides for locust control and resistance management in the field.
     In our study,we searched all of the CarEs and GSTs genes from the EST database of L.migratoria manilensis using the genome informatics(for example EST),screened out the CarEs and GSTs genes correlated with insecticide resistance and characterized these genes systematicly.
     Consequently,these findings were significant to help researchers detect and monitor insecticide resistance in L.migratoria manilensis,and to devise effective chemical control methods for this important insect pest in the field.
引文
[1].朱恩林.中国东亚飞蝗发生与治理.北京:中国农业出版社,1999.
    [2].杨红军,王东升,张立顺,谢建军.东亚飞蝗对马拉硫磷抗性研究初报.植保技术与推广,2002,22:11-12:16.
    [3].Ma EB,He YP,Zhu KY.Comparative studies of acetylcholinesterases purified from two field populations of the oriental migratory locust(Locusta migratoria manilensis):implications of insecticide resistance.Pestic.Biochem.Physiol.,2004,78:67-77.
    [4].He YP,Ma EB,Zhu KY.Characterizations of general esterases in relation to malathion susceptibility in two field populations of the oriental migratouy locust.Pestic.Biochem.Physiol.,2004,78:103-113.
    [5].陈永林.中国的飞蝗研究及其治理的主要成就.昆虫知识,2000,37:50-58.
    [6].陈永林.中国的蝗害.北京:中国林业出版社,1999.
    [7].马世骏.东亚飞蝗在中国的发生动态.昆虫学报,1958,8:1-40.
    [8].刘珍,李坚强.东亚飞蝗在新乡市出现完整第三代现象.昆虫知识,1999,36:348-349.
    [9].陈永林.蝗虫和蝗灾.生物学通报,1991,11:9-12.
    [10].马世骏.东亚飞蝗蝗区结构与转化.昆虫学报,1962,11:17-30.
    [11].尤其儆,郭孵,陈永林,张福海,尤端苏.东亚飞蝗的生活习性.昆虫学报,1958,8:119-135.
    [12].郭郛.东亚飞蝗的生殖.昆虫学报,1956,6:145-168.
    [13].Lange AB,Chan K.Dopaminergic control of forgut contractions in Locusta migratoria.J.Insect Physiol,2008,54:222-230.
    [14].Hill SR,Orchard I.Isolation and sequencing of two FMRF amide-related peptides from the gut of Locusta migratoria L.Peptides,2007,28:1490-1497.
    [15].Raubenheimer D,Bassil K.Separate effects of maeronutrient concentration and balance on plastic gut responses in locusts.J.Comp.Physiol.,2007,177:849-855.
    [16].M(o|¨)ckel D,Seyfarth EA,K(o|¨)ssl M.The generation of DPOAES in the locust ear is contingent upon the sensory neurons.J.Comp.Physiol.A.Neuroethol.Sens.Neural.Behav.Physiol.,2007,193:871-879.
    [17]. Richardson CA, Leitch B. Identification of the neurotransmitters involved in modulation of transmitter release from the central terminals of the locust wing hinge stretch receptor. J. Comp. Neurol., 2007, 502: 794-809.
    [18]. Garlick KM, Robertson RM. Cytoskeletal stability and heat shock-mediated thermoprotection of central pattern generation in Locusta migratoria. Comp. Biochem. Physiol. Part A: Molecular and Integrative Physiology, 2007, 147: 344-348.
    [19]. Stern M, Knipp S, Bicker G. Embryonic differentiation of serotonin-containing neurons in the enteric nervous system of the locust {Locusta migratoria). J. Comp. Neurol., 2007, 501: 38-51.
    [20]. Vandersmissen T, De Loof A, Gu SH. Both prothoracicotropic hormone and an autocrine factor are involved in control of prothoracic gland ecdysteroidogenesis in Locusta migratoria and Schistocerca gregaria. Peptides, 2007,28: 44-50.
    [21]. Lange AB, Da Silva B. Neural and hormonal control of muscular activity of the spermatheca in the locust, Locusta migratoria. Peptides, 2007, 28: 174-184.
    [22]. Rodgers CI, Shoemaker KL, Robertson RM. Photoperiod-induced plasticity of thermosensitivity and acquired thermotolerance in Locusta migratoria. J. Exp. Biol., 2006,209: 4690-4700.
    [23]. Auerswald L, Gade G. Endocrine control of TAG lipase in the fat body of the migratory locust, Locusta migratoria. Insect Biochem. Mol. Biol., 2006, 36: 759-768.
    [24]. Zhou S, Tejada M, Wyatt GR, Walker VK. A DNA-binding protein, tfpl, involved in juvenile hormone-regulated gene expression in Locusta migratoria. Insect Biochem. Mol. Biol., 2006, 36: 726-734.
    [25]. Lucke C, Qiao Y, van Moerkerk HT, Veerkamp JH, Hamilton JA. Fatty-acid-binding protein from the flight muscle of Locusta migratoria: evolutionary variations in fatty acid binding. Biochemistry, 2006,45: 233-238.
    [26]. Brauning P, Schmah M, Wolf H. Common and specific inhibitory motor neurons innervate the intersegmental muscles in the locust thorax. J. Exp. Biol., 2006, 209: 1827-1836.
    [27]. Mullen LM, Goldsworthy GJ. Immune responses of locusts to challenge with the pathogenic fungus Metarhizium or high doses of laminarin.J.Insect.Physiol.,2006,52:389-398.
    [28].Pascual I,Berjon A,Lostao MP,Barber A.Transport of d-galactose by the gastrointestinal tract of the locust,Locusta migratoria.Comp.Biochem.Physiol.A.Mol.Integr.Physiol.,2006,143:20-26.
    [29].Agricola HJ,Clark L,Lange AB.Proctolin-like immunoreactivity in the central and peripheral nervous system of the locust,Locusta migratoria.Peptides,2006,27:549-558.
    [30].Paluzzi JP,Molaei G,Bendena WG,Lange AB.Isolation,cloning,and tissue expression of a putative octopamine/tyramine recptor from locust visceral muscle tissues.Arch.Insect.Biochem.Physiol.,2005,59:132-149.
    [31].Hill SR,Orchard I.In vitro analysis of the digestive enzymes amylase and alpha-glucosidase in the midgets of Locusta migratoria L.in response to the myosuppressin,SchistoFLRF amide.J.Insect.Physiol.,2005,51:1-9.
    [32].郭郛,陈永林,卢宝廉.中国飞蝗生物学.济南:山东科学技术出版社,1991.
    [33].王杰臣,倪绍祥.国内外蝗虫研究发展动向初探.干旱区研究,2001,18:36-41.
    [34].陈永林.蝗虫灾害的特点、成因和生态学治理.生物学通报,2000b,35:1-5.
    [35].陈永林.中国主要蝗虫及蝗灾的生态学治理.北京:科学出版社,2007.
    [36].张龙,严毓骅.持续治理飞蝗灾害的新对策.昆虫学报,2000,43:180-185.
    [37].Yu Y,Cui X,Jiang Q,Jin X,Guo Z,Zhao X,Bi Y,Zhang L.New isoforms of odorant-binding proteins and potential semiochemicals of locusts.Arch.Insect.Biochem.Physiol,2007,65:39-49.
    [38].Kang L,Chen XY,Zhou Y,Liu BW,Zheng W,Li RQ,Wang J,Yu J.The analysis of large-scale gene expression correlated to the phase changes of the migratory locust.PNAS,2004,17611-17615.
    [39].张德兴,闫路娜,康乐,吉亚杰.对中国飞蝗种下阶元划分和历史演化过程的几点看法.动物学报,2003,49:675-681.
    [40].Wei Z,Yin YP,Zhang B,Wang ZK,Peng GX,Cao YQ,Xia Y.Cloning of a novel protease required for the molting of Locusta migratoria manilensis.Dev.Growth.Differ.,2007,49:611-621.
    [41].Zhao H,Wang ZK,Yin YP,Li YL,Li ZL,Peng GX,Xia YX.Trehalose and trehalose-hydrolyzing enzyme in the haemolymph of Locusta migratoria infected with Metarhizium anisopliae strain CQMa102.Insect Sci.,2007,14:277-282.
    [42].张民照,康乐.飞蝗总DNA的抽提及其RAPD分析条件的摸索.动物学研究,2001,22:20-26.
    [43].李春选,马恩波.飞蝗研究进展.昆虫知识,2003a,40:23-30.
    [44].李春选,段毅豪,郑先云,马恩波.山西省8种蝗虫8个种群的遗传学研究.遗传学报,2003b,30:119-127.
    [45].李春选,马恩波,郑先云.中国4种蝗虫不同种群的遗传分化研究.遗传学报,2003c,30:234-244.
    [46].李春选,马恩波,郭亚平.中国东亚飞蝗两个种群遗传分化的研究.遗传学报,2003d,30:1027-1033.
    [47].李春选,马恩波,郑先云,郭亚平.中国4个东亚飞蝗自然种群的遗传结构.昆虫学报,2004a,47:73-79.
    [48].李春选,马恩波,郭亚平,段毅豪.宽翅曲背蝗两个地理种群等位酶的比较.遗传学报,2004b,31:26-30.
    [49].郑先云,段毅豪,李春选,马恩波.华北二蝗区东亚飞蝗种群遗传结构比较研究.遗传学报,2002,29:966-971.
    [50].张友军,谢丙炎.蔬菜病虫害的综合防治.中国蔬菜,1998,2,56-58.
    [51].邱立红,张文吉.害虫及螨对阿维菌素的抗药性发展及治理策略探讨.中国农业大学学报,1999,4:43-48.
    [52].唐振华,庄佩君.多杀菌素A/D及甜菜夜蛾对该药剂的抗药性.世界农药,2001,23:38-40.
    [53].Mohan M,Gujar GT.Local variation in susceptibility of the diamondback moth,Plutella xylostella(Linnaeus) to insecticides and role of detoxification enzymes.Crop Prot.,2003,22:495-504.
    [54].唐振华.昆虫抗药性及其治理.北京:农业出版社,1993.
    [55].Brown AWA.In:Proceedings of the XVth international congress of entomology.Washington DC,1976,816-824.
    [56].张国洲.害虫抗药性及其治理.安徽农业科学,2002,30:512-514.
    [57].Georghiu GP,Jaylor CE.Factors influencing the evolution of resistance in pesticide resistance:strategies and tactics for management.Washington DC: National Academy Press,1986.
    [58].刘维德,刘金发.1960-1963年我国某些地区致乏库蚊幼虫对DDT及666发生抗药性及衰退观察.昆虫学报,1964,13:844-850.
    [59].俞渊,徐树人,陆秀琴.昆虫学报,1963,12:163-166.
    [60].唐振华.我国昆虫抗药性研究的现状及展望.昆虫知识,2000,37:97-104.
    [61].袁地顺.茶树害虫抗药性形成机理与对策.福建茶叶,1994,1:18-20.
    [62].叶炳辉,朱昌亮.昆虫抗药性的形成机理及其治理.中华卫生杀虫药械,2001,7:10-12.
    [63].叶炳辉,朱昌亮.昆虫抗药性的形成及机理.江苏卫生保健,2001,3:5-6.
    [64].谭祥国,丁伟,刘怀.昆虫抗药性的演化机制及其治理.植物医生,2000,13:7-9
    [65].Brent KJ.Detection and monitoring of resistant forms:an overview,In National Academy of Science(ed.),Pesticide resistance:strategies and tactics for management.Washington DC:Natipnal Acedemy Press,1986.
    [66].劳什,塔巴什尼克,芮昌辉,赵勇,孟香清等.害虫的抗药性.北京:化学工业出版社,1995.
    [67].Staetz CA.Susceptibility of Heliothis virescens(F.)(Lepidoptera:Noctuidae) to permethrm from across the cotton belt:a five year study.J.Econ.Entomol.,1985,78 505-510.
    [68].唐振华,黎云根.敌百虫和马拉硫磷混用及交替使用对淡色库蚊抗性发展影响的研究.昆虫学研究集刊,1982,83:55-66.
    [69].Brown TM,Brodgon WG.Improved detection of insecticide resistance through conventional and molecular techniques.Annu.Rev.Entomol.,1987,32:145-162.
    [70].Sawicki RM,Devonshire AL,Payne RW,Petzing SM.Stability of insecticide resistance in the peach-potato aphid Myzus persicae(Sulzer).Pestic.Sci.,1980,11:33-42.
    [71].Pasteur N,Georghiou GP.Filter paper test for rapid determination of phenotypes with high esterase activity in organophosphate resistant mosquitoes.Mosq.News,1981,41:181-183.
    [72].Brogdon WG,Dickinson CM.A microassay system for measuring esterase activity and protein concentration in small samples and high pressure liquid chromatography elute fractions.Anal.Biochem.,1983,131:499-503.
    [73].Devonshire AL,Moores GD.Characterization of insecticide-insensitive acetylcholinesterase:microcomputer-based analysis of enzyme inhibition in homogenates of individual house fly(Musca domestica) heads.Pestic.Biochem.Physiol.,1984,21:341-348.
    [74].Moores GD,Devonshire AL,Denholm I.A microtitre plate assay for characterizing insensitive acetylcholinesterase genotypes of insecticide resistant insects.Bull.Entomol.Res.,1988,78:537-544.
    [75].Devonshire AL,Moores GD.Detection of insecticide resistance of immunological estimation of carboxylesterase activity in Myzus persicae(Sulzer) and cross reaction of the antiserum with Phorodon humuli(Schrank)(Hemiptera:Aphididea)ffrench-Constant RH.Bull.Entomol.Res.,1986,76:97-107.
    [76].Ahmad M,Richard TG,Alan RM.Decreased nerve sensitivity is a mechanism of resistance in a pyrethroid resistance strain of Heliothis armigera from Thailand.Pestic.Biochem.Physiol.,1989,35:165-171.
    [77].赵勇,刘安西,茹李军.神经敏感性的降低是棉铃虫对拟除虫菊酯抗药性的重要机制.昆虫学报,1996,39:393-398.
    [78].张友军,韩熹莱,张文吉,罗林儿,周培爱.棉铃虫对菊酯杀虫剂抗药性的神经电生理研究.昆虫学报,1997,40:113-121.
    [79].MoCaffery AR,Holloway JW,Gladewell R.Nerve insensitivity resistance to cypermethrin in larvae of the tobacoo budworm Heliothis verescens from USA cotton field populations.Pestic.Sci.,1995,44:237-247.
    [80].贺秉军,刘东波,王勇,李杰,鱼智飞,芮昌辉,刘安西.Na~+通道电生理特性的比较研究.南开大学学报(自然科学版),2004,37:111-114.
    [81].Dickson RC.Inheritance of resistance to hydrocyanic acid fumigation in the California red scale.Hilgardia,1941,13:515-522.
    [82].Ffrench-Constant R.H,Steichen JC,Rocheleau TA,Aronstein K,Roush RT.A single-amino acid substitution in a gamma-aminobutyric acid subtype a receptor locus is associated with cyclodiene insecticide resistance in Drosophila populations.Proc.Natl.Acad.Sci.USA.,1993,90:1957-1961.
    [83].Ffrench-Constant RH.Molecular action of insecticides on ion channel.San Diego, Abstr.Pap.Am.Chem.Soc,1995,192-204.
    [84].Borsa P,Coustau C.Single-stranded DNA conformation polymorphism at the Rdl locus in Hypothenemus hampei(Coleoptera:Scolytidae).Heredity,1996,76:124-129.
    [85].Zhu KY,Lee SH,Clark JM.A point mutation of acetylcholinesterase associated with azinphosmethyl resistance and reduced fitness in Colorado potato beetle.Pestic.Biochem.Physiol.,1996,55:100-108.
    [86].Gao J-R,Zhu KY.Comparative toxicity of selected organophosphate insecticides against resistant and susceptible clones of the greenbug,Schizaphis graminum (Homoptera:aphididae).Food Sci.Agric.Chem.,2000,48:4717-4722.
    [87].Zhu YC,Dowdy AK,Baker JE.Differential mRNA expression levels and gene sequences of a putative carboxylesterase-like enzyme from two strains of the para-sitoid Anisopteromalus calandrae(Hymenoptera:Pteromalidae).Insect Biochem.Mol.Biol.,1999,29:417-425.
    [88].Clark JM,Lee SH,Kim HJ,Yoon KS,Zhang A,Dunn JB,Marshall JC.DNA-based genotyping techniques for the detection of point mutations associated with insecticide resistance in Colorado potato beetle Leptinotarsa decemlineata.Pest.Manag.Sci.,2001,57:968-974.
    [89].Gerold JL,Laarman JJ.Selection of some strains of Anopheles atroparvus with different behavioural responses to contacts with DDT.Nature,1964,204:500-501.
    [90].Sparks JC,Lockwood JA,Byford RL,Graves JB,Leonard BR.The role of behavior in insecticide resistance.Pestic.Sci.,1989,26:383-399.
    [91].冯国蕾.害虫抗药性的生化机理.生物学通报,1995,30:6-9.
    [92].Gunning RV,Devonshire AL,Moores GD.Metabolism of fenvalerate in pyrethroid -susceptible and -resistant in Australian Helicoverpa armigera (Lepidoptera:Noctuidae).Pestic.Biochem.Physiol.,1995,51:205-213.
    [93].Gunning RV,Easton CS,Balfe ME.Pyrethroid resistance mechanism in Australian Helicoverpa armigera.Pestic.Sci.,1991,33:473-490.
    [94].吴益东,沈晋良,谭福杰,尤子平.棉铃虫对氰戊菊酯抗性机理研究.南京农业大学学报,1995,18:63-68.
    [95].唐振华.昆虫抗药性.北京:中国农业出版社,1993.
    [96]. Yu SJ, Nguren SN. Insecticide Susceptibility and Detoxication Enzyme Activities in Permethrin-Selected Diamondback Moths. Pestic. Biochem. Physiol., 1996, 56: 69-77.
    [97]. Abernathy CO, Casida JE. Pyrethroid Insecticides: Esterase Cleavage in Relation to Selective Toxicity Science, 1973, 179: 1235-1236.
    [98]. Gupta RC, Dettbarn WD. Role of carboxylesterases in the prevention and potentiation of N-methylcarbamate toxicity. Chem. Biol. Interact., 1993, 87: 295-303.
    [99]. Smith TJ, Lee SH, Ingles PJ, Knipple DC, Soderlund DM. The L1014F point mutation in the house fly Vsscl sodium channel confers knockdown resistance to pyrethroids. Insect Biochem. Mol. Biol., 1997,27: 807-812.
    [100]. Martinez-Torres D, Chandre F, Williamson MS, Darrier F, Berge JB, Devonshire AL, Guillet P, Pasteur N, Pauron D. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae. Insect Mol. Biol., 1998,7: 179-184.
    [101]. Hemingway J, Hawkes N, Prapanthadara L, Jayawardenal KG, Ranson H. The role of gene splicing, gene amplification and regulation in mosquito insecticide resistance. Philos. Trans. R. Soc. Lond., B, Biol. Sci., 1998,353: 1695-1699.
    [102]. Matsumura F, Brown AWA. Biochemistry of malathion rsistance in Culex tarsalis. J. Econ. Entomol., 1961, 54: 1176-1185.
    [103]. Menzel DB, Craig R, Hoskins WM. Electrophoretic properties of esterases from susceptible and resistant strains of the housefly, Musca domestica L. J. Insect Physiol., 1963,9:479-493.
    [104]. Zhu KY, Gao JR. Kinetic properties and variability of esterases in organophosphate-susceptible and -resistant greenbugs, Schizaphis graminum (Homoptera: Aphididae). Pestic. Biochem. Physiol., 1998, 62: 135-145.
    [105]. Rufingier C, Pasteur N, Lagnel J, Martin C, Navajas M. Mechanisms of insecticide resistance in the aphid Nasonovia ribisnigri (Mosley) (Homoptera: Aphididae) from France. Insect Biochem Mol Biol, 1999, 29: 385-391.
    [106]. Devonshire AL, Sawicki RM. Insecticide-resistant Myzus persicae as an example of evolution by gene duplication. Nature, 1979, 280: 140-14.
    [107]. Field LM, Devonshire AL, Forde BG. Molecular evidence that insecticide resistance in peach-potato aphids (Myxus persicae Sulz.) results from amplification of an esterase gene. Biochem.J., 1988, 251: 309-312.
    [108]. Field LM, Devonshire AL. Evidence that the E4 and FE4 esterase genes responsible for insecticide resistance in the aphid Myzus persicae (Sulzer.) are a part of a gene family. Biochem., 1998, 330: 169-173.
    [109]. Field LM, SP Foster. Relationship between amount of esterase and gene copy number in insecticide-resistant Myzus persicae (Sulzer). Biochem. J., 1999, 339: 737-742.
    [110]. M Raymond - Philosophical Transactions. An overview of the evolution of overproduced esterases in the mosquito Culex pipiens. R. Soc. Lond. B Biol. Sci., 1998,353:1707-1711.
    [111]. Karunaratne SHPP, Jayawardena KG, Hemingway J, Ketterman AJ. Characterisation of a B-type esterase involved in insecticide resistance from the mosquito Culex quinquefascians. Biochem., 1993, 294: 575-579.
    [112]. Raymond M, Beysaat-Arnaouty V, Mouches C, Georghiou GP, Pasteur N. Diversity of the amplification of various esterases B responsible for organophosphate resistance in Culex mosquitoes. Biochem. Genet, 1989,27: 417-423.
    [113]. Guillemaud T, Rooker S, Berge J, Pasteur N, Raymond M. Coamplification of A and B esterase genes as a single unit in Culex pipiens mosquitoes. Heredity, 1996, 77:555-561.
    [114]. Karunaratne SH. Paton MG, Giakoumaki E, Roberts N, Hemingway J. Quantiative analysis of gene amplification in insecticide resistant Culex mosquitoes. Biochem. J., 2000, 346: 17-24.
    [115]. Small GJ, Hemingway J. Differential glycosylation produces heterogeneity in elevated esterase associated with insecticide resistance in the brown planthopper Nilaparvato lugens. Insect Biochem. Mol. Biol., 2000a, 30: 443-453.
    [116]. Small GJ, Hemingway J. Molecular characterization of the amplified carboxylesterase gene associated with organophosphorus insecticide resistance in the brown planthopper, Nilaparvato lugens. Insect. Mol. Biol., 2000b, 9: 647-653.
    [117]. Oppenoorth FJ, Van Asperen K. Allelic genes in the housefly prodcing modified enzymes that cause organophosphate resistance. Science, 1960,132: 298-299.
    [118]. Newcomb RD, Campbell PM. A single amino acid substitution converts a carboxylesterase to an organophosphate hydrolase and confers insecticide resistance on a blowfly. Proc. Natl. Acad. Sci. USA, 1997b, 94: 7464-7468.
    [119]. Newcomb RD, Campbell PM. cDNA cloning baculovirus-expression and kinetic properties of the esterase , E3, involved in organophosphorus resistance in Lucilia cuprina. Insect Biochem. Mol. Biol., 1997a, 27: 15-25.
    [120]. Zhu YC, Dowdy AK, Baker JE. Differential mRNA expression levels and gene sequences of a putative carboxylesterase-like enzyme from two strains of the para-sitoid Anisopteromalus calandrae (Hymenoptera:Pteromalidae). Insect Biochem. Mol. Biol., 1999, 29: 417-425.
    [121]. Campbell PM, Newcomb RD, Russell RJ, Oakeshott JG. Two different amino acid substitutions in the ali-esterase, E3, confer alternative types of organophosphorus insecticide resistance.in the sheep blowfly, Lucilia cuprina Insect Biochem. Mol. Biol., 1998,28: 139-150.
    [122]. Devonshire AL, Heidari R, Bell KL, Campbell PM, Campbell BE, Odgers WA, Oakeshott JG, Russell RJ. Kinetic efficiency of mutant carboxylesterases implicated in organophosphate insecticide resistance. Pestic. Biochem. Physiol., 2003, 76: 1-13.
    [123]. Guerrero FD. Cloning of a horn fly cDNA, HliaE7, encoding an esterase whose transcriptconcentration is elevated in diazinon-resistant flies. Insect Biochem.Mol.Biol., 2000, 30: 1107-1115.
    [124]. Zhu YC, Snodgrass GL, Chen MS. Enhanced esterase gene expression and activity in a malathion-resistant strain of the tarnished plant bug, Lygus lineolaris. Insect Biochem. Mol. Biol, 2004, 34: 1175-1186.
    [125]. Hernandez R, Guerrero FD, George JE, Wagner GG. Allele frequency and gene expression of a putative carboxylesterase-encoding gene in a pyrethroid resistant strain of the tick Boophilus microplus. Insect Biochem. Mol. Biol, 2002, 32: 1009-1016.
    [126]. Mannervik B. The isoenzymes of glutathione transferase. Adv. Enzymol, 1985, 57: 357-417.
    [127].Chasseaud LF.The nature and distribution of enzymes catalyzing the conjugation of glutathione with foreign compounds.Drug Metab.Rev.,1973,2:185-220.
    [128].吕敏,刘惠霞,吴文君.谷胱甘肽 S-转移酶与昆虫抗药性的关系.昆虫知识,2003,40:204-208.
    [129].张常忠,高希武,郑炳宗.棉铃虫谷胱甘肽 S-转移酶的活性分布和发育期变化及植物次生物质的诱导作用.农药学学报,2001,3:30-35
    [130].Toung YP,Hsieh TS,Tu CP.Drosophila glutathione S-transferase 1-1 shares a region of sequence homology with the maize glutathione S-transferase Ⅲ.Proc.Natl.Acid.Sci.USA.,1990,87:31-35.
    [131].Clark AG,Dick GL,Martindale SM,Smith JN.Martindale SM,Smith JN.Glutathione S-transferases from the New Zealand grass grub,Costelytra zealandica.Their isolation and characterization and the effect on their activity of endogenous factors.Insect Biochem.,1985,15:35-44.
    [132].Motoyama N,Dauterman WC,Plapp FW.Genetic studies on glutathione-dependent reactions in resistant strains of the house fly,Musca domestica L.Pestic.Biochem.Physiol.,1977,7:443-450.
    [133].Wei SH,Clark AG,Syvanen M.Identification and cloning of a key insecticide-metabolizing glutathione S-transferase(MdGST-6A) from a hyper insecticide-resistant strain of the housefly Musca domestica.Insect Biochem.Mol.Biol.,2001,31:1145-1153.
    [134].Chien C,Motoyama N,Dauterman WC.Separation of multiple forms of acidic glutathione S-transferase isozymes in a susceptible and a resistant strain of house fly,Musca domestica(L.).Arch.Insect Biochem.Physiol.,1995,28:397-406.
    [135].Clark AG,Dauterman WC.The characterization by affinity chromatography of glutathione S-transferases from different strains of house fly.Pestic.Biochem.Physiol.,1982,17:307-314.
    [136].唐振华,毕强.杀虫剂作用的分子行为.上海:上海远东出版社,2003.
    [137].吴刚,尤民生,赵士熙.抗性和敏感小菜蛾谷胱甘肽 S-转移酶和谷胱甘肽的比较.福建农业大学学报,2000,29:478-481.
    [138].郭丽,沈孝兵.DDVP对德国小蠊乙酰胆碱酯酶和谷胱甘肽 S-转移酶活性的影响.医学动物防治,2004,20:600-602.
    [139]. Wang JY, McCommas S, Syvanen M. Molecular cloning of a glutathione S-transferase overproduced in an insecticide-resistant strain of the housefly (Musca domestica). Mol. Gen. Genet., 1991, 227: 260-266.
    [140]. Shoji S, Hisaaki T. Studies on glutathione S-transferase gene involved in chlorfluazuron resistnace of the diamondback moth, Plutella xylostella L. (Lepidoptera: Yponomeutidae). Pestic. Biochem. Physiol., 2005, 82: 94-101.
    [141]. Zhu YC, Snodgrass GL, Chen MS. Comparative study on glutathione S-transferase activity, cDNA, and gene expression between malathion susceptible and resistant strains of the tarnished plant bug, Lygus lineolars. Pestic. Biochem. Physiol., 2007, 87: 62-72.
    [142]. Ray JW. Indysctuib if nucrisinak ixudase by hlst plants in the fall armyworm. Biochem. Pharmacol., 1967,16: 99-107.
    [143]. Feyereisen R, Fkoener J, Farnsauth DE. Cytochrome P450. Heiddelberg: Springer-Verlag Press, 1993.
    [144]. Feyereisen R, Koener JF, Farnsworth DE. Isolation and sequence of cDNA encoding a cytochrome P450 from an insecticide-Resistant strain of the house fly, M. domestica. Proc. Natl. Acad. Sci. USA, 1989, 86: 1465-1469.
    [145]. Scott JG, Liu N, Wen Z. Insect cytochromes P450: diversity, insecticide resistance and tolerance to plant toxins. Comp. Biochem. Physiol., 1998,121C: 147-155.
    [146]. Scott JG, Wen Z. Cytochromes P450 of insects: the tip of the iceberg. Pest Manag. Sci., 2001, 57: 958-967.
    [147]. Schuntner CA, Roulston WJ. A resistance mechanism in organophosphorus resistant strains of sheep blowfly (Lucilia cuprina). Aust. J. Biol. Sci., 1968, 21: 173-176.
    [148]. Weill M, Fort P, Berthomieu A, Dubois MP, Pasteur N, Raymond M. A novel acetylcholinesterase gene in mosquitoes codes for the insecticide target and is non-homologous to the ace gene in Drosophila. Proc. R. Soc. Lond. B Biol. Sci., 2003a, 269: 2007-2016.
    [149]. Weill M, Lutfalla G, Mogensen K, Chandre F, Berthomieu A, Berticat C, Pasteur N, Philips A, Fort P, Raymond M. Insecticide resistance in mosquito vectors. Nature, 2003b, 423:136-137.
    [150]. Weill M, Malcolm C, Chandre F, Mogensen K, Berthomien A, Marquine M, Raymond M. The unique mutation in ace-1 giving high insecticide resistance is easily detected in mosquito vectors. Insect Mol. Biol., 2004, 13: 1-7.
    
    [151]. Nabeshima T, Mori A, Kozaki T, Iwata Y, Hidoh 0, Harada S, Kasai S, Severson DW, Kono Y, Tomita T. An amino acid substitution attributable to insecticide -insensitivity of acetylcholinesterase in a Japanese encephalitis vector mosquito, Culex tritaeniorhynchus. Biochem. Biophys. Res. Commun., 2004, 313: 794-801.
    
    [152]. Nabeshima T, Kozaki T, Tomita T, Kono Y. An amino acid substitution on the second acetylcholinesterase in the pirimicarb-resistant strains of the peach potato aphid, Myzus persicae. Biochem. Biophys. Res. Commun., 2003, 307: 15-22.
    
    [153]. Andrews MC, Callaghaghant A, Field LM, Williamson MS, Moores GD Identification of mutations conferring insecticide-insensitive AChE in the cotton-melon aphid, Aphis gossypii Glover. Insect Mol. Biol., 2004,13: 555-561.
    
    [154]. Toda S, Komazaki S, Tomita R, Kono Y. Two amino acid substitutions in acetylcholinesterase associated with pirimicarb and organophosphorous insecticide resistance in the cotton aphid, Aphis gossypii Glover (Homoptera: Aphididae). Insect Mol. Biol, 2004, 13: 549-553.
    
    [155]. Nabeshima T, Kozaki T, Tomita T, Kono Y An amino acid substitution on the second acetylcholinesterase in the pirimicarb-resistant strains of the peach potato aphid, Myzus persicae. Biochem .Biophys. Res. Commun., 2003, 307: 15-22.
    
    [156]. Anazawa Y, Tomita T, Aiki T, Kozaki,T. Kono Y. Sequence of a cDNA encoding acetylcholinesterase from susceptible and resistant two-spotted spider mite, Tetranychus urticae. Insect Biochem. Mol. Biol., 2003, 33: 509-514.
    
    [157]. Fournier D, Karch F, Bride J.M., Hall L.M., Berge J.B., Spierer P. Drosophila melanogaster acetylcholinesterase gene: structure, evolution, and mutations. J. Mol. Biol., 1989, 210: 15-22.
    
    [158]. Walsh SB, Dolden TA, Moores GD, Kristensen M, Lewis T, Devonshire AL, Williamson MS. Identification and characterization of mutation in the housefly (Musca domestica) acetylcholinesterase involved in insecticide resistance. Biochem., 2001, 359: 175-181.
    
    [159]. Toshinori Kozaki, Toshio Shono, Takashi Tomita, Yoshiaki Kono. Fenitroxon insensitivite acetylcholinesterases of the housefly, Musca domestica associated with point mutations. Insect Biochem. Mol. Biol, 2001, 31: 991-997.
    [160]. Chen ZZ, Newcomb R, Forbes E, McKenzie J, Batterham P. The acetylcholinesterase gene and organophosphorus resistance in the Australian sheep blowfly, Lucilia cuprina. Insect Biochem. Mol. Biol., 2001, 31: 805-816.
    [161]. Vontas JG, Hejazi MJ, Hawkes NJ, Cosmidis N, Loukas M, Hemingway J. Resistance-associated point mutations of organophosphate insensitive acetylcholinesterase, in the olive fruit fly Bactrocera oleae. Insect Mol. Biol., 2002, 11:329-336.
    [162]. Holt RA, Subramanian GH, Holpern A, Sutton GG, Charlab R, Nusskem DR. The genome sequence of the malaria mosquito Anopheles gambiae. Science, 2003, 298: 129-149.
    [163]. Weill M, Fort P, Berthomieu A, Dubois MP, Pasteur N, Raymond M. A novel acetylcholinesterase gene in mosquitoes codes for the insecticide target and is non-homologous to the ace gene in Drosphila. Proc. R. Soc. Lond. B., 2002, 269: 2007-2016.
    [164]. Baster GD, Barker SC. Analysis of the sequence and expression of a second putative acetylcholinesterase cDNA from organophosphate resistant cattle ticks. Insect Biochem. Mol. Biol., 2002, 32: 815-820.
    [165]. Gao JR, Kambhampati S, Zhu KY. Molecular cloning and characterization of a greenbug (Schizaphis graminum) cDNA encoding acetylcholinesterase possibly evolved from a duplicate gene lineage. Insect Biochem. Mol. Biol., 2002, 32: 765-775.
    [166]. Hall LM, Malcolm CA. The acetylcholinesterase gene of Anopheles stephensi. , Cell. Mol. Neurobiol., 1991,11: 131-141.
    [167]. Tomita T, Hidoh O, Kono Y. Absence of protein polymorphism attributable toinsecticide-insensitivity of acetylcholinesterase in the green rice leafhopper, Nephotettix cincticeps. Insect Biochem. Mol. Biol., 2000, 30: 325-333.
    [168]. Javed N, Viner R, Williamson MS, Field LM, Devonshire AL, Moores GD, Characterization of acetylcholinesterases, and their genes, from the hemipteran species Myzus persicae (Sulzer), Aphis gossypii (Glover), Bemisia tabaci (Hennadius),and Trialeurodes vaporariorum(Westwood).Insect Mol.Biol.,2003,12:613-620.
    [169].Fournier D,Bride JM,Hoffman,Karch F.Acetylcholinesterase:two types of modifications confer resistance to insecticide.J.Biol.Chem.,1992,267:14270-14274.
    [170].El-Abidin Salam AZ,Pinsker W.Effects of selection for resistance to organophosphorus insecticides on two esterase loci in Drosophila melanogaster.Genetica,1981,55:11-14.
    [171].Hoffmann F,Fournier D,Spierer P.Minigene rescues acetylcholinesterase lethal mutations in Drosophila melanogaster.J.Mol.Biol.,1992,223:17-22.
    [172].Molberg WK.Understanding and combating agrochemical resistance.Washington:American Chemical Society,1990.
    [173].张友军,张文吉.击倒抗性(Kdr)的分子机理.昆虫知识,1996,33:1-4.
    [174].唐振华,李卫明.昆虫抗药性演化的分子生物学.北京:中国农业出版社,1996.
    [175].Soderlund DM,Knipple D.The molecular biology of knockdown resistance to pyrethroid insecticides.Insect Biochem.Mol.Biol.,2003,33:563-577.
    [176].Busvine JR.Mechanism of resistance to insecticides in house flies.Nature,1951,168:193-195.
    [177].Milani R.Comportamento mendeliano della resistenza alla azione abbattante del DDT:correlazione tran abbattimento e mortalia in Musca domestica L.Riv.Parasitol.,1954,15:513-542.
    [178].Pepper DR,Osborne MP.Electrophysiological identification of site insensitive mechanisms in knockdown resistant strains(kdr,super kdr) of the housefly larva (Musca domestica).Pestic.Sci.,1993,39:279-286.
    [179].Bloomquist JR,Miller TA.A simple bioassay for detecting and characterizing insecticide resistance.Pestic.Sci.,1985,16:611-614.
    [180].唐振华,袁建忠,庄佩君,陶黎明.昆虫击倒抗性基因突变对钠通道功能的影响.昆虫学报,2005,48:119-124.
    [181].Chiang C,Devonshire AL.Changes in membrane phospholipids,identified by Arrhenius plots of acetylcholinesterase and associated with pyrothroid resistance (kdr) in house flies (Musca domestica). Pestic. Sci., 1982, 13: 156-160.
    [182]. Kasbekar DP, Hall LM. A Drosophila mutation that reduces sodium channel number confers resistance to pyrethroid insecticides. Pestic. Biochem. Physiol., 1988, 32: 135-145.
    [183]. Bloompuist JR, Soderlund DM, Knipple DC. Knockdown resistance to dichlorodiphenyltrichloroethane and pyrethroid insecticides in the napts mutant of Drosophila melanogaster is correlated with reduced neuronal sensitivity. Arch. Insect Biochem. Physiol., 1989,10: 293-302.
    [184]. Rossignol DP. Reduction in the number of nerve membrane sodium channels in pyrethroid resistant houseflies. Pestic. Biochem. Physiol., 1988, 32: 146-152. .
    [185]. Grubs RE, Adarns PM, Soderlund DM. Binding of [3H] saxitoxin to head membrane preparations from susceptible and knockdown-resistant houseflies. Pestic. Biochem. Physiol., 1988, 22: 217-223.
    [186]. Pauron D, Barhanin J, Amichot M, Pralavorio M, Berge JB, Lazdunski M. Pyrethroid receptor in the insect Na~+ channel: alteration of site properties in pyrethroid-resistant flies. Biochem., 1989,28: 1673-1677.
    [187]. Dong K, Scott JG Neuropharmacology and genetics of the kdr-type resistance in the German cockroach, Blatella germanica (L.). Pestic. Biochem. Physiol., 1991, 41: 159-169.
    [188]. Church CJ, Knowles CO. Saxitoxin binding to neural membranes from pyrethroid susceptible and resistant and tobacco budworm moths Heliothos virescens. Comp. Biochem. Physiol., 1992, 103C: 95-498.
    [189]. Salgado VL, Irving SV, Miller TA. Depolarization of motor nerve terminals by pyrethroids in susceptible and kdr-resistant houseflies. Pestic. Biochem. Physiol., 1983,20:100-114.
    [190]. Salgado VL, Irving SV, Miller TA. The importance of nerve terminal depolarization in pyrethroid poisoning of insects. Pestic. Biochem. Physiol., 1983, 20: 169-182.
    [191]. Williamson MS, Martinez-Torres D, Hick CA, Devonshire AL. Identification of mutations in the housefly para-type sodium channel gene associated with knockdown resistance (kdr) to pyrethroid insecticides. Mol. Gen. Genet., 1996, 252: 51-60.
    [192]. Guerrero FD, Jarnroz RC, Kammlah D, Kunz SE. Toxicological and molecular characterization of pyrethroid-resistant horn flies, Haematobia irritans: identification of kdr and super-kdr point mutations. Insect Biochem. Mol. Biol., 1997,27:745-755.
    [193]. Miyazaki M, Ohyama K, Dunlap DY, Mataumura F. Cloning and sequencing of the para-type sodium channel gene from susceptible and kdr-resistant German cockroaches (Blattella germanica) and house fly (Musca domestica). Mol. Gen. Genet., 1996,252:61-68.
    [194]. Dong K. A single amino acid change in the para sodium protein is associated with knockdown-resistance (kdr) to pyrethroid insecticides in the German cockroach. Insect Biochem. Mol. Biol., 1997, 27: 93-100.
    [195]. Schuler TH, Martinez-Torres D, Thompson AJ, Denholm I, Devonshire AL, Duce IR, Williamson MS. Toxicological, electrophysiological, and molecular characterization of knockdown resistance to pyrethroid insecticides in the diamondback moth, Plutella xylostella (L.) Pestic. Biochem. Physiol., 1998, 59: 169-182.
    [196]. Lee SH, Dunn JB, Clark JM, Soderlund DM. Molecular analysis of kdr-like resistance in a permethrin-resistant strain of Colorado bettle. Pestic. Biochem. Physiol., 1999, 63: 63-75.
    [197]. Martinez-Torres D, Devonshire AL, Williamson MS. Molecular studies of knockdown resistance to pyrethroid: cloning of domain II sodium channel gene sequences from insects. Pestic. Sci., 1997, 51: 265-270.
    [198]. Park Y, Taylor MFJ. A novel mutation L1029H in sodium channel gene hscp associated with pyrethroid resistance for Heliothis virescens (Lepidoptera: Noctuidae). Insect Biochem. Mol. Biol., 1997,27: 9-13.
    [199]. Moorman JR, Kirsch GE, Brown AM, Joho RH. Changes in sodium channel gating produced by point mutation in a cytoplasmic linker. Sci., 1990, 250: 688-691.
    [200]. Head DJ, McCaffery AR, Callaghan A. Novel mutations in the para-homologous sodium channel gene associated with phenotypic expression of nerve insensitivity resistance to pyrethroids in Heliothine lepidoptera. Insect Mol. Biol., 1998, 7: 191-196.
    [201].Georghiou GP.Pest Resistance to Pesticides.New York:Plenum Press,1983.
    [202].茹李军,芮昌辉,范贤林,赵建周,魏岑.菜缢管蚜、棉铃虫对杀虫混剂及其单剂的抗性遗传力分析.昆虫学报,1998,41:243-249.
    [203].吴益东,沈晋良,谭福杰.棉铃虫对氰戊菊酯抗性品系和敏感品系的相对适合度.昆虫学报,1996,39:233-237.
    [204].马世骏,丁岩钦.东亚飞蝗种群数量中的调节机制.动物学报,1965,14:261-277.
    [205].丁岩钦.中国东亚飞蝗新蝗区-海南热带稀树草原蝗区的研究.生态学报,1995,15:12-21.
    [206].郭郛,陈永林,卢宝廉.中国飞蝗生物学.济南:山东科学技术出版社,1991.
    [207].王正军,秦启联,郝树广,陈永林,李鸿昌,李典谟.我国蝗虫暴发成灾的现状及其持续控制对策.昆虫知识,2002,39:172-175.
    [208].王丽英,严毓骅,董雁军.蝗虫微孢子虫对东亚飞蝗及蒙、新草原蝗虫的感染试验.北京农业大学学报,1987,13:495-462.
    [209].王丽英,严毓骅,管致和.蝗虫微孢子虫对东亚飞蝗的实验感染.昆虫学报,1990,33:121-123.
    [211].张龙,严毓骅.持续治理飞蝗灾害的新对策.昆虫学报,2000,43:180-185.
    [212].邓春生 陆庆光.四种不同绿僵菌菌株对东亚飞蝗毒力的初步观察.生物防治通报,1993,9:187-187
    [213].李保平,李国有.绿僵菌油剂防治新疆山地草原蝗虫的田间试验.中国生物防治,2000,16:145-147.
    [214].李保平,宋国庆,李国有.绿僵菌油剂防治草原蝗虫的田间试验.中国草地,1999,5:53-56.
    [215].韦成礼,梁可珍.楝科植物杀虫研究概况.广西植保,2000,13:26-29.
    [217].赵云涛,国兴明,李付振.中华稻蝗的营养保健功能与开发利用.经济动物学报,2003,7:58-62.
    [218].赵云涛,国兴明,李利.各龄期中华稻蝗营养成分的分析和评价.贵州大学学报,2002,21:115-120.
    [220].李俐,李付振,国兴明.中华稻蝗酶促水解研究.贵州大学学报,2001,6:431-436.
    [221].杨素钦,高希武,张子明.锐劲特及其飞机防治蝗虫技术.农药科学与管理, 2001,22:19-20.
    [222].Yoon KS,Gao JR,Lee SH,Coles GC,Meinking TL,Taplin D,Edman JD,Takano-Lee M,Clark JM.Resistance and cross-resistance to insecticides in human head lice from Florida and California.Pestic.Biochem.Physiol.,2004,80:192-201.
    [223].Heidari R,Devonshire AL,Campbell BE,Bell KL,Dorrian SJ,Oakeshott JG,Russell DrRJ.Hydrolysis of organophosphorus insecticides by in vitro modified carboxylesterase E3 from Lucilia cuprina.Insect Biochem.Mol.Biol.,2004,34:353-363.
    [224].Bughio FM,Wilkins RM.Influence of malathion resistance status on survival and growth of Tribolium castaneum(Coleoptera:Tenebrionidae),when fed on flour from insect-resistant and susceptible grain rice cultivars.J.Stored Prod.Res.,2004,40:65-75.
    [225].Ribeiro BM,Guedes RNC,Oliveira EE,Santos JP.Insecticide resistance and synergism in Brazilian populations of Sitophilus zeamais(Coleoptera:Curculionidae).J.Stored Prod.Res.,2003,39:21-31.
    [226].李腾武,高希武,郑炳宗,朱树勋,司升云.不同地区小菜蛾种群羧酸酯酶的毒理学性质研究.昆虫学报,1998,41:26-33.
    [227].Liu ZW,Han ZJ.The roles of carboxylesterase and AChE insensitivity in malathion resistance development in brown plant hopper.Acta Entomol.Sin.,2003,46:250-253.
    [228].Yao HW,Jiang CY,Ye GY,Cheng JA.Studies on cultivar-induced changes in insect susceptibility and its related enzyme activity of the white backed plant hopper,Sogatella furcifera(Horvath)(Homoptera:delphacidae).Entomol.Sin.,2002,9:9-15.
    [229].韩召军,王荫长.棉蚜抗药性简易生物测定技术研究.南京农业大学,1994,17:28-32
    [230].Dong YX,Tang ZH.Molecular mechanisms of target resistance in the organophosphate and pyrethroid-resistant Helicoverpa armigera.Entomol.Sin.,2000,7:58-64.
    [231].Chen MH,Han ZJ,Qiao XF,Qu MJ.Resistance mechanisms and associated mutations in acetylcholinesterase genes in Sitobion avenae. Pestic. Biochem. Physiol. 2007, 87: 189-195.
    [232]. Delorme R, Auge D, Bethenod MT, Villatte F. Insecticide resistance in a strain of Aphis gossypii from southern France. Pestic. Sci., 1997,49: 90-96.
    [233]. Hemingway J. The molecular basis of two contrasting metabolic mechanisms of insecticide resistance. Insect Biochem. Mol. Biol., 2000, 30: 1009-1015.
    [234]. Huang SJ, Han ZJ. Mechanisms for multiple resistances in field populations of common cutworm, Spodoptera litura in China. Pestic. Biochem. Physiol., 2007, 87: 14-22.
    [235]. Zhu KY, He FQ. Elevated esterases exhibiting arylesterase-like characteristics in an organophosphate-resistant clone of the greenbug, Schizaphis graminum (Homoptera: Aphididae). Pestic. Biochem. Physiol., 2000, 67: 155-167.
    [236]. Conyers CM, MacNicoll AD, Price NR. Purification and characterization of an esterase involvedin resistance to organophosphorus insecticides in the saw-toothed grain beetle, Oryzaephilus surinamensis (Coleoptera: Silvanidae). Insect Biochem. Mol. Biol., 1998, 28: 435-448.
    [237]. Vontas JG, Small GJ, Hemingway J. A novel glutathione S-transferase (GST)-based pyrethroid resistance mechanism was recently identified in Nilaparata lugens. Biochem., 2001, 357: 65-72.
    [238]. van Asperen K. A study of house fly esterases by means of a sensitive colorimetric method. Insect Physiol., 1962, 8: 401-416.
    
    [239]. Bell JE, Bell ET. Proteins and enzymes. NJ: Prentice-Hall, Englewood Cliffs, 1988.
    [240]. Manchenko GP. Handbook of detection of enzymes on electrophoretic gels. Boca Raton FL: CRC Press, 1994.
    [241]. Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. Biol. Chem., 1974, 249: 7130-7139.
    [242]. Zhu KY, Gao JR, Starkey SK. Organophosphate resistance mediated by alterations of acetylcholinesterase in resistant clone of the greenbug, Schizaphis graminum (Homoptera: Aphiditae). Pestic. Biochem. Physiol., 2000, 68: 138-147.
    [243]. Hansen LG, Hodgson E. Biochemical characteristics of insect microsomes N- and O-demethylation. Biochem. Pharmacol., 1971,20:1569-1573.
    [244].Smith PK,Krohn RI,Hermanson GT,Mallia AK,Provenzano FH,Fujimoto EK,Goeke NM,Olson BJ,Klenk DC.Measurement of protein using bicinchoninic acid.Anal.Biochem.,1985,150:76-85.
    [245].SPSS Incorporation.SPSS 10.0 brief guide for Macintosh.SPSS Incorporation,2000.
    [246].Devonshire AL,Moores GD.A carboxylesterase with broad substrate specificity causes organophosphorus,carbamate and pyrethroid resistance in peach-potato aphids(Myzus persicae).Pestic.Biochem.Physiol.,1982,18:235-246.
    [247].Zhu KY,Brindley WA.Acetylcholinesterase and its reduced sensitivity to inhibition by paraoxon in organophosphate-resistant Lygus hesperu Knight(Hemiptera:Miridae).Pestic.Biochem.Physiol.,1990,36:22-28.
    [248].Zhou X,Scharf ME,Parimi S,Meinke L J,Wright RJ,Chandler LD,Siegfried BD.Diagnostic assays based on esterase-mediated resistance mechanisms in western corn rootworms(Coleoptera:Chrysomelidae).Econ.Entomol.,2002,95:1261-1266.
    [249].Siegfried BD,Ono M.Parathion toxicokinetics in resistant and susceptible strains of the greenbug(Homoptera:Aphididae).J.Econ.Entomol.,1993,86:1317-1323.
    [250].Siegfried BD,Ono M.Mechanisms of parathion resistance in the greenbug,Schizaphis graminum(Rondani).Pestic.Biochem.Physiol.,1993,45:24-33.
    [251].Siegfried BD,Zera AJ.Partial purification and characterization of a greenbug (Homoptera:Aphididae) esterase associated with resistance to parathion.Pestic.Biochem.Physiol.,1994,49:132-137.
    [252].Herath PRJ,Hemingway J,Weerasinghe IS,Jayawardena KGI.The detection and characterization of malathion resistance in field populations of Anopheles culicifacies B in Sri Lanka.Pestic.Biochem.Physiol.,1987,29:157-162.
    [253].Karunaratne SHPP,Hemingway J,Weerasinghe IS,Jayawardena KGI,Dassanayaka V.Vaughan A.Kinetic and molecular differences in the amplified and nonamplified esterases from insecticide-resistant and susceptible Culex quinquefasciatus mosquitoes.J.Biol.Chem.,1995,270:31124-31128.
    [254].邓业成,王荫长,谭福杰.褐飞虱对马拉硫磷的抗性与酯酶的关系.西南农业学报,1995,8:74-78.
    [255].Grant DF,Hammock BD.Genetic and molecular evidence for a trans-acting regulatory locus controlling glutathione S-transferase-expression in Aedes aegypti.Molecular and General Genetics,1992,234:169-176.
    [256].Lee CY,Hemingway J,Yap HH.Biochemical characterization of insecticide resistance in the German cockroach,Blattella germanica,from Malaysia.Med.Vet.Entomol,2000,14:11-18.
    [257].唐振华,周成理,吴世昌.上海地区小菜蛾的抗药性及增效剂的作用.植物保护学报,1992,19:179-185.
    [258].Yu SJ.Host plant induction of glutathione S-transferases in the fall armyworm.Pestic.Biochem.Physiol.,1982,18:101-106.
    [259].梁沛,夏冰,石泰,高希武.阿维菌素和高效氯氰菊酯亚致死剂量对小菜蛾谷胱苷肽S-转移酶的影响.中国农业大学学报,2003,8:65-68.
    [260].Devonshire AL.Studies of the acetylcholinesterase from houseflies(Musca domestica L.) resistant and susceptible to organophosphorus insecticides.Biochem.J.,1975,149:463-469.
    [261].Moores GD,Gregor JD,Devonshire AL.Insecticide resistance due to insensitive acetylcholinesterase in Myzus persicae and Myzus nicotlanae.Pests and Diseases,1994,4C:413-418.
    [262].Zhu KY,Brindley WA.Enzymological and inhibitory properties of acetylcholinesterase purified from Lygus hesperus Knight.Insect Biochem.Mol.Biol.,1992,22:245-251.
    [263].Zhu KY,Clark JM.Purification and characterization of acetylcholinesterase from the Colorado potato beetle,Leptinotarsa decemLineata(Say).Insect Biochem.Mol.Biol.,1994,24:453-461.
    [264].Zhu KY,Clark JM.Comparisons of kinetic properties of acetylcholinesterase purified from azinphosmethyl-susceptible and resistant strains of Colorado potato beetle.Pestic.Biochem.Physiol.,1995,51:57-67.
    [265].Ellman GL,Courtney DK,Andres V,Featherstone RM.A new and rapid colorimetric determination of acetylcholinesterase activity.Biochem.Pharmacol,1961,7:88-95.
    [266].Zhu KY,Clark JM.Purification and characterization of acetylcholinesterase from the Colorado potato beetle, Leptinotarsa decemlineata (Say). Insect Biochem. Mol. Biol., 1994,24: 453-461.
    [267]. Henderson PJF. Statistic analysis of enzyme kinetic data. In: Eisenthal R, Danson MJ (eds.). Enzyme assays: a practical approach. New York: Oxford University Press, 1992,227-316.
    [268]. Oppenoorth FJ. Biochemistry and genetics of insecticide resistance. In: Kwehut G A, Gilleert L I eds. Comp. Biochem. Physiol. C, Comp. Pharmacol. Toxicol., Oxford. Pergamon Press, 1985, 12: 731-774.
    [269]. Soderlund DM. Molecular neurology: implications for insecticide action and resistance. Pest. Sci., 1989, 26: 359-374.
    [270]. Xu G Bull DL. Characteristics of methylparathion resistance in housefly larvae. J. Economic. Entomol, 1995, 88: 27-32.
    [271]. Gurban EM. Insecticide resistance in cotton aphid Aphis goddypii in the Sudan Gezir. Pestic. Sci., 1992, 35: 101-107.
    
    [272]. Song S, Oh HK, Motoyama N. Insecticide resistance mechanism in the spiraea, Aphis citricola Korean. J. Appl. Entomol, 1995, 34: 89-94.
    [273]. Zhu KY, Clark JM. Cloning and sequencing of a cDNA encoding acetylcholinesterase in Colorado potato beetle, Leptinotarsa decemLineata (Say). Insect Biochem. Mol. Biol., 1995,25: 1129-1138.
    [274]. Zhao GY, Liu W, Knowles C. Diazinon resistance mechanisms in western flower thrips. Resistant Pest Management, 1993, 5: 2-6.
    [275]. Silver ARJ, van Emden HF, Battersby M. A biochemical mechanism of resistance to pirimicarb in two glasshouse clones of Aphis gossypii. Pestic. Sci., 1995, 43: 21-29.
    
    
    [276]. Mutero A, Pralavorio M, Bride JM. Resistance-associated point mutation in insecticideinsensitive acetylcholinesterase. Proc. Natl. Acad. Sci. USA, 1994, 91: 5922-5926.
    [277]. Saxena A, Maxwell DM, Quinn DM, Radic Z, Taylor P, Doctor BP. Mutant ascetylcholinesterases as potential detoxification agents for organophosphate poisoning. Biochem. Pharmacol, 1997, 54: 269-274.
    [278]. Kim CS, Kim WT, Boo KS, Kim SI. Cloning, mutagenesis, and expression of the acetylcholinesterase gene from a strain of Musca domestica; the change from a drug-resistant to a sensitive enzyme. Mol. Cells, 2003,15: 208-215.
    [279]. Huang Y, Qiao C, Williamson MS, Devonshire AL. Characterization of the acetylcholinesterase gene from insecticide-resistant houseflies (Musca domestica). Chin. J. Biotechnol., 1997,13: 177-183.
    [280]. Ren XX, Han ZJ, Wang YC. Mechanisms of monocrotophos resistance in cotton bollworm, Helicoverpa armigera (Hubner). Arch. Insect Biochem. Physiol., 2002, 51:103-110.
    [281]. Chen ZZ, Newcomb R, Forbes E, Mckenzie J, Batterham P. The acetylcholinesterase gene and organophosphorus resistance in the Australian sheep blowfly, Lucilia cuprina. Insect Biochem. Molec. Biol., 2001,31: 805-816.
    [282]. Vontas JG, Hejazi MJ, Hawkes NJ, Cosmidis N, Loukas M, Janes RW, Hemingway J. Resistance-associated point mutations of organophosphate insensitive acetylcholinesterase, in the olive fruit fly Bactrocera oleae. Insect Mol. Biol., 2002, 11:329-336.
    [283]. Field LM, Devonshire AL, Forde BG. Molecular evidence that insecticide resistance in peach-potato aphids (Myxus persicae Sulz.) results from amplification of an esterase gene. Biochem. J., 1988,251: 309-312.
    [284]. Beysaat-Arnaouty V, Raymond M, Mouches C, Georghiou GP, Pasteur N. Diversity of the amplification of various esterases B responsible for organophosphate resistance in Culex mosquitoes. Biochem. Genet., 1989, 27: 417-423.
    [285]. Campbell PM, Newcomb RD, Russell RJ, Oakeshott JG Two different amino acid substitutions in the ali-esterase, E3, confer alternative types of organophosphorus insecticide resistance in the sheep blowfly, Lucilia cuprina. Insect Biochem. Mol. Biol., 1998,28:139-150.
    [286]. Claudianos C, Russell RJ. The same amino acid substitution in orthologous esterase confers organophosphate resistance on the house fly and a blowfly. Insect Biochem. Mol. Biol., 1999,29:675-686.
    [287]. Devonshire AL, Heidari R, Bell KL, Campbell PM, Campbell BE, Odgers WA, Oakeshott JG, Russell RJ. Kinetic efficiency of mutant carboxylesterases implicated in organophosphate insecticide resistance. Pestic. Biochem. Physiol., 2003, 76: 1-13.
    [288]. Zhu YC, Snodgrass GL, Chen MS. Enhanced esterase gene expression and activity in a malathion-resistant strain of the tarnished plant bug, Lygus lineolaris. Insect Biochem. Mol. Biol., 2004,34: 1175-1186.
    [289]. Oakeshott JG, van Papenrecht EA, Boyce TM, Healy MJ, Russel RJ. Evolutionary genetics of Drosophila esterase. Genetica, 1993, 90: 239-268.
    [290]. Robin C, Russell RJ, Medveczky KM, Oakeshott JG Duplication and divergence of the genes of the a-esterase cluster of Drosophila melanogaster. J. Mol. Evol., 1996, 43:241-252.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700