用户名: 密码: 验证码:
不同环境下小麦籽粒形态性状及微营养物质含量的QTL分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦作为世界和我国最主要的粮食作物之一,在粮食生产中具有举足轻重的作用。随着人们生活水平的改善,育种家在不断提高小麦育成品种产量的同时,越来越重视对其品质性状的遗传改良。小麦籽粒品质包括籽粒形态品质、营养品质和加工品质,在籽粒形态品质和营养品质方面,籽粒大小和微营养品质是小麦品质遗传改良中的重要目标性状。
     本研究利用课题组创制的“川35050×山农483”RIL群体(ShCh群体,2008年为F16)为材料(父母本均为1B/1R代换系),对籽粒的形态(粒长,粒宽,千粒重和容重)和微营养品质性状(粗纤维,微量元素和脂肪酸含量等)进行了测定和QTL定位分析,以期了解其遗传控制机制。获得了以下主要结果。
     (1)小麦粒形和粒重的QTL分析。在4个环境下对ShCh群体的籽粒性状,包括粒长,粒宽,千粒重和容重进行了测定,共检测出位于1A、1B、1D、2A、2B、3B、4A、4B、5D、6A、6B和7B染色体上的20个QTL,其中包括6个粒长QTL、3个粒宽QTL、4个千粒重QTL、7个容重QTL。在不同环境下,单个QTL可解释表型变异的5.9-26.4%。17个加性QTL的等位基因增效效应来自川35050,另外3个QTL的增效效应来自山农483。8个QTL(40%)在两个或以上环境下被检测到,是相对稳定遗传的QTL。有关粒宽,千粒重和容重的QTL形成2个QTL簇,位于2A和5D染色体。在6A染色体上检测到的交叠QTL(co-located QTLs),包括在2个环境下1个粒宽QTL和在4个环境下都检测到的1个千粒重QTL。这些重复出现的稳定QTL附近的标记可能用于辅助选择。
     (2)近红外测定部分小麦品质性状的QTL分析。以ShCh群体为材料,在6个环境种植,利用近红外反射光谱法测定了小麦籽粒蛋白质含量、淀粉含量、粗纤维含量和籽粒硬度,共检测到38个QTL,位于16条染色体上,其中包括9个籽粒蛋白质含量QTL,5个淀粉含量QTL,14个粗纤维含量QTL和13个硬度QTL。在不同环境下,单个QTL可解释表型变异的4.2-73.7%。13个QTL(34.2%)在两个及以上环境下被检测到,具有一定的稳定性。4个交叠QTL位于1B、2D、4B和5D染色体上,与3个性状有关的2个QTL簇位于1B和1D染色体上。在2个环境(泰安2007;烟台2007)检测到具有较高贡献率的蛋白质含量的QTL(QGpc.sdau-4A)位于5.9-cM的标记区间(Xissr23b-Xwmc308- Xsrap7c)。蛋白质含量QTL(QGh.sdau-1D.2)在3个环境(菏泽2007,2008;烟台2007)下同时被检测到,贡献率分别为37.1%,38.9%和29.7%,说明它们是2个主效QTL。
     (3)小麦籽粒微量元素含量的QTL分析。以ShCh群体为材料,在2年3点5个环境种植,利用电感耦合等离子发射光谱法测定9种小麦籽粒矿质元素含量,包括P、K、Mg、S、Ca、Mn、Fe、Cu和Zn。利用QTL分析方法检测了控制相应性状的位点。共检测到38个QTL,位于13条染色体上。在不同环境下,单个QTL可解释表型变异的5.9-81.68%。19个加性QTL的增效效应来自山农483,19个加性QTL的增效效应来自川53050。检测到P、K、Mg、S、Ca、Mn、Fe、Cu和Zn元素QTL的位点数分别是5、3、4、4、6、9、4、1和3。仅有5个QTL在2个及以上环境下被检测到,遗传稳定性差。交叠QTL位于1B、3B、3D、4A、6A和7A染色体上,其中,包括染色体4A、3D、4A和7A染色体上的4个QTL簇,表明不同元素QTL之间可能存在连锁关系,也可能是“一因多效”的结果
     (4)小麦脂肪酸含量的QTL分析。以ShCh群体为材料,在2年3点5个环境种植,利用气相色谱法测定了小麦籽粒棕榈酸、硬脂酸、油酸、亚油酸和亚麻酸含量,利用QTL分析方法检测控制相应性状的位点。共检测到35个QTL,位于1A、1B、2A、2B、2D、3B、3D、4A、5A、5A、5B、5D、6A、6B和7B等13条染色体上。在不同环境下,单个QTL可解释表型变异的3.85-43.37%。20个加性QTL的增效效应来自山农483,15个加性QTL的增效效应来自川53050。检测到棕榈酸、硬脂酸、油酸、亚油酸和亚麻酸含量的QTL位点数分别是7、10、9、5和4。9个QTL在两个及以上环境下被检测到,遗传稳定性较差。交叠QTL位于1A、2A、3B、4A、5A和7B染色体上,其中,在5D染色体上有1个QTL簇,表明不同元素QTL之间可能存在连锁关系,这与一般相关分析是一致的。
Wheat yield and quality are very important for the grain production, as the second-largest crop worldwide. Wheat grain qualities include morphologic quality, nutritional quality and processing quality. For the morphologic quality, peasant prefer sowing big size to small size grain. For nutritional quality, people not only want to eat one's fill but also want to eat one's well along with the standard of living improved, so they pay more attention to grain micronutrition than ever.
     In order to improve wheat breeding level and study the genetic mechanism of kernel morphologic and micro-nutritional qualities, such as kernel shape, weight, crude fiber, micro-nutritional minerals as well as fatty acid, quantitative trait locus (QTL) analysis was conducted in common wheat using a set of 131 recombinant inbred lines (RIL) derived from‘Chuan 35050’בShannong 483’(ChSh population). The mian results are as follows.
     1) QTL analysis of kernel shape and weight Quantitative trait locus (QTL) analysis of kernel shape and weight in common wheat was conducted using ChSh population. The RIL and their two parental genotypes were evaluated for kernel length (KL), kernel width (KW), thousand-kernel weight (TKW), and test weight (TW) in four different environments. Twenty QTL were located on 12 chromosomes, 1A, 1B, 1D, 2A, 2B, 3B, 4A, 4B, 5D, 6A, 6B, and 7B, with single QTL in different environments explaining 5.9–26.4% of the phenotypic variation. Six, three, four, and seven QTL were detected for KL, KW, TKW, and TW, respectively. The additive effects for 17 QTL were positive with Chuan 35050 increasing the QTL effects, whereas the remaining three QTL were negative with Shannong 483 increasing the effects. Eight QTL (40%) were detected in two or more environments. Two QTL clusters relating to KW, TKW, and TW were located on chromosomes 2A and 5D, and the co-located QTL on chromosome 6A involved a QTL for KW found in two environments and a QTL for TKW detected in four environments.
     2) QTL analysis of wheat quality tested by NIR QTL mapping of wheat quality traits tested by near-infrared reflectance (NIR) in common wheat were conducted using ChSh population. The RILs were evaluated for grain protein content (GPC), grain starch content (GSC), grain crude fibre content (GCFC) and grain hardness (GH) in six environments. A total of 38 QTLs were located on 16 chromosomes with a single QTL explaining 4.2-73.7% phenotypic variation in different environments. Nine, five, fourteen, thirteen and ten QTLs for GPC, GSC, GCFC and GH were detected. Thirteen QTLs (34.2%) were detected in two or more environments. Four co-located QTLs between two traits occurred on chromosomes 1B, 2D, 4B and 5D, and two QTL clusters related to three traits were located on chromosomes 1B and 1D. QGpc.sdau-4A were located in a 5.9-cM marker region of Xissr23b-Xwmc308- Xsrap7c with the highest contributions; and the contributions of QGh.sdau-1D.2 were 37.1, 38.9 and 29.7% in HZ07, HZ08 and YT07, respectively, suggesting that these two QTLs were major QTLs.
     3) QTL analysis of grain elemnt concent QTL mapping for grain elemnt content tested by ICPOES (inductively couples plasma optical emission spectrometry) in common wheat were conducted using ChSh population. The RILs were evaluated for nine type of elemnt concentration including P, K, Mg, S, Ca, Mn, Fe, Cu and Zn in five environments. A total of 38 QTLs were located on 13 chromosomes with a single QTL explaining 5.9-81.68% phenotypic variation in different environments. Five, three, four, four, six, nine, four, one and three QTLs for P, K, Mg, S, Ca, Mn, Fe, Cu and Zn content were detected. Only five QTLs were detected in two environments. Six co-located QTLs between two traits occurred on chromosomes 1B, 3B, 3D, 4A, 6A and 7A, and four QTL clusters related to different traits were located on chromosomes 1D, 3D, 4A and 7A. The result maybe implye that the grain element content are affected by different environment, and that there is a linkage relation among the QTLs about grain element content.
     4) QTL analysis of wheat fatty acid QTL mapping for grain fatty acid content tested by Gas Chromatography in common wheat were conducted using ChSh population. The RILs were evaluated for five type of fatty content including almitic acid (C16:0), Stearic acid (C18:0), Oleic acid (C18:1), Linoleic acid (C18:2) and Linolenic acid in five environments. A total of 35 QTLs were located on 13 chromosomes with a single QTL explaining 3.85-43.73% phenotypic variations in different environments. Seven, ten, nine, five and four QTLs for almitic acid, Stearic acid, Oleic acid, Linoleic acid and Linolenic acid concent were detected, respectively. Only five QTLs were detected in two environments. Six co-located QTLs between two traits occurred on chromosomes 1A, 2A, 3B, 4A, 5A and 7B, and only one QTL clusters related to different traits were located on chromosomes5D. The results maybe suggest that there is a linkage relation among the QTLs relating to grain fatty content,and these are in accordance with the correlation coefficients.
引文
[1] Clark M S主编(顾红雅,翟礼嘉主译).植物分子生物学—实验手册.北京:高等教育出版社, 2002, 280-292.
    [2]曹钢强,吴平.水稻穗长上位性效应和QE互作效应的QTL遗传研究.浙江大学学报, 2001, 27: 55-61.
    [3]范玉顶.北方手工馒头品质与小麦品质的关系及QTL作图,硕士论文,山东农业大学硕士学位论文, 2003.
    [4]方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学出版社, 2001.
    [5]何慈信,朱军,严菊强.水稻穗干物质重发育动态的QTL定位.中国农业科学, 2000, 33(1): 24-32.
    [6]刘伟.普通小麦谷蛋白大聚合体(GMP)积累动态变化规律及QTL定位的研究.硕士论文, 2005.
    [7]孙海艳.小麦HMW-GS对品质性状的效应和品质性状的QTL定位.硕士论文, 2003.
    [8]吴为人,唐定中,李维明.数量性状的遗传剖析和分子剖析.作物学报,,2000,,26: 501-507.
    [9]吴新儒,刘树兵,刘爱峰,邓世民,王洪刚,周荣华.小麦重要农艺性状QTL近等基因导入系的选育.麦类作物学报, 2007, 27: 583-588.
    [10]张立平,阎俊,夏先春,何中虎, Mark W,Sutherland.普通小麦籽粒黄色素含量的QTL分析.作物学报, 2006, 32: 41-45.
    [11]赵京岚.中国干面条品质与小麦品质的关系和面条品质的QTL分析.硕士论文, 2005.
    [12]朱军.数量性状基因定位的混合线性模型分析方法.遗传, 1998, 20 (增刊): 137-138.
    [13]朱军.数量性状遗传分析的新方法及其在育种中的应用.浙江大学学报, 2000, 26(1): 1-6.
    [14] AACC. Oficial methodr of analysis. 9thed. American Association of Cereal Chemists, Saint Paul, MN, 1995.
    [15] Aguirre A, Badiali O, Cantarero M, Leon A, Ribotta P, Rubiolo O. Relationship of test weight and kernel properties to milling and baking quality in Argentine triticales. CerealResearch Communications, 2002, 30: 203-208.
    [16] Albert K B, Tanksley S D. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2: A major fruit weight quantitative trait locus in tomato. Proc. Natl. Sci., 1996, 93: 15503-15507.
    [17] Ammiraju J S S, Dholakia B B, Santra D K, Singh H, Lagu M D, Tamhankar S A, Dhaliwal H S, Rao V S, Gupta V S, Ranjekar P K. Identification of inter simple sequence repeat (ISSR) markers associated with seed size in wheat. Theor Appl Genet, 2001, 102: 726-732.
    [18] Araki E, Miura H, Sawada S. Identification of genetic loci affecting amylose content and agronomic traits on chromosome 4A of wheat. Theor Appl Genet, 1999, 98: 977-984.
    [19] Arbelbide M, Bernardo R. Mixed-model QTL mapping for kernel hardness and dough strength in bread wheat. Theor Appl Genet, 2006, 112: 885-890.
    [20] Arthur J R. Selenium supplementation: does soil supplementation help and why? Proc. Nutr. Soc., 2003, 62: 393–397.
    [21] Asp N K, Bj?rck I, Nyman M. Physiological effects of cereal dietary fibre. Carbohyd Poyml, 1993, 21: 183-187.
    [22] Bálint A F,. Comparisons of the Cu, Zn, Fe, Ca and Mg contents of the grains of wild, ancient and cultivated wheat species. Cereal Res. Com., 2001, 29: 375–382.
    [23] B?nziger M. and Long J. The potential for increasing the iron and zinc density of maize through plant-breeding, Food Nutr. Bull. 2000, 21:397–400.
    [24] Bauer P. Analysis of sequence, map position, and gene expression reveals conserved essential genes for iron uptake in Arabidopsis and tomato, Plant Physiol, 2004, 136:4169–4183.
    [25] Beebe S. Research on trace minerals in the common bean, Food Nutr. Bull. 2000, 21:3 87–391.
    [26] Bergman C J, Gualberto D G, Campbell K G, Sorrells M E, Finney P L. Kernel morphology variation in a population derived from a soft by hardwheat cross and associations with end-use quality traits. Journal of food quality, 2000, 23:391-407.
    [27] Bettge A D, Morris C F, Greenblatt G A. Assessing genotypic softness in single wheat kernel using starch granule-associated friabilin as a biochemical marker. Euphytica, 1995, 86: 65-72.
    [28] Blair C P. Factor regression for interpreting genotype environment interaction in bread wheat trial. Theor Appl Genet, 1992, 83: 1022-1026.
    [29] Blanco A, Blano M P, Lotti C, Maniglio T. Genetic mapping of sedimentation volumeacross environments using recombinant inbred lines of durum wheat. Plant Breeding, 1998, 117: 413-417.
    [30] Blanco A, Pasqualone A, Troccoli A, Fonzo N D, Simeone R. Detection of grain protein content QTLs across environments in tetraploid wheats. Plant Mol Biol, 2002, 48: 615-623.
    [31] B?rner A, Schumann E, Fürste A, C?ster H, Leithold B, R?der M, Weber W. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet, 2002, 105: 921-936.
    [32] Botwright T L, Condon A. G, Rebetzke G J, Richards R A. Field evaluation of early vigour for genetic improvement of grain yield in wheat. Aust J Agric Res, 2002, 53: 1137-1145.
    [33] Bouis H E. Genetically modified food crops and their contribution to human nutrition and food quality. Trends Food Sci., Technol. 2003, 14: 191–209.
    [34] Bouis H E. Micronutrient fortification of plants through plant breeding: can it improve nutrition in man at low cost? Proc. Nutr. Soc., 2003, 62: 403–411.
    [35] Bresehgello F, Sorrells M E. QTL analysis of kernel size and shape in two hexaploid wheat mapping population wheat. Field Crop Res, 2007, 101: 172-179.
    [36] Brinch-Pedersen H, et al. Concerted action of endogenous and heterologous phytase on phytic acid degradation in seed of transgenic wheat (Triticum aestivum L.). Transgenic Res., 2003, 12: 649–659.
    [37] Broadley M. R. Phylogenetic variation in the shoot mineral concentration of angiosperms, J. Exp. Bot, 2004, 55:321–336.
    [38] Broadley M. R. Variation in the shoot calcium content of angiosperms, J. Exp. Bot. 2003, 54:1431–1446.
    [39] Broadley M.R. Phylogenetic variation in heavy metal accumulation in angiosperms, New Phytol, 2001, 152:9–27.
    [40] Cakmak I. Plant nutrition research: priorities to meet human needs for food in sustainable ways, Plant Soil, 2002, 247: 3–24.
    [41] Cakmak I. Triticum dicoccoides: an important genetic resource for increasing zinc and iron concentration in modern cultivated wheat, Soil Sci. Plant Nutr., 2004, 50: 1047–1054.
    [42] Calderini DF and Ortiz-Monasterio I. Are synthetic hexaploids a means of increasing grain element concentrations in wheat? Euphytica, 2003, 134: 169–178.
    [43] Campbell B T, Baenziger P S, Gill K S, Eskridge K M, Budak H, EraymanM, Dweikat I, Yen Y. Identification of QTLs and environmental interactions associated with agronomictraits on chromosome 3A wheat. Crop Sci, 2003, 43: 1493-1505.
    [44] Campbell K G, Bergmem C J, Gualberto D G, Anderson J A, Giroux M J, Hareland G, Fulcher G, Xorrels M E, Finney P L. Quantitative trait loci associated with kernel traits in a soft×hard wheat cross. Crop Sci, 1999, 39: 1184-1195.
    [45] Charmet G, Robert N, Branlard G, Linossier L, Martre P, Tribo? E. Genetic analysis of dry matter and nitrogen accumulation and protein composition in wheat kernels. Theor Appl Genet, 2005, 111:540-550
    [46] Chastain T G, Ward K J, Wysocki D J. Stand establishment responses of soft white winter wheat to seedbed residue and seed size. Crop Sci, 1995, 35: 213-218.
    [47] Chavez A. L. Iron, carotene, and ascorbic acid in cassava roots and leaves, Food Nutr. Bull., 2000, 21: 410–413.
    [48] Chen L, Determination of selenium concentration of rice in China and effect of fertilization of selenite and selenate on selenium content of rice. J. Agric. Food Chem. 2002, 50: 5128–5130.
    [49] Chiera J M. Ectopic expression of a soybean phytase in developing seeds of Glycine max to improve phosphorus availability. Plant Mol. Biol., 2004, 56: 895–904.
    [50] Cichy KA. Inheritance of seed zinc accumulation in navy bean. Crop Sci., 2005, 45: 864–870.
    [51] Coelho C M M,. Dynamics of inositol phosphate pools (tris-, tetrakis- and pentakisphosphate) in relation to the rate of phytate synthesis during seed development in common bean (Phaseolus vulgaris). J. Plant Physiol., 2005, 162: 1–9.
    [52] Combs G F. Selenium in global food systems, Br. J. Nutr., 2001, 85: 517–547.
    [53] Connolly E L. Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control. Plant Physiol, 2003, 133: 1102–1110.
    [54] Crepieux S, Lebreton C, Flament P, Charmet G. Application of a new IBD-based QTL mapping method to common wheat breeding population: analysis of kernel hardness and dough strength. Theor Appl Genet, 2005, 111: 1409-1419.
    [55] D’Egidio M G, Mariani B M, Nardi S, Novaro P, Cubadda R. Chemical and technological variables and their relationships: a predictive value equation for pasta cooking quality. Cereal Chem, 1990, 67: 275-281.
    [56] Dai J. Selecting iodine-enriched vegetables and the residual effect of iodate application to soil. Biol. Trace Elem. Res., 2004, 101: 265–276.
    [57] Demeke T, Morris C F. Wheat polyphenol oxidase: distribution and mapping in threeinbreed line population. Crop Sci, 2001, 41;1750-1757.
    [58] Dholakia B B, Ammiraju J S S, Singh H, Lagu M D, R?der M S, Rao V S, Dhaliwal H S, Ranjekar P K, Gupta V S. Molecular marker analysis of kernel size and shape in bread wheat. Plant Breed, 2003, 122: 392-395.
    [59] Dholakia B B, Ammiraju J S, Sanrta D K, Singh H, Katti M V, Lagu M D, Tamhankar SA, Ranjekar PK. Molecular marker analysis of grain protein content in wheat. 6th International Wheat Conference, 2000, Abasrtacts.
    [60] Distelfeld A, Uauy C, Fahima T, Dubcovsky J. Physical map of the wheat high-grain protein content gene Gpc-B1 and development of a high-throughput molecular marker. New Phytol, 2006, 169: 753-763.
    [61] Distelfeld A, Uauy C, Olmos S, Schlatter A R, Dubcovsky J, Fahima T. Microcolinearity between a 2-cM region encompassing the grain protein content locus Gpc-6B1 on wheat chromosome 6 and a 350-kb region on rice chromosome 2. Funct Integr Genomic, 2004, 4: 59-66.
    [62] Doerge R W. Mapping and analysis of quantitative trait loci in experimental populations. Nat Genet, 2002, 3: 43-52.
    [63] Dorsch J A. Seed phosphorus and inositol phosphate phenotype of barley low phytic acid genotypes. Phytochemistry, 2003, 62, 691–706.
    [64] Douchkov D. Ectopic expression of nicotianamine synthase genes results in improved iron accumulation and increased nickel tolerance in transgenic tobacco. Plant Cell Environ, 2005, 28: 365–374.
    [65] Dowell F E, Maghirang E B, Graybosch R A, Baenziger P S, Baltensperger D D, Hansen L E. An automated near-infrared system for selecting individual kernels based on specific quality characteristics. Cereal Chem, 2006, 83: 537-543.
    [66] Dowell F E. Automated color classification of single wheat kernels using visible and near-infrared reflectance. Cereal Chem, 1998, 75: 142-144.
    [67] Elouafi I, Nachit M M. A genetic linkage map of the Durum×Triticum dicoccoides backcross population based on SSRs and AFLP markers, and QTL analysis for milling traits. Theor Appl Genet, 2004, 108: 401-413.
    [68] Erdal I. Phytic acid and phosphorus concentrations in seeds of wheat cultivars grown with and without zinc fertilization. J. Plant Nutr., 2002, 25:113–127.
    [69] Fan YD, Sun HY, Zhao JL, Ma YM, Li RJ, Li SS. QTL mapping for quality traits of northern-style hand-made Chinese steamed bread. J Cereal Sci, 2009, 25:251-259.
    [70] Food Standards Agency, McCance, Widdowson's. The Composition of Foods. SixthSummary Edition, Royal Society of Chemistry, 2002.
    [71] Frossard E. Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition. J. Sci. Food Agric, 2000, 80: 861–879.
    [72] Galande A A, Tiwari R, Ammiraju J S S, Santra D K, Lagu M D, Rao V S, Gupta V S, Misra B K, Nagarajan S, Ranjekar PK. Genetic analysis of kernel hardness in bread wheat using PCR-based markers. Theor Appl Genet, 2001, 103: 601-606.
    [73] Gardner R.C. Genes for magnesium transport, Curr. Opin. Plant Biol. 6 (2003),263–267.
    [74] Giroux M J, Morris CF. Wheat grain hardness results from highly conserved mutations in the friabilin components puroindoline a and b. Proc Natl Acad Sci, 1998, 95: 6262-6266.
    [75] Glahn R. P. Comparison of iron bioavailability from 15 rice genotypes: studies using an in vitro digestion/Caco-2 culture model, J. Agric. Food Chem. 2002,50:3586–3591.
    [76] Goto F.and Yashihara T. Improvement of micronutrient contents by genetic engineering. Development of high iron content crops, Plant Biotechnol, 2001, 18: 7–15.
    [77] Graham R D. Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: principles, perspectives and knowledge gaps. Adv. Agron., 2001, 70: 77–142.
    [78] Graham R. Breeding for micronutrient density in edible portions of staple food crops: conventional approaches, Field Crops Res. 60 (1999),57–80.
    [79] Gras P W, Anderssen R S, Keentok M. Gluten protein functionality in wheat flour processing: a review. Australian Journal of Agricultural Research. 2001,52: 1311-1323.
    [80] Gregorio G B. Breeding for trace mineral density in rice. Food Nutr. Bull., 2000, 21: 382–386.
    [81] Groos C, Bervas E, Charmet G. Genetic analysis of grain protein content, grain hardness and dough rheology in a hard×hard bread wheat progeny. Cereal Sci., 2004, 40: 93–100.
    [82] Groos C, Bervas E, Charmet G. Genetic analysis of hardness and bread-making related traits in a hard×hard bread wheat cross. J Cereal Sci, 2004, 40: 93-100.
    [83] Groos C, Robert N, Bervas E, Charmet G, Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat. Theor Appl Genet, 2003, 106: 1032-1040.
    [84] Gross J. Iron homeostasis related genes in rice. Genet. Mol. Biol., 2003, 26: 477–497.
    [85] Grusak M A and Cakmak I. Methods to improve the crop-delivery of minerals to humans and livestock. In: M.R. Broadley and P.J. White, Editors, Plant Nutritional Genomics, Blackwell, 2005, 265–286.
    [86] Grusak M. A. Strategies for improving the iron nutritional quality of seed crops: lessonslearned from the study of unique iron-hyperaccumulating pea mutants, Pisum Genet. 2000, 32:1–5.
    [87] Gupta P K, Balyan H S, Edwards K J, Isaac P, Korzun V, R?der M. Gautier M F, Joudrier P, Schlatter A R, Dubcovsky J, Pena R C, Khairallah M, Penner G, Hayden M J, Sharp P, Keller B, Wang R C, Hardouin J P, Jack P, Leroy P. Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor. Appl. Genet., 2002, 105: 413-422.
    [88] Guttieri M. Identification and characterization of a low phytic acid wheat, Crop Sci. 2003, 44:418–424.
    [89] Guzmán-Maldonado S. H. Protein and mineral content of a novel collection of wild and weedy common bean (Phaseolus vulgaris L), J. Sci. Food Agric. 2000, 80:1874–1881.
    [90] Guzmán-Maldonado S. H. Putative quantitative trait loci for physical and chemical components of common bean, Crop Sci., 2003, 43:1029–1035.
    [91] Hacisalihoglu G, Kochian L V. How do some plants tolerate low levels of soil zinc? Mechanisms of zinc efficiency in crop plants, New Phytol, 2003, 159: 341–350.
    [92] Hacisalihoglu G. Genotypic variation in common bean in response to zinc deficiency in calcareous soil, Plant Soil, 2004, 259: 71–83.
    [93] Hitz W.D. Biochemical and molecular characterization of a mutation that confers a decreased raffinosaccharide and phytic acid phenotype on soybean seeds, Plant Physiol., 2002, 128:650–660.
    [94] Hodson M. Phylogenetic variation in the silicon composition of plants. Ann. Bot. (Lond.), 2005.
    [95] Holm P B. Transgenic approaches in commonly consumed cereals to improve iron and zinc content and bioavailability. J. Nutr., 2002, 132: 514–516.
    [96] Huang X Q, Cloutier S, Lycar L, Radovanovic N, Humphreys D G, Noll J S, Somers D J, Brown P D. Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor Appl Genet, 2006, 113: 753-766.
    [97] Huang X Q, Cloutier S, Lycar L, Radovanovic N, Humphreys D G, Noll J S, Somers D J, Brown P D. Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor Appl Genet, 2006, 113: 753-766.
    [98] Huang X Q, Kempf H, Ganal M W, R?der MS. Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and synthetic wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 109: 933-943.
    [99] Hulke B S. Agronomic and seed characteristics of soybean with reduced phytate and palmitate, Crop Sci., 2004, 44: 2027–2031.
    [100] Igrejas G, Leroy P, Charmet G, Gaborit T, Marion D, Branlard G. Mapping QTLs for grain hardness and puroindoline content in wheat (Triticum aestivum L.). Theor Appl Genet, 2002, 106: 19-27.
    [101] Islam F M A,. Seed compositional and disease resistance differences among gene pools in cultivated common bean, Genet. Res. Crop Evol, 2002, 49: 285–293.
    [102] Islam F M A. Using molecular markers to assess the effect of introgression on quantitative attributes of common bean in the Andean gene pool, Theor. Appl. Genet., 2004, 108: 243–252.
    [103] Jain A. K and Nessler C L. Metabolic engineering of an alternative pathway for ascorbic acid biosynthesis in plants. Mol. Breed., 2000, 6: 73–78.
    [104] James C N, Cristina A, Flavio B, Patrick LF, Daisy GG, Christine JB, Roberto JP, Marie RP, Philippe L, Calvin OQ , Mark ES. Quantitative trait locus analysis of wheat quality traits. Euphytica. 2006, 149:145–159.
    [105] Jensen J. Estimation of recombinant parameters between quantitative trait loci(QTL) and two marker gene loci . Theoretical and Applied Genetics, 1989, 78: 613-618.
    [106] Joppa L R, Du C, Hart G E, Hareland G A. Mapping gene(s) for grain protein in tetraploid wheat (Triticum turgidum L.) using a population of recombinant inbred chromosome lines. Crop Sci, 1997, 37: 1586-1589.
    [107] Kato K, Miura H, Sawada S. Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. Theor Appl Genet, 2000, 101: 1114-1121.
    [108] Kennedy G. The scourge of“hidden hunger”: global dimensions of micronutrient deficiencies, Food Nutr. Agric., 2003, 32: 8–16.
    [109] Khan I A, Procunier D J, Humphrejys G D, Tranquilli G, Schlattefr AR, Marcucci PS, Frohberg R , Dubcovsky J. Development of PCR-based marker for a high grain protein content gene from Triticum turgidum ssp. dicoccoides transferred to breed wheat . Crop Sci.,2000, 40: 518-524.
    [110] Knapp S J, Bridges W C, Birkes D. Mapping uantitative trait loci using molecular marker maps . Theor. and Appl. Genet., 1990, 79: 583-592.
    [111] Kopsell D E. Variability in elemental accumulations among leafy Brassica oleracea cultivars and selections, J. Plant Nutr., 2004, 27: 1813–1826.
    [112] Kuchel H, Langridge P, Mosionek L, Williams K, Jefferies SP. The genetic control of milling yield, dough rheology and baking quality of wheat. Theor. Appl. Genet., 2006,112: 1487–1495.
    [113] Kuchel H, Langridge P, Mosionek L, Williams K, Jefferies SP. The genetic control of milling yield, dough rheology and baking quality of wheat. Theor Appl Genet, 2006, 112: 1487-1495.
    [114] Kumar N, Kulwal P L, Gaur A, Tyagi AK, Khurana J P, Khurana P, Balyan H S, Gupta P K. QTL analysis for grain weight in common wheat. Euphytica, 2006, 151: 135-144.
    [115] Lander E S, Botstein D. Mapping Mendelian factors underlying quantitative traits using RELP linkage maps .Genetics, 1989, 121: 185-199.
    [116] Li SS, Jia JZ, Zhang XC, Cheng HM, Sun HY, Fan YD, Li LZ. A intervarietal genetic map and QTL analysis for yield traits in wheat. Mol Breed, 2007, 20:167-178.
    [117] Lin L. The concentrations and distribution of phytic acid-phosphorus and other mineral nutrients in wild-type and low phytic acid1-1 (lpa1-1) corn (Zea mays L.) grains and grain parts, Can. J. Bot., 2005, 83: 131–141.
    [118] Liu J C. Phytic acid-phosphorus and other nutritionally important mineral nutrients in grains of wild-type and low phytic acid (lpa1-1) rice. Seed Sci. Res., 2004, 14: 109–116.
    [119] Liu S B, Zhou R Z , Dong Y C . Development utilization of Introgression lines using a synthetic wheat as donor .Theoretical and Applied Genetics, 2005, 12 : 1360 - 1373.
    [120] Long J K. Diallel analysis of grain iron and zinc density in Southern African-adapted maize inbreds, Crop Sci., 2004, 44: 2019–2026.
    [121] L?nnerdal B. Genetically modified plants for improved trace element nutrition. J. Nutr., 2003, 133: 1490–1493.
    [122] Lucca P. Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains, Theor. Appl. Genet, 2001,102: 392–397.
    [123] Lyons G H. Exploiting micronutrient interaction to optimize biofortification programs: the case for inclusion of selenium and iodine in the HarvestPlus program, Nutr. Rev., 2004, 62: 247–252.
    [124] Lyons G H. Selenium distribution in wheat grain, and the effect of postharvest processing on wheat selenium content, Biol. Trace Elem. Res., 2005, 103: 155–168.
    [125] Lyons G. High-selenium wheat: biofortification for better health. Nutr. Res. Rev., 2003, 16: 45–60.
    [126] Lyons G. Selenium concentration in wheat grain: is there sufficient genotypic variation to use in breeding? Plant Soil, 2005, 269: 269–380.
    [127] Mares D J, Campbell A W. Mapping components of flour and noodle colour in Australian wheat. Australian Journal of Agriculture Research . 2001,52:1297-1309.
    [128] Mares D J, Campbell A W. Mapping components of flour and noodle colour in Australian wheat. Australian Journal of Agriculture Research . 2001,52:1297-1309.
    [129] Marshall D R, Langridge P, Appeles R. Wheat breeding in the new century–Preface. AustralianJournal of Agriculture Researc. 2001,52:1-4.
    [130] Marshall D R, Langridge P, Appeles R. Wheat breeding in the new century–Preface . Australian Journal of Agriculture Research. 2001,52:1-4.
    [131] Martin J M, Frohberg R C, Morris C F, Talbert L E, Giroux M J. Milling and bread baking traits associated with puroindoline sequenc type in hard red spring wheat. Crop Sci, 2001, 41:228-234
    [132] Martinant J, Nicolas Y, Bouguennec A, Popineau Y, Saulnier L, Branlard G.Relationships between mixograph parameters and indices of wheat grain quality. J Cereal Sci . 1998, 27:179-189
    [133] Maziya-Dixon B, et al. Genetic variation in total carotene, iron, and zinc contents of maize and cassava genotypes. Food Nutr. Bull., 2000, 21: 419–422.
    [134] McCartney C A, Somers D J, Humphreys D G, Lukow O, Ames N, Noll J, Cloutier S, McCallum B D. Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL 4452בAC Domain’. Genome, 2005, 48:870-883
    [135] McCartney C A, Somers D J, Lukow O, Ames N, Noll J, Cloutier S, Humphreys D G, McCallum B D. QTL analysis of quality traits in the spring wheat cross RL 4452בAC Domain’. Plant Breed, 2006, 125:565-575
    [136] Mendoza C. Effect of genetically modified low phytic acid plants on mineral absorption. Int. J. Food Sci. Technol, 2002, 37: 759–767.
    [137] Monasterio I, Graham RD. Breeding for trace minerals in wheat, Food Nutr. Bull., 2000, 21: 392–396.
    [138] Nandi S. Expression of human lactoferrin in transgenic rice grains for the application in infant formula, Plant Sci., 2002, 163:713–722.
    [139] Narasimhamoorthy B, Gill B S, Fritz A K, Nelson J C, Brown G L (2006) Advanced backcross QTL analysis of a hard winter wheat synthetic wheat population. Theor Appl Genet, 2006, 112: 787-796
    [140] Narasimhamoorthy B, Gill B S, Fritz A K, Nelson J C, Brown-Guedira G L. Advanced backcross QTL analysis of a hard winter wheat synthetic wheat population. Theor Appl Genet, 2006, 112: 787-796
    [141] Oikeh S.O. Assessment of concentrations of iron and zinc and bioavailable iron in grains of early-maturing tropical maize varieties, J. Agric. Food Chem. 2003, 51:3688–3694.
    [142] Oikeh S.O. Environmental stability of iron and zinc concentrations in grain of elite early-maturing tropical maize genotypes grown under field conditions, J. Agric. Sci.,2004,142:543–551.
    [143] Oikeh S.O. Genotypic differences in concentration and bioavailability of kernel-iron in tropical maize varieties grown under field conditions, J. Plant Nutr. 2003, 26:2307–2319.
    [144] Olmos S, Diestelfeld A, Chicaiza O, Schatter AR, Fahima T, Echenique V, Dubcovsky J . Precise mapping of a locus affecting grain protein content in durum wheat. Theor Appl Genet, 2003, 107:1243-1251
    [145] Oltmans S. E. Agronomic and seed traits of soybean lines with low-phytate phosphorus, Crop Sci., 2005, 45:593–598.
    [146] ?verby NC, Flaaten V, Veier?d M B, Bergstad I, Margeirsdottir H D, Dahl-J?rgensen K, Andersen L F. Children and adolescents with type 1 diabetes eat a more atherosclerosis-prone diet than healthy control subjects. Diabetologia, 2007, 50:307-316
    [147] Paine J A. Improving the nutritional value of Golden Rice through increased pro-vitamin A content, Nat. Biotechnol., 2005, 23: 482–487.
    [148] Parker G D, Chalmers K J, Rathjen A J, Langridge P. Mapping loci associated with flour colour in wheat . Theor. Appl. Genet, 1998, 97: 238-245
    [149] Parker G D, Langridge P. Development of a STS marker linked to a major locus controlling flour colour in wheat. Mol. Breed. 2000, 6:169-174.
    [150] Perretant M R, Cadalen T, Charmet G, Sourdille P, Nicolas P, Boeuf C, Tixier MH, Branlard G, Bernard S, Bernard M . QTL analysis of bread-making quality in wheat using a doubled haploid population. Theor Appl Genet,2000, 100:1167–1175
    [151] Perretant M R, Cadalen T, Charmet G, Sourdille P, Nicolas P, Boeuf C, Tixier M H, Branlard G, Bernard S. QTL analysis of bread-making quality in wheat using a double haploid opulation. Theor Appl Genet, 2000, 100:1167-1175
    [152] Perretant M R. Cadalen T, Charmet G, Sourdille P,Nicolas P, Boeuf C, Tixier M H, Branlard G, Bernard S and Bernard M. QTL analysis of bread-making quality in wheat using a doubled haploid population . Theor. Appl .Genet, 2000,100: 1167-1175.
    [153] Pestsova E G, B?rner A, R?der M S.Development and QTL assessment of Triticum aestivum–Aegilops tauschii introgression lines. Theor Appl Genet., 2006 , 112: 634 - 647.
    [154] Pestsova E, Ganal M W, R?der M S. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome. 2000,43: 689-697.
    [155] Pilu R. Phenotypic, genetic and molecular characterization of a maize low phytic acid mutant (lpa241), Theor. Appl. Genet, 2003, 107:980–987.
    [156] Poletti S. The nutritional fortification of cereals, Curr. Opin. Biotechnol. 2004, 15:162–165.
    [157] Prasad M, Kumar N, Kulwal P L, R?der M S, Balyan H S, Dhaliwal H S, Gupta P K. QTL analysis for grain protein content using SSR markers and validation studies using NILs in bread wheat. Theor Appl Genet, 2003, 106:659-667
    [158] Prasad M, Kumar N, Kulwal P L,Roder M S, Balyan H S, Dhaliwal H S, Gupta P K. QTL analysis for grain protein content using SSR markers and validation studies using NILs in bread wheat. Theor Appl Genet.,2003, 106:659–667
    [159] Prasad M, Varshney R K, Kumar A, Balyan H S, Sharma P C, Edwards K J, Singh H, Dhaliwal H S, Roy JK, Gupta PK (1999) A microsatellite marker associated with a QTL for grain protein content on hromosome arm 2DL of bread wheat. Theor Appl Genet, 1999 99:341-345
    [160] Quarrie S A, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusic D, Waterman E, Weyen J, Schondelmaier J, Habash D Z, Farmer P, Saker L, Clarkson D T, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti M C, Hollington P A, Aragues R, Royo A, Dodig D. A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring×SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor. Appl. Genet, 2005, 110: 865-880.
    [161] Raboy V. Myo-inositol-1,2,3,4,5,6-hexakisphosphate, Phytochemistry, 2003, 64:1033–1043.
    [162] Raboy V. Progress in breeding low phytate crops. J. Nutr., 2002, 132: 503–505.
    [163] Ram M S, Dowell F E, Seitz L, Lookhart G .Development of standard procedures for a simple, rapid test to determine wheat color class. Cereal Chem. 2002, 79:230-237
    [164] Ramesh S. A. Over-expression of an Arabidopsis zinc transporter in Hordeum vulgare increases short-term zinc uptake after zinc deprivation and seed zinc content, Plant Mol. Biol., 2004, 24:373–385.
    [165] Rengel Z. and Graham R.D., Importance of seed Zn content for wheat growth on Zn-deficient soil. I. Vegetative growth, Plant Soil, 1995, 173, 259–266.
    [166] Rieckhoff D, Trautwein E A, M?lkki Y, Erbersdobler H F. Effects of different cereal fibres on cholesterol and bile acid metabolism in the Syrian golden hamster. Cereal Chem,1999, 76:788-795
    [167] R?der M S, Korzun V, Wandehake K, Planschke J, Tixier M H, Leroy P, Ganal M W. A microsatellite map of wheat. Genetics. 1998, 149: 2007-2023.
    [168] Rodolphe F, LefortM. A multi-marker model for detecting chromosomal segment displaying QTL activity. Genetics, 1993, 134: 1277-1288
    [169] Rogers E E and Guerinot M L. FRD3, a member of the multidrug and toxin efflux family, controls iron deficiency responses in Arabidopsis, Plant Cell, 2002, 14: 1787–1799.
    [170] Rousset M, Brabant P, Kota R S, Dubcovsky J, Dvorak J, Bedo Z. Use of recombinant substitution lines for gene mapping and QTL analysis of bread making quality in wheat. Euphytica, 2001,119(1-2): 81-87
    [171] Rousset M, Brabant P, Kota R S, Dubcovsky J, Dvorak J. Use of recombinant substitution lines for gene mapping and QTL analysis of bread making quality in wheat. Euphytica,2001, 119:81–87
    [172] Samuelsen A I. Expression of the yeast FRE genes in transgenic tobacco. Plant Physiol., 1998, 118: 51–58.
    [173] Saunders R M (1978) A relationship between crude fiber and digestibility of wheat milling fractions in rats. Am J Clin Nutr, 1978,31:2136-2139
    [174] Shah M M, Gill K S, Baenziger P S, Yen Y, Kaeppler S M, Ariyarathne H M. Molecular mapping of loci for agronomic traits on chromosome 3A of bread wheat. Crop Sci,1999, 39: 1728-1732
    [175] Sharp P J, Jonston S, Brown G, Mcintosh R A, Pallotta M, Carter M, Bariana H S, Khatkar S, Lagudah E S, Singh R P, Khairallah M, Potter R, Jones M G. Validation of molecular marker for wheat breeding. Australian Journal of Agricultural Research, 2001, 52:1357-1366.
    [176] Shi J. The maize low-phytic acid 3 encodes a myo-inositol kinase that plays a role in phytic acid biosynthesis in developing seeds. Plant J., 2005, 42: 708–719.
    [177] Shukla S. Expression and nucleotide sequence of an INS (3) P1 synthase gene associated with low-phytate kernels in maize (Zea mays L.), J. Agric. Food Chem. 2004, 52:4565–4570.
    [178] Shuman L. M. Micronutrient fertilizers, J. Crop Product. 1 (1998),165–195.
    [179] Smith A B, Cullis B R, Appels R, Campbell A W, Cornish G B, Martin D, Allen H M . The statistical analysis of quality traits in plant improvement programs with application to the mapping of milling yield in wheat. Aust J Agric Res, 2001, 52:1207–1219
    [180] Smolin L A, Grosvenor M B. Nutrition: Science and applications, John Wiley & Sons (2003).
    [181] Somers D J, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat. Theor Appl Genet. 2004,109:1105–1114
    [182] Sourdille P, Cadalen T, Guyomarch H, Snape J W, Perretant M R, Charmet G, Boeuf C, Bernard S, Bernard M. An update of the Courtot×Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor. Appl. Genet., 2003, 106:530-538.
    [183] Sourdille P, Perretant M R, Charmet G, Leroy P, Gautier M F, Joudrier P, Nelson J C, Sorrells M E, Bernard M (1996) Linkage between RFLP markers and genes affecting kernel hardness in wheat. Theor Appl Genet, 1996, 93:580-586
    [184] Suenaga K, Khairallah M, William H M, Hoisington D A.A new intervarietal linkage map and its application for quantitative trait locus analysis of "gigas" features in bread wheat. Genome, 2005, 48:65-75.
    [185] Sun HY, LüJH, Fan YD, Zhao Y, Kong FM, Li RJ, Wang HG, Li SS. Quantitative trait loci (QTLs) for quality traits related to protein and starch in wheat. Prog Nat Sci 2008,18:825-831
    [186] Sun XY, Wu K, Zhao Y, Kong FM, Han GZ, Jiang HM, Huang XJ, Li RJ, Wang HG, Li SS. QTL analysis of kernel shape and weight using recombinant inbred lines in wheat. Euphytica, 2009, 165:615-624.
    [187] Takahashi M. Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes. Nat. Biotechnol., 2001, 19:466–469.
    [188] Timmer C P. Biotechnology and food systems in developing countries. J. Nutr., 2003, 133: 3319–3322.
    [189] Torada A, Ikeguchi S, Koike M. Mapping and validation of PCR-based markers associated with a major QTL for seed dormancy in wheat. Euphytica, 2005, 143: 251-255
    [190] Turner A S, Bradburne R P, Fish L, Snape J WNew quantitative trait loci in.uencing grain texture and protein content in bread wheat. Cereal Sci.,2004, 40:51–60
    [191] Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science, 2006 314:1298-1301
    [192] Udall J. Important alleles for noodle quality in winter wheat as identified by molecular markers. M S. Thesis, University of Idaho, Moscow, ID.1997.
    [193] Varshney R K, Prasad M, Roy J K, Kumar N, Singh H, Dhaliwal H S, Balyan H S, Gupta P K (2000) Identification of eight chromosomes and one microsatellite marker on 1AS associated with QTL for grain weight in bread wheat. Theor Appl Genet, 2000, 100: 1290-1295.
    [194] Varshney R K, Prasad M, Roy J K, ROder M S, Balyan H S , Gupta P K. Integratedphysical maps of 2DL, 6BS, and 7DL carrying loci for grain protein content and pre-harvest sprouting tolerance in bread wheat. Cereal Res., 2001, 29: 33-40.
    [195] Vasconcelos M. Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Sci., 2003, 164:371–378.
    [196] Vreugdenhil D. Exploring natural genetic variation to improve plant nutrient content. In: MR Broadley and PJ White, Editors, Plant Nutritional Genomics, Blackwell, 2005, 201–219.
    [197] Wang D L, Zhu J, Li Z K. Simulation study on identification of interaction markers representing QTL epistasis by step wise regression. Journal of Zhejiang University, 1999, 25: 453-461.
    [198] Wang DL, Zhu J, Li ZK, Paterson A H. Mapping QTLs with epistatic effects and QTL′environment interactions by mixed linear model approaches. Theor Appl Genet,1999, 99: 1255-1264
    [199] Wang DL, Zhu J, Li ZK, Paterson AH. Mapping QTLs with epistatic effects and QTL environment interactions by mixed linear model approaches. Theor Appl Genet, 1999, 99:1255-1264
    [200] Wang S G. Simulation study of the methods for mapping quantitative trait loci in inbred line crosses. Ph. D. Dissertation, 2000.
    [201] Wang T L. Can we improve the nutritional quality of legume seeds?, Plant Physiol. 2003,131:886–891.
    [202] Welch R M and Graham R D. Breeding crops for enhanced micronutrient content. Plant Soil, 2002, 245: 205–214.
    [203] Welch R M and Graham R D. Breeding for micronutrients in staple food crops from a human nutrition perspective. J. Exp. Bot., 2004, 55: 353–364.
    [204] Welch R. M. and Graham R. D. A new paradigm for world agriculture: productive, sustainable, nutritious, healthful food systems, Food Nutr. Bull, 2000, 21:361–366.
    [205] White P. J. Calcium. In: M.R. Broadley and P.J. White, Editors, Plant Nutritional Genomics, Blackwell, 2005, 66–86.
    [206] White P. J. Interactions between selenium and sulphur nutrition in Arabidopsis thaliana, J. Exp. Bot, 2004, 55:1927–1937.
    [207] White P. J.and Broadley M.R. Calcium in plants, Ann. Bot. (Lond.) 92 (2003),487–511.
    [208] Wissuwa M. Mapping nutritional traits in crop plants. In: M.R. Broadley and P.J. White, Editors, Plant Nutritional Genomics, Blackwell,2005, 220–241.
    [209] Yan J Q, Zhu J. Quantitative trait loci analysis for development behavior of tiller numberin rice. Theor Appl Genet, 1998, 97:267-274.
    [210] Yano M, Sasaki T. Genetic and molecular dissection of quantitative traits in rice. Plant Mol. Biol. .1997, 35:145-153.
    [211] Yilmaz A. Effect of seed zinc content on grain yield and zinc concentration of wheat grown in zinc-deficient calcareous soils. J. Plant Nutr, 1998, 21: 2257–2264.
    [212] Yoo S H, Jane J L. Structural and physical characteristics of waxy and other wheat starches. Carbohydr Polym, 2002, 49:297-305.
    [213] Zanetti S, Winzeler M, Feuillet C, Keller B, Messmer M. Genetic analysis of bread-making quality in wheat and spelt. Plant Breed, 2001, 120:13-19.
    [214] Zeng M, Morris C F, Batty I L, Wrigley C W (1997) Sources of variation for starch gelatinization, pasting and gelation properties in wheat. Cereal Chem 74:63-71
    [215] Zeng Z B. Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. Proc. Natl. Acad. Sci. USA. 1993, 90: 10972-10976
    [216] Zhao JL, Chen MS, Ma YM, Li RJ, Ren YP, Sun QQ, Li SS (2009) QTL mapping for quality traits of Chinese dry noodle. Agr Sci China, 2009,12:651-658 .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700