用户名: 密码: 验证码:
水稻粒长基因qGL3的定位克隆、功能分析及育种利用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻的单株产量是由穗数、每穗粒数和粒重三个因素共同决定的,其中粒重是由籽粒大小和灌浆程度共同决定。在灌浆程度理想的情况下,水稻的粒重可以直观地认为由水稻的籽粒大小决定。水稻籽粒的大小从外观上可以细分为籽粒长度、宽度和厚度三个组分,遗传上受数量性状基因座(QTLs, quantitative trait loci)控制,有较高的遗传率。水稻籽粒的长、宽、厚直接关系到水稻的籽粒大小,同时又决定着水稻的长宽比等外观品质性状,因而,对单子叶分子生物学研究的模式植物一水稻的粒形和粒重研究具有重要理论和实践意义。
     本研究利用一个超大粒粳稻材料N411与N643、93-11、热研、龙里黑糯和苏旺往尔等5个籽粒大小和形状不同的水稻材料杂交,构建了5个F2分离群体。对这5个F2群体的遗传分析发现:超大粒材料与其他5个材料间存在控制籽粒大小和形状的丰富的遗传基础差异。对粒形和粒重等性状的相关性分析表明:籽粒的长度与宽度之间的相关性在群体间存在较大的差异,而粒长与粒厚及粒宽与粒厚均存在显著的相关性,同时粒长、粒宽和粒厚与粒重的相关性也均达到了极显著水平。
     利用N411与小粒籼稻材料N643构建的F2群体,对控制水稻籽粒及穗部不同性状的QTL进行检测和定位,共检测到控制水稻4个籽粒性状和3个穗部性状的30个QTL位点。在第二染色体分子标记RM5350与RM6639之间检测到一个同时控制粒宽、粒厚和粒重的位点,此位点与已经克隆的GW2处于同一位置;在第三染色体分子标记RM3207与RM7370之间检测到一个同时控制粒长、粒厚、粒重和穗粒数的位点,此位点与已经克隆的GS3处于同一位置;在第五染色体分子标记RM5874和RM1237之间检测到一个同时控制粒宽和粒重的位点,在这一较大的区间内,有两个控制籽粒宽度的QTL位点已经被克隆,即qSW5/GW5和GS5;位于第三染色体分子标记RM6266与RM3350之间存在一个同时控制粒长、粒宽、粒厚、粒重和穗长的位点qGL3,该位点还未见报道,可能是控制粒长的一个新的主效位点。综合QTL的定位结果和对已报道的粒形基因在亲本间等位基因的分析比较发现:N411的超大粒形和粒重的遗传基础可能是累聚了至少四个已知的GS3、GW2、qSW5/GW5、 GS5和本文报道的qGL35个效应较大的正效应的粒形QTL位点。
     针对粒长主效位点qGL3,以籼稻93-11作为轮回亲本进行连续回交,利用一个BC2F1自交获得的次级群体BC2F2,构建局部连锁图,再次确认了N411与93-11的组合中依然存在这个控制水稻粒长和粒重的主效位点qGL3。经过多次回交和自交之后,将这一位点分解为单个遗传因子,并分别构建了以93-11为背景的增效等位基因qg13和以N411为背景的减效等位基因qGL3的近等基因系:93-11NIL-qgl3和N411NIL-gGL3.对单因子分离后的分离群体的表型和基因型分析发现:qGL3是一个后代分离符合1:2:1的半显性位点。利用新开发的InDel标记对2,968个个体构成的N411×93-11BC2F3群体中获得的重组个体进行重组位点分析,结合后代表型测验,将qGL3定位在InDel标记XJ39与XJ26之间的46.6kb范围内。
     通过基因组序列分析和表达分析比较,发现在该区间内有5个可能的ORFs,即:ORF1:LOC_Os03g44460;ORF2:LOC_Os03g44470;ORF3:LOC_Os03g44484;ORF4, LOC_Os03g44500和ORF5:LOC_Os03g44510。从中鉴定出唯一一个亲本间有差异的候选基因ORF4(LOC_Os03g44500),它编码一个包含两个Kelch结构域的丝氨酸/苏氨酸磷酸(酯)酶(OsPPKL1)。与93-11的OsPPKL193-11相比,来自N411的OsPPKL1N411的cDNA序列有四处单核苷酸变异SNP1-4:其中SNP1是位于+1092位置的C(93-11)转变为A(N411)(c.+1092C→A),导致编码蛋白的364位的天冬氨酸转变成了谷氨酸(D364E):SNP2是+1495位的C(93-11)转变成了T(N411)(c.+1495C→T),导致499位的组氨酸转变成了酪氨酸(H499Y);另外两处SNP3和SNP4分别是c.+2643A→G和c.+2838T→C,这两个SNPs均是同义突变,不引起编码蛋白质的氨基酸的变化。生物信息学分析发现,在水稻中,OsPPKL1具有两个同源基因:OsPPKL2和OsPPKL3.结合其他多物种的同源基因比对发现,来自N411的等位基因OsPPKL1N411的突变位点SNP1发生在第二个Kelch结构域的一个保守的AVLDT区域,而突变位点SNP2位于一个非完全保守区域。
     对三个同源基因的表达谱分析发现:OsPPKLs具有相似的表达模式,在幼穗中的表达量随着发育进程而逐渐增加,总体上,OsPPKL1和OsPPKL3的表达量高于OsPPKL2。OsPPKL1启动子的GUS活性分析结果与表达谱分析结果相似。对三个来自93-11的OsPPKLs同源蛋白和来自N411的OsPPKL1N411的亚细胞定位发现:OsPPKL1和OsPPKL3定位于细胞质和细胞核中,而OsPPKL2定位于细胞质中。OsPPKL1N411的突变并没有改变OsPPKL193-11的亚细胞定位。
     通过对来自93-11和N411的不同等位基因的转基因研究发现:在水稻品种中花11中过表达OsPPKL193-11会引起水稻籽粒变短,而过量表达OsPPKL1N411并不会引起籽粒明显变化,说明等位基因OsPPKL1N411丢失了OsPPKL193-11的负调控功能,形成了较长的籽粒。对OsPPKL193-11的KeIch和PP2A功能域的分别过量表达的转基因发现,单独过量表达Kelch93-11引起籽粒的明显变短,而单独过量表达PP2A93-11不会引起籽粒变化,这说明OsPPKL193-11中的Kelch结构域是OsPPKL193-11发挥负调控功能的关键结构域。对OsPPKL1的同源基因的过表达转基因发现:与OsPPKL193-11较近的同源基因OSPPKL3的过量表达同样引起水稻籽粒变短,而另外一个同源基因OsPPKL2的过量表达引起籽粒变长。对水稻品种东津(Dongjin)背景下分别敲除OSPPKLS基因家族的突变体的分析发现:Osppkl1和Osppkl3与野生型相比形成较长的籽粒,而Osppkl2形成较短的籽粒。综合转基因试验结果和突变体数据,推测OSPPKL1和OSPPKL3在水稻籽粒长短发育中发挥负调控功能,这种负调控功能来自其Kelch结构域;而OsPPKL2在水稻籽粒发育中发挥正调控的功能。
     对93-11背景下功能型和非功能型的GS3和qGL3的不同等位基因的四种组合方式(GS3/qGL3,gs3/qGL3,GS3/qg13和gs3/qgl3)(?)勺近等基因系研究发现:在功能型GS3的背景下,单独的qGL3转变到ggl3引起籽粒长度的增加值(+2.7mm)大于在非功能性gs3背景下单独的qGL3转变到ggl3引起的籽粒长度的增加值(+2.0mm)。这说明:qgl3和gs3之间可能是部分加性的。进一步通过对这些近等基因系幼穗的表达谱芯片分析发现,qGL3和GS3调控的基因具有各自独立的,同时又有部分重叠的,其中它们共同调控的基因,在调控效果上有程度上的差异。
     利用93-11背景下的近等基因系93-11NIL-qgl3和N411背景下的近等基因系N411NIL-qGL3对qGL3生物学功能的分析发现:qgl3是通过加快颖壳细胞的纵向分裂速度,在颖壳的纵向上形成更多的细胞而引起籽粒变长的;同时,qgl3可以增加子房的伸长速度和籽粒的灌浆速度。利用93-11NIL-qgl3进行育种利用研究发现,在田间试验中,在93-11背景下,导入纯合状态的ggl3可以在不显著改变株高、分蘖数、穗粒数、抽穗期和垩白率等其他农艺性状的情况下,通过增加粒长引起粒重增加,提高产量大约16.20%。鉴于qGL3是半显性遗传,利用93-11NIL-qgl3与三个光敏不育系配制两系杂交稻,与利用93-11配制的杂交稻组合对比发现,处于杂合状态的qgl3可以提高产量约10.12%~13.48%。
     对94个粒形丰富性极高的水稻核心种质的qGL3区域,包含SNP1-4的3.6kb的基因组序列进行分析,鉴定到25个多态性位点。利用这些多态性位点结合籽粒长度数据的关联分析发现:突变SNP1是一个稀有变异,与粒长具有显著关联,而SNP2虽然引起氨基酸的变化,但是与其他同义突变或者内含子区的多态性位点类似,是籼粳稻中广泛存在的差异,与粒长没有显著的关联。结合对水稻核心种质中报道的其他粒形基因的等位基因分析,讨论了自然群体中水稻已知粒形基因的等位分布情况和水稻粒形的遗传结构。
Grain number, panicle number and grain weight are three important components of grain yield of rice (Oryza saliva L.). When grain number per panicle and panicle number per plant reach an ideal level, improvement of grain weight plays a key role in further yield increase in rice breeding program. Grain weight is largely determined by grain size, which is specified by its three dimensions (grain length, width, and thickness) and the degree of filling. Meanwhile, grain shape is also a quality trait for rice so that study on grain size or weight in model plant rice is of great economic and academic meaning.
     For a better understanding of the genetic characteristics of rice grain size or weight, we screened an extra-large grain japonica accession, N411, with more than7.0grams of100-grain weight (HGW) and constructed five F2populations with five small-grain accessions (N643,93-11, RY, LLHN and SWWR). Genetic analysis of the grain shape and weight traits with those five F2populations indicates that there are many genetic differences between the extra-large grain N411and the other five small-grain accessions. The quantitative trait loci (QTL) for four grain traits and three panicle traits were analyzed in the N411×N643F2population. A total of30QTL for the seven traits were detected, including four QTLs for grain length (GL) on chromosome3,10and11; four for grain width (GW) on chromosome2,3and5; eight for grain thickness (GT) on chromosome2,3,5and6; seven for100-grain weight (HGW) on chromosome2,3,5,6,10and11; two for spikelete per panicle (SPP) on chromosome1and3; three for panicle length on chromosome2,3and6; two for grain rate on chromosome7and8. Most of the QTLs for grain traits were mapped to nearly the same intervals or adjacent regions. These pleiotropic performances provided satisfactory explanations for the results of high phenotypic correlations between grain traits in the F2population. Compared with previous studies, the mapping regions of the major QTL qGL3a, qGW2.2and qGW5, explaining25.54%,50.63%and15.38%of the phenotypic variation, were coincident with those of cloned genes GS3, GW2and qSW5/GW5, respectively. qSPP1, which positive alleles from line N643, was localized to the same interval of the cloned gene Gnla. A new grain length QTL, qGL3, which explained38.38%of the total variation of grain length, was mapped to the interval of RM5864-RM3199on the long arm of chromosome3, where the QTLs for GW, GT, HGW and PL were also detected. That most of the positive QTL for the grain traits came from N411provided a genetic explanation for the mechanism of the extra-large grain formation in N411.
     The novel major grain length QTL, qGL3, which explained variations for38.38%grain length,5.96%width,11.89%thickness and27.99%weight, was further disassembled to a single genetic factor in the background of indica accession93-11with marker-associated selection and successive backcrosses. Using a BC2F3population and BC2F4progeny testing, the qGL3QTL was mapped to a46.6-kb region with five predicted ORFs (ORF1, LOC_Os03g44460; ORF2, LOC_Os03g44470; ORF3, LOC_Os03g44484; ORF4, LOC_Os03g44500, and ORF5, LOC_Os03g44510)(Nipponbare genome sequence as a reference).
     Based on RT-PCR analysis and EST information, we found that only ORF3and ORF4were expressed, while ORF1and ORF2encoding retrotransposon proteins and ORF5encoding a transposon were not expressed in rice. RT-PCR analyses showed no expressional difference of ORF3and ORF4in young panicles between93-11and its near-isogenic line (NIL)93-11NIL-qgl3. Sequence comparison of these two expressed ORFs between93-11and N411revealed no difference in the ORF3sequence and four SNPs in the ORF4. SNP1, a single nucleotide transition from C (93-11) to A (N411)(c.+1092C→A), is present in the10th exon of the ORF4, and SNP2, a single nucleotide transition from C (93-11) to T (N411)(c.+1495C→T), in the11th exon. These two transitions cause amino acid residue changes from aspartate to glutamate (Asp364Glu) and histidine to tyrosine (His499Tyr), respectively. SNP3(c.+2643A->G, in the18th exon) and SNP4(c.+2838T→C, in the21th exon) do not cause amino acid residue changes. Therefore, ORF4was most likely the candidate gene for qGL3.
     The ORF4encodes a putative phosphatase with two Kelch repeat domains (OsPPKL1). There are two OsPPKL1homologues, OsPPKL2and OsPPKL3, in rice genome. Sequence alignment of plant homologues of OsPPKL1showed that the amino acid transition (Asp364Glu) caused by SNP1in OsPPKLlN411occurs in a conserved AVLDT motif of the second Kelch domain while the transition (His499Tyr) caused by SNP2occurs in a non-conserved region. Transgenic analysis found that over-expression of OsPPKL193-11and its closer homologue OsPPKL3forms shorter grains in Zhonghua11while over-expression of the other homologue OsPPKL2forms longer grains. Over-expression of the peptide cutoff PP2A domain forms shorter grains but over-expression the peptide without the two Kelch domains causes no effect on rice grain. Accordingly, the T-DNA insertion mutant of OsPPKLI and OsPPKL3exhibits longer grains and mutant of OsPPKL2exhibits shorter grains as compared with its wild type accession Dongjin. Those data indicated that OsPPKLI and its closer homologue OsPPKL3function as negative regulators of grain length, while OsPPKL2as a positive regulator. The Kelch domain is essential for OsPPKL193-11nagetive function.
     In the93-11genetic background,(NIL-GS3/qGL3), single loss qGL3increase grain length much more (~2.7mm) than single loss of GS3(~1.7mm), and loss of qGL3plus GS3together showed partially additive function (~3.7mm). And loss of qGL3in the functional GS3background could increase grain (2.7mm) more than in the null gs3background (~2.0mm). These data indicated that GS3and qGL3take in partially together in rice grain regulation. Some genes were overlapped and in different levels regulated by those two genes indicated by microarray.
     The near-isogenic line in the93-11background analysis indicated that the long glumes of93-11NIL-qgl3resulted from an increase in cell numbers longitudinally, which was consistent with the observation that the ovaries elongation of93-11NIL-qgl3was faster than93-11. Comparison of grain yield and other agronomic traits between93-11and N\L-qgl3showed that qgl3increased grain weight (+37.03%), length (+19.69%), width (+1.15%) and thickness (+8.26%) without changing other agronomic traits significantly. The heterozygote could increase grain weight about16.24%. The qgl3allele can increase16%of grain yield in inbred rice, and10%~13%in hybrid rice by regulating grain length, weight and filling rate.
     Ninety-four rice germplasms with abundant diversity in grain size were selected for sequencing a3.6-kb genomic DNA fragment that covers the four mutation sites of the qgl3. We found only one variety, DT108(grain length=12.08mm) have the same SNP1as N411, while polymorphisms of SNP2, SNP3and SNP4are widely distributed in either japonica or indica varieties. By association analysis of the SNPs and InDel markers in the3.6-kb region with grain length of the94germplasms, we found that SNP1had a high contribution to grain length while other polymorphic sites had no significant contributions to grain length. These results indicate that the qgl3is a rare allele in rice and SNP1is a functional mutation for long grain. Using this collection, the gene alleles of the reported grain shape genes/QTLs were analyzed, and the genetic architecture of rice grain shape was discussed.
     Those results indicated that qGL3may be used in either cross-selection breeding by MAS, or hybrid-rice breeding to increase rice yield and to improve appearance quality. Breeding application of this rare and desirable allele for extra-large grain may make a great improvement in the rice yield.
引文
[1]Henig RM. The monk in the garden:the lost and found genius of Gregor Mendel, the father of genetics [M]. Mariner Books 2001
    [2]Lander ES, Botstein D. Mapping Mendelian Factors Underlying Quantitative Traits Using RFLP Linkage Maps [J]. Genetics,1989,121(1):185-199
    [3]章元明,盖钧镒.利用P1,F1,P2, F2和F2:3家系五世代联合分离分析的拓展[J].生物数学学报,2002,17(3):363-368
    [4]章元明,王建康.利用回交B1和B2及F2群体鉴定数量性状两对主基因+多基因混合遗传分析中鉴定多基因存在的IECM算法[J].生物数学学报,2000,15(3):358-366
    [5]Sax K. The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris [J]. Genetics,1923,8(6):552
    [6]Huang X, Feng Q, Qian Q, et al. High-throughput genotyping by whole-genome resequencing [J]. Genome Res,2009,19(6):1068-1076
    [7]Myles S, Peiffer J, Brown PJ, et al. Association mapping:critical considerations shift from genotyping to experimental design [J]. Plant Cell,2009,21(8):2194-2202
    [8]Salvi S, Tuberosa R. To clone or not to clone plant QTLs:present and future challenges [J]. Trends in Plant Science,2005,10(6):297-304
    [9]Zeng ZB. Precision Mapping of Quantitative Trait Loci [J]. Genetics,1994,136(4):1457-1468
    [10]Wang J. Inclusive composite interval mapping of quantitative trait genes [J]. Acta Agronomica Sinica,2009,35(2):239-245
    [11]Wang DL, Zhu J, Li ZKL, et al. Mapping QTLs with epistatic effects and QTL×environment interactions by mixed linear model approaches [J]. Theor Appl Genet,1999,99(7):1255-1264
    [12]章元明.作物QTL定位方法研究进展[J].科学通报,2006,51(19):2223-2231
    [13]Wang S, Basten CJ, Zeng Z-B. Windows QTL cartographer 2.5 [J]. Department of Statistics, North Carolina State University, Raleigh, NC (http://statgenncsuedu/qtlcart/WQTLCarthtm), 2011:
    [14]王玉,王健康.复合性状开展QTL作图的有效性研究.2009年中国作物学会学术年会论文摘要集.2009:1
    [15]田佩占,王继安.亲本差异对大豆杂种F2,F3代植株性状及其相互关系的影响[J].吉林农业科学,1983,3:001
    [16]McCouch SR, Doerge RW. QTL mapping in rice [J]. Trends Genet,1995,11(12):482-487
    [17]Thomson MJ, Tai TH, McClung AM, et al. Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson [J]. Theor Appl Genet,2003,107(3):479-493
    [18]Gardiner JM, Coe EH, Melia-Hancock S, et al. Development of a core RFLP map in maize using an immortalized F2 population [J]. Genetics,1993,134(3):917-930
    [19]Hua J, Xing Y, Wu W, et al. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid [J]. Proc Natl Acad Sci USA,2003,100(5):2574-2579
    [20]Gallais A. Quantitative genetics of doubled haploid populations and application to the theory of line development [J]. Genetics,1990,124(1):199-206
    [21]Lu C, Shen L, He P, et al. Comparative mapping of QTLs for agronomic traits of rice across environments by using a doubled-haploid population [J]. Theor Appl Genet,1997,94(1): 145-150
    [22]Ebitani T, Takeuchi Y, Nonoue Y, et al. Construction and evaluation of chromosome segment substitution lines carrying overlapping chromosome segments of indica rice cultivar'Kasalath' in a genetic background of japonica elite cultivar'Koshihikari'[J]. Breeding Science,2005, 55(1):65-73
    [23]Keurentjes JJ, Bentsink L, Alonso-Blanco C, et al. Development of a near-isogenic line population of Arabidopsis thaliana and comparison of mapping power with a recombinant inbred line population [J]. Genetics,2007,175(2):891-905
    [24]Yamanaka N, Watanabe S, Toda K, et al. Fine mapping of the FT1 locus for soybean flowering time using a residual heterozygous line derived from a recombinant inbred line [J]. Theor Appl Genet,2005,110(4):634-639
    [25]Watanabe S, Xia Z, Hideshima R, et al. A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering [J]. Genetics,2011,188(2):395-407
    [26]Michelmore RW, Paran I, Kesseli RV. Identification of markers linked to disease-resistance genes by bulked segregant analysis:a rapid method to detect markers in specific genomic regions by using segregating populations [J]. Proc Natl Acad Sci USA,1991,88(21):9828-9832
    [27]Ruyter-Spira CP, Gu ZL, Van der Poel JJ, et al. Bulked segregant analysis using microsatellites: mapping of the dominant white locus in the chicken [J]. Poult Sci,1997,76(2):386-391
    [28]Vikram P, Swamy BPM, Dixit S, et al. Bulk segregant analysis:"An effective approach for mapping consistent-effect drought grain yield QTLs in rice" [J]. Field Crops Research,2012, 134(0):185-192
    [29]Darvasi A. The effect of selective genotyping on QTL mapping accuracy [J]. Mamm Genome, 1997,8(1):67-68
    [30]Nandi S, Subudhi PK, Senadhira D, et al. Mapping QTLs for submergence tolerance in rice by AFLP analysis and selective genotyping [J]. Mol Gen Genet,1997,255(1):1-8
    [31]Navabi A, Mather DE, Bernier J, et al. QTL detection with bidirectional and unidirectional selective genotyping:marker-based and trait-based analyses [J]. Theor Appl Genet,2009,118(2): 347-358
    [32]宋宪亮,孙学振,张天真.偏分离及对植物遗传作图的影响[J].农业生物技术学报,2006,14(2):286-292
    [33]彭勇,梁永书,王世全,et a1.水稻SSR标记在RI群体的偏分离分析[J].分子植物育种,2007,4(6):786-790
    [34]Zhu C, Gore M, Buckler ES, et al. Status and prospects of association mapping in plants [J]. The plant genome,2008,1(1):5-20
    [35]Pritchard JK, Stephens M, Rosenberg NA, et al. Association mapping in structured populations [J]. The American Journal of Human Genetics,2000,67(1):170-181
    [36]Gupta PK, Rustgi S, Kulwal PL. Linkage disequilibrium and association studies in higher plants: present status and future prospects [J]. Plant Mol Biol,2005,57(4):461-485
    [37]Hill W G. Estimation of linkage disequilibrium in randomly mating populations [J]. Heredity, 1974,33(2):229
    [38]Flint-Garcia SA, Thornsberry JM, Buckler ES. Structure of linkage disequilibrium in plants [J]. Annu Rev Plant Biol,2003,54:357-374
    [39]Huang X, Wei X, Sang T, et al. Genome-wide association studies of 14 agronomic traits in rice landraces [J]. Nat Genet,2010,42(11):961-967
    [40]Tenaillon MI, Sawkins MC, Long AD, et al. Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.) [J]. Proc Natl Acad Sci USA,2001,98(16): 9161-9166
    [41]Remington DL, Thornsberry JM, Matsuoka Y, et al. Structure of linkage disequilibrium and phenotypic associations in the maize genome [J]. Proc Natl Acad Sci USA,2001,98(20): 11479-11484
    [42]Rafalski A. Applications of single nucleotide polymorphisms in crop genetics [J]. Curr Opin Plant Biol,2002,5(2):94-100
    [43]McCarthy MI, Abecasis GR, Cardon LR, et al. Genome-wide association studies for complex traits:consensus, uncertainty and challenges [J]. Nature Reviews Genetics,2008,9(5):356-369
    [44]Tian Z, Qian Q, Liu Q, et al. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities [J]. Proc Natl Acad Sci USA,2009,106(51):21760-21765
    [45]Ehrenreich IM, Hanzawa Y, Chou L, et al. Candidate gene association mapping of Arabidopsis flowering time [J]. Genetics,2009,183(1):325-335
    [46]Yu J, Buckler ES. Genetic association mapping and genome organization of maize [J]. Current Opinion in Biotechnology,2006,17(2):155-160
    [47]Yu J, Holland JB, McMullen MD, et al. Genetic design and statistical power of nested association mapping in maize [J]. Genetics,2008,178(1):539-551
    [48]McMullen MD, Kresovich S, Villeda HS, et al. Genetic properties of the maize nested association mapping population [J]. Science,2009,325(5941):737-740
    [49]Price AH. Believe it or not, QTLs are accurate! [J]. Trends in Plant Science,2006,11(5): 213-216
    [50]Korstanje R, Paigen B. From QTL to gene:the harvest begins [J]. Nat Genet,2002,31(3): 235-236
    [51]吴家胜,汪旭升.数量性状位点(QTLs)内候选基因的生物信息学分析方法[J].浙江林学院学报,2008,25(001):104-108
    [52]Xue WY, Xing YZ, Weng XY, et al. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice [J]. Nature Genetics,2008,40(6):761-767
    [53]Cooper M, van Eeuwijk FA, Hammer GL, et al. Modeling QTL for complex traits:detection and context for plant breeding [J]. Curr Opin Plant Biol,2009,12(2):231-240
    [54]Jiao Y, Wang Y, Xue D, et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice [J]. Nat Genet,2010,42(6):541-544
    [55]Zhang Q, Li J, Xue Y, et al. Rice 2020:A call for an international coordinated effort in rice functional genomics [J]. Molecular Plant,2008,1(5):715-719
    [56]He P, Li SG, Qian Q, et al. Genetic analysis of rice grain quality [J]. Theor Appl Genet 1999, 98(3):502-508
    [57]Fitzgerald MA, McCouch SR, Hall RD. Not just a grain of rice:the quest for quality [J]. Trends Plant Sci,2009,14(3):133-139
    [58]Goff SA, Ricke D, Lan TH, et al. A draft sequence of the rice genome (Oryza saliva L. ssp. japonica) [J]. Science,2002,296(5565):92-100
    [59]Yu J, Hu S, Wang J, et al. A draft sequence of the rice genome (Oryza saliva L. ssp. indicd) [J]. Science,2002,296(5565):79-92
    [60]McCouch SR, Teytelman L, Xu Y, et al. Development and mapping of 2240 new SSR markers for rice (Oryza saliva L.) [J]. DNA Res,2002,9(6):199-207
    [61]Li Z, Pinson SR, Park WD, et al. Epistasis for three grain yield components in rice (Oryza saliva L.) [J]. Genetics,1997,145(2):453-465
    [62]Chang T. Crop history and genetic conservation:Rice:A case study [J]. Iowa state journal of research,1985,59(4)(0092-6345):425-455
    [63]Zhang P, Li J, Li X, et al. Population Structure and Genetic Diversity in a Rice Core Collection (Oryza saliva L.) Investigated with SSR Markers [J]. PLoS One,2011,6(12):e27565
    [64]Huang X, Kurata N, Wei X, et al. A map of rice genome variation reveals the origin of cultivated rice [J]. Nature,2012,490(7421):497-501
    [65]Vitte C, Ishii T, Lamy F, et al. Genomic paleontology provides evidence for two distinct origins of Asian rice (Oryza saliva L.) [J]. Mol Genet Genomics,2004,272(5):504-511
    [66]Zhu Q, Ge S. Phylogenetic relationships among A-genome species of the genus Oryza revealed by intron sequences of four nuclear genes [J]. New Phytologist,2005,167(1):249-265
    [67]Sakamoto T, Matsuoka M. Identifying and exploiting grain yield genes in rice [J]. Curr Opin Plant Biol,2008,11(2):209-214
    [68]Zhao K, Tung CW, Eizenga GC, et al. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa [J]. Nat Commun,2011,2:467
    [69]Takeda K, Saito K. Major genes responsible for grain shape in rice [J]. Jpn J Breed,1980,30: 280-282
    [70]McKenzie KS, Rutger JN. Genetic analysis of amylose content, alkali spreading score, and grain dimensions in rice [J]. Crop Sci,1983,23(2):306-313
    [71]Zhou LQ, Wang YP, Li SG. Genetic analysis and physical mapping of Lk-4(t), a major gene controlling grain length in rice, with a BC2F2 population [J]. Acta Genetiea Siniea,2006,33(1): 72-79
    [72]Wan XY, Wan JM, Jiang L, et al. QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects [J]. Theor Appl Genet,2006,112(7):1258-1270
    [73]Li J, Thomson M, McCouch SR. Fine mapping of a grain-weight quantitative trait locus in the pericentromeric region of rice chromosome 3 [J]. Genetics,2004,168(4):2187-2195
    [74]Liu T, Shao D, Kovi MR, et al. Mapping and validation of quantitative trait loci for spikelets per panicle and 1,000-grain weight in rice (Oryza sativa L.) [J]. Theor Appl Genet,2010,120(5): 933-942
    [75]Fan C, Xing Y, Mao H, et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein [J]. Theor Appl Genet,2006,112(6):1164-1171
    [76]Bai X, Luo L, Yan W, et al. Genetic dissection of rice grain shape using a recombinant inbred line population derived from two contrasting parents and fine mapping a pleiotropic quantitative trait locus qGL7 [J]. BMC Genet,2010,11:16
    [77]Shao G, Tang S, Luo J, et al. Mapping of qGL7-2, a grain length QTL on chromosome 7 of rice [J]. J Genet Genomics,2010,37(8):523-531
    [78]Xie X, Song MH, Jin F, et al. Fine mapping of a grain weight quantitative trait locus on rice chromosome 8 using near-isogenic lines derived from a cross between Oryza sativa and Oryza rufipogon [J]. Theor Appl Genet,2006,113(5):885-894
    [79]Song XJ, Huang W, Shi M, et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase [J]. Nat Genet,2007,39(5):623-630
    [80]Shomura A, Izawa T, Ebana K, et al. Deletion in a gene associated with grain size increased yields during rice domestication [J]. Nat Genet,2008,40(8):1023-1028
    [81]Weng J, Gu S, Wan X, et al. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight [J]. Cell Res,2008,18(12):1199-1209
    [82]Huang X, Zhao Y, Wei X, et al. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm [J]. Nat Genet,2011:
    [83]Manenti G, Galvan A, Pettinicchio A, et al. Mouse genome-wide association mapping needs linkage analysis to avoid false-positive Loci [J]. PLoS Genet,2009,5(1):e1000331
    [84]Mao H, Sun S, Yao J, et al. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice [J]. Proc Natl Acad Sci USA,2010,107(45):19579-19584
    [85]Takano-Kai N, Jiang H, Kubo T, et al. Evolutionary history of GS3, a gene conferring grain length in rice [J]. Genetics,2009,182(4):1323-1334
    [86]Fan C, Yu S, Wang C, et al. A causal C-A mutation in the second exon of GS3 highly associated with rice grain length and validated as a functional marker [J]. Theor Appl Genet,2009,118(3): 465-472
    [87]Li Q, Yang X, Bai G, et al. Cloning and characterization of a putative GS3 ortholog involved in maize kernel development [J]. Theor Appl Genet,2010,120(4):753-763
    [88]Yan CJ, Zhou JH, Yan S, et al. Identification and characterization of a major QTL responsible for erect panicle trait in japonica rice (Oryza sativa L.) [J]. Theor Appl Genet,2007,115(8): 1093-1100
    [89]Huang X, Qian Q, Liu Z, et al. Natural variation at the DEP1 locus enhances grain yield in rice [J]. Nat Genet,2009,41(4):494-497
    [90]Zhou Y, Zhu J, Li Z, et al. Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves plant architecture during rice domestication [J]. Genetics,2009,183(1): 315-324
    [91]Liu J, Van Eck J, Cong B, et al. A new class of regulatory genes underlying the cause of pear-shaped tomato fruit [J]. Proc Natl Acad Sci USA,2002,99(20):13302
    [92]Li S, Liu Y, Zheng L, et al. The plant-specific G protein gamma subunit AGG3 influences organ size and shape in Arabidopsis thaliana [J]. New Phytol,2012,194(3):690-703
    [93]Li S, Liu W, Zhang X, et al. Roles of the Arabidopsis G protein gamma subunit AGG3 and its rice homologs GS3 and DEP1 in seed and organ size control [J]. Plant Signal Behav,2012, 7(10):1357-1359
    [94]Chen JG Heterotrimeric G-proteins in plant development [J]. Front Biosci,2008,13:3321-3333
    [95]Chen JG, Gao Y, Jones AM. Differential roles of Arabidopsis heterotrimeric G-protein subunits in modulating cell division in roots [J]. Plant Physiol,2006,141(3):887-897
    [96]Oki K, Inaba N, Kitano H, et al. Study of novel dl alleles, defective mutants of the a subunit of heterotrimeric G-protein in rice [J]. Genes Genet Syst,2009,84(1):35-42
    [97]Miura K, Agetsuma M, Kitano H, et al. A metastable DWARF1 epigenetic mutant affecting plant stature in rice [J]. Proc Natl Acad Sci USA,2009,106(27):11218-11223
    [98]Ueguchi-Tanaka M, Fujisawa Y, Kobayashi M, et al. Rice dwarf mutant dl, which is defective in the a subunit of the heterotrimeric G protein, affects gibberellin signal transduction [J]. Proc Nat! Acad Sci USA,2000,97(21):11638-11643
    [99]Ashikari M, Wu J, Yano M, et al. Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the a-subunit of GTP-binding protein [J]. Proc Natl Acad Sci USA,1999,96(18): 10284-10289
    [100]Oki K, Kitagawa K, Fujisawa Y, et al. Function of a subunit of heterotrimeric G protein in brassinosteroid response of rice plants [J]. Plant Signal Behav,2009,4(2):126-128
    [101]Gao Y, Wang S, Asami T, et al. Loss-of-function mutations in the Arabidopsis heterotrimeric G-protein a subunit enhance the developmental defects of brassinosteroid signaling and biosynthesis mutants [J]. Plant Cell Physiol,2008,49(7):1013-1024
    [102]Abe Y, Mieda K, Ando T, et al. The SMALL AND ROUND SEED] (SRS1/DEP2) gene is involved in the regulation of seed size in rice [J]. Genes Genet Syst,2010,85(5):327-339
    [103]Zhu K, Tang D, Yan C, et al. Erect panicle2 encodes a novel protein that regulates panicle erectness in indica rice [J]. Genetics,2010,184(2):343-350
    [104]Li F, Liu W, Tang J, et al. Rice DENSE AND ERECT PANICLE 2 is essential for determining panicle outgrowth and elongation [J]. Cell Res,2010,20(7):838-849
    [105]Qiao Y, Piao R, Shi J, et al. Fine mapping and candidate gene analysis of dense and erect panicle 3, DEP3, which confers high grain yield in rice (Oryza saliva L.) [J]. Theor Appl Genet, 2011,122(7):1439-1449
    [106]Kitagawa K, Kurinami S, Oki K, et al. A novel kinesin 13 protein regulating rice seed length [J]. Plant Cell Physiol,2010,51 (8):1315-1329
    [107]Segami S, Kono I, Ando T, et al. Small and round seed 5 gene encodes alpha-tubulin regulating seed cell elongation in rice [J]. Rice,2012,5(1):4
    [108]Hong Z, Ueguchi-Tanaka M, Umemura K, et al. A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450 [J]. Plant Cell, 2003,15(12):2900-2910
    [109]Tanabe S, Ashikari M, Fujioka S, et al. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarfll, with reduced seed length [J]. Plant Cell,2005,17(3):776-790
    [110]Wu CY, Trieu A, Radhakrishnan P, et al. Brassinosteroids regulate grain filling in rice [J]. Plant Cell,2008,20(8):2130-2145
    [111]Yamamuro C, Ihara Y, Wu X, et al. Loss of function of a rice brassinosteroid insensitivel homolog prevents internode elongation and bending of the lamina joint [J]. Plant Cell,2000, 12(9):1591-1606
    [112]Nakamura A, Fujioka S, Sunohara H, et al. The role of OsBRIl and its homologous genes, OsBRL1 and OsBRL3, in rice [J]. Plant Physiol,2006,140(2):580-590
    [113]Tanaka A, Nakagawa H, Tomita C, et al. BRASSINOSTEROID UPREGULATED1, encoding a helix-loop-helix protein, is a novel gene involved in brassinosteroid signaling and controls bending of the lamina joint in rice [J]. Plant Physiol,2009,151(2):669-680
    [114]Oki K, Inaba N, Kitagawa K, et al. Function of the a subunit of rice heterotrimeric G protein in brassinosteroid signaling [J]. Plant Cell Physiol,2009,50(1):161-172
    [115]Wang L, Xu YY, Ma QB, et al. Heterotrimeric G protein a subunit is involved in rice brassinosteroid response [J]. Cell Res,2006,16(12):916-922
    [116]Tong H, Liu L, Jin Y, et al. DWARF AND LOW-TILLERING acts as a direct downstream target of a GSK3/SHAGGY-like kinase to mediate brassinosteroid responses in rice [J]. Plant Cell,2012,24(6): 2562-2577
    [117]Sui P, Jin J, Ye S, et al. H3K36 methylation is critical for brassinosteroid-regulated plant growth and development in rice [J]. The Plant Journal,2012,70(2):340-347
    [118]Heang D, Sassa H. Antagonistic actions of HLH/bHLH proteins are involved in grain length and weight in rice [J]. PLoS One,2012,7(2):e31325
    [119]Zhang LY, Bai MY, Wu J, et al. Antagonistic HLH/bHLH transcription factors mediate brassinosteroid regulation of cell elongation and plant development in rice and Arabidopsis [J]. Plant Cell,2009,21(12):3767-3780
    [120]Jiang Y, Bao L, Jeong SY, et al. XIAO is involved in the control of organ size by contributing to the regulation of signaling and homeostasis of brassinosteroids and cell cycling in rice [J]. Plant J,2012,70(3):398-408
    [121]Nakagawa H, Tanaka A, Tanabata T, et al. SHORT GRAIN 1 Decreases Organ Elongation and Brassinosteroid Response in Rice [J]. Plant Physiol,2012,158(3):1208-1219
    [122]Yan C-J, Yan S, Yang Y-C, et al. Development of gene-tagged markers for quantitative trait loci underlying rice yield components [J]. Euphytica,2009,169(2):215-226
    [123]Wan X, Weng J, Zhai H, et al. Quantitative trait loci (QTL) analysis for rice grain width and fine mapping of an identified QTL allele gw-5 in a recombination hotspot region on chromosome 5 [J]. Genetics,2008,179(4):2239-2252
    [124]Li Y, Fan C, Xing Y, et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice [J]. Nat Genet,2011,43(12):1266-1269
    [125]Wang S, Wu K, Yuan Q, et al. Control of grain size, shape and quality by OsSPL16 in rice [J]. Nat Genet,2012,44(8):950-954
    [126]刘建丰,袁隆平.超高产杂交稻产量性状研究[J].湖南农业大学学报:自然科学版,2002,28(6):453-456
    [127]Zhang Q. Strategies for developing Green Super Rice [J]. Proc Natl Acad Sci USA,2007, 104(42):16402-16409
    [128]von Caemmerer S, Quick WP, Furbank RT. The Development of C4 rice:current progress and future challenges [J]. Science,2012,336(6089):1671-1672
    [129]Ashikari M, Sakakibara H, Lin S, et al. Cytokinin oxidase regulates rice grain production [J]. Science,2005,309(5735):741-745
    [130]郭龙彪,张丽华,魏兴华,等.优异稻种大粒种质的综合评价[J].中国水稻所年报,1995:27-28
    [131]马丽莲,郭龙彪,钱前.水稻大粒种质资源和遗传分析[J].植物学通报,2006,23(4):395-401
    [132]张颖慧,谢永楚,董少玲,et a1.利用水稻籼粳重组自交系群体研究粒型性状与千粒重的相关性[J].江苏农业学报,2012,28(2):231-235
    [133]张颖慧,谢永楚,董少玲,等.利用水稻籼粳重组自交系群体研究粒型性状与千粒重的相关性[J].江苏农业学报,2012,28(2):231-235
    [134]张强,姚国新,胡广隆,等.利用极端材料定位水稻粒形性状数量基因位点[J].作物学报,2011,37(05):784-792
    [135]Ying JZ, Gao JP, Shan JX, et al. Dissecting the genetic basis of extremely large grain shape in rice cultivar 'JZ1560'[J]. J Genet Genomics,2012,39(7):325-333
    [136]Wang E, Wang J, Zhu X, et al. Control of rice grain-filling and yield by a gene with a potential signature of domestication [J]. Nat Genet,2008,40(11):1370-1374林荔辉,吴为人.水稻粒型和粒重的QTL定位分析[J].分子植物育种,2003,1(3):337-342
    [137]萨姆布鲁J,弗里奇EF.曼尼阿蒂斯 T. 分子克隆实验指南.ed.:北京:科学出版社1998
    [138]Han B, Wang L, Wang AH, et al. Mapping 49 quantitative trait loci at high resolution through sequencing-based genotyping of rice recombinant inbred lines [J]. Theor Appl Genet,2011, 122(2):327-340
    [139]Daar IO, Artymiuk PJ, Phillips DC, et al. Human triose-phosphate isomerase deficiency:a single amino acid substitution results in a thermolabile enzyme [J]. Proc Natl Acad Sci USA,1986, 83(20):7903-7907
    [140]Valverde P, Healy E, Sikkink S, et al. The Asp84Glu variant of the Melanocortin 1 Receptor (MCIR) is associated with melanoma [J]. Human Molecular Genetics,1996,5(10):1663-1666
    [141]Kutuzov MA, Andreeva AV. Protein Ser/Thr phosphatases with kelch-like repeat domains [J]. Cell Signal,2002,14(9):745-750
    [142]Singh A, Giri J, Kapoor S, et al. Protein phosphatase complement in rice:genome-wide identification and transcriptional analysis under abiotic stress conditions and reproductive development [J]. BMC Genomics,2010,11:435
    [143]Mora-Garcia S, Vert G, Yin Y, et al. Nuclear protein phosphatases with Kelch-repeat domains modulate the response to brassinosteroids in Arabidopsis [J]. Genes Dev,2004,18(4):448-460
    [144]Kim T-W, Guan S, Burlingame Alma L, et al. The CDG1 kinase mediates brassinosteroid signal transduction from BRI1 receptor kinase to BSU1 phosphatase and GSK3-like kinase BIN2 [J]. Molecular Cell,2011,43(4):561-571
    [145]Kim TW, Guan S, Sun Y, et al. Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors [J]. Nat Cell Biol,2009,11(10):1254-1260
    [146]Philip N, Vaikkinen HJ, Tetley L, et al. A unique Kelch domain phosphatase in Plasmodium regulates ookinete morphology, motility and invasion [J]. PLoS One,2012,7(9):e44617
    [147]Tamura K, Dudley J, Nei M, et al. MEGA4:molecular evolutionary genetics analysis (MEGA) software version 4.0 [J]. Mol Biol Evol,2007,24:1596-1599
    [148]Jeon JS, Lee S, Jung KH, et al. T-DNA insertional mutagenesis for functional genomics in rice [J]. Plant J,2000,22(6):561-570
    [149]Jeong DH, An S, Park S, et al. Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice [J]. Plant J,2006,45(1):123-132
    [150]Adams J, Kelso R, Cooley L. The kelch repeat superfamily of proteins:propellers of cell function [J]. Trends Cell Biol,2000,10(1):17-24
    [151]Grove MD, Spencer GF, Rohwedder WK, et al. Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen [J]. Nature,1979,281(5728):216-217
    [152]Li J, Nagpal P, Vitart V, et al. A role for brassinosteroids in light-dependent development of Arabidopsis [J]. Science,1996,272(5260):398-401
    [153]Szekeres M, Nemeth K, Koncz-Kalman Z, et al. Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis [J]. Cell,1996,85(2):171-182
    [154]Turk EM, Fujioka S, Seto H, et al. CYP72B1 inactivates brassinosteroid hormones:an intersection between photomorphogenesis and plant steroid signal transduction [J]. Plant Physiol, 2003,133(4):1643-1653
    [155]Hong Z, Ueguchi-Tanaka M, Fujioka S, et al. The Rice brassinosteroid-deficient dwarJ2 mutant, defective in the rice homolog of Arabidopsis DIM1NUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone [J]. Plant Cell, 2005,17(8):2243-2254
    [156]Symons GM, Reid JB. Brassinosteroids Do Not Undergo Long-Distance Transport in Pea. Implications for the Regulation of Endogenous Brassinosteroid Levels [J]. Plant Physiology, 2004,135(4):2196-2206
    [157]Bancos S, Nomura T, Sato T, et al. Regulation of transcript levels of the Arabidopsis cytochrome p450 genes involved in brassinosteroid biosynthesis [J]. Plant Physiol,2002,130(1):504-513
    [158]Bancos S, Szatmari AM, Castle J, et al. Diurnal regulation of the brassinosteroid-biosynthetic CPD gene in Arabidopsis [J]. Plant Physiol,2006,141(1):299-309
    [159]Guo Z, Fujioka S, Blancaflor EB, et al. TCP1 modulates brassinosteroid biosynthesis by regulating the expression of the key biosynthetic gene DWARF4 in Arabidopsis thaliana [J]. Plant Cell,2010,22(4):1161-1173
    [160]Clouse SD, Langford M, McMorris TC. A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development [J]. Plant Physiol,1996,111(3): 671-678
    [161]Montoya T, Nomura T, Farrar K, et al. Cloning the tomato curl3 gene highlights the putative dual role of the leucine-rich repeat receptor kinase tBRI1/SR160 in plant steroid hormone and peptide hormone signaling [J]. Plant Cell,2002,14(12):3163-3176
    [162]Li J, Chory J. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction [J]. Cell,1997,90(5):929-938
    [163]Bishop GJ, Koncz C. Brassinosteroids and plant steroid hormone signaling [J]. Plant Cell,2002, 14 Suppl:S97-110
    [164]Cano-Delgado A, Yin Y, Yu C, et al. BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis [J]. Development,2004,131(21):5341-5351
    [165]Wang X, Chory J. Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane [J]. Science,2006,313(5790):1118-1122
    [166]Li J, Wen J, Lease KA, et al. BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BR11 and modulates brassinosteroid signaling [J]. Cell,2002,110(2):213-222
    [167]Oh MH, Wang X, Kota U, et al. Tyrosine phosphorylation of the BRI1 receptor kinase emerges as a component of brassinosteroid signaling in Arabidopsis [J]. Proc Natl Acad Sci USA,2009, 106(2):658-663
    [168]Tang W, Kim TW, Oses-Prieto JA, et al. BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis [J]. Science,2008,321(5888):557-560
    [169]Yin Y, Wang ZY, Mora-Garcia S, et al. BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation [J]. Cell,2002,109(2): 181-191
    [170]Wang ZY, Nakano T, Gendron J, et al. Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis [J]. Dev Cell,2002,2(4):505-513
    [171]Li J, Nam KH, Vafeados D, et al. BIN2, a new brassinosteroid-insensitive locus in Arabidopsis [J]. Plant Physiol,2001,127(1):14-22
    [172]Yu X, Li L, Zola J, et al. A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana [J]. The Plant Journal,2011,65(4): 634-646
    [173]Li L, Yu X, Thompson A, et al. Arabidopsis MYB30 is a direct target of BESI and cooperates with BESI to regulate brassinosteroid-induced gene expression [J]. The Plant Journal,2009, 58(2):275-286
    [174]Kim TW, Wang ZY. Brassinosteroid signal transduction from receptor kinases to transcription factors [J]. Annu Rev Plant Biol,2010,61:681-704
    [175]Orjuela J, Garavito A, Bouniol M, et al. A universal core genetic map for rice [J]. Theor Appl Genet,2010,120(3):563-572

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700