用户名: 密码: 验证码:
甘蓝型油菜黄(褐)籽性状形成的分子机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄籽甘蓝型油菜与褐籽甘蓝型油菜相比具有很多优点,如种皮薄、含油量高、高蛋白、纤维素和木质素含量低、油质清澈等,已经成为近年来油菜育种改良的重要目标之一。本研究利用前人从甘蓝型油菜-白芥体细胞杂种后代筛选获得的黄籽株系,通过NIRS、FTIR、NMR等方法比较该黄籽材料与褐籽甘蓝型油菜(扬油6号)的品质差异,借助LC-ESI-MSn比较分析黄、褐籽种子成熟过程中类黄酮等色素成分含量的差异;通过比较蛋白质组学(2-DE)研究了黄、褐籽材料种子成熟过程的蛋白质差异,利用iTRAQ定量比较分析黄、褐籽材料成熟种子油体蛋白的差异;通过数字基因表达谱(DGE)比较黄、褐籽材料种子成熟过程中基因表达的差异,并通过qRT-PCR进行了验证、以及与蛋白质组差异进行了关联分析,探讨与甘蓝型油菜黄籽性状形成的相关基因。主要研究结果如下:
     黄、褐籽甘蓝型油菜的品质分析NIRS分析表明黄籽甘蓝型油菜的含油量、蛋白质含量、硫代葡萄糖苷和芥酸较褐籽甘蓝型油菜扬油6号有所改善,黄籽株系的NDF、ADF、 ADL含量比扬油6号低;ATR-FTIR分析表明白芥与扬油6号脂类物质、蛋白质酰胺键等化学基团的振动峰相比差异明显,黄籽材料间也存在差异,黄籽株系的这些振动峰与白芥或扬油6号相似,但是黄、褐籽材料种皮的碳水化合物没有明显差异;NMR分析鉴定出油菜种皮中代表不同化学基团的谱峰,发现白芥与扬油6号在代表木质素相关基团的谱峰上有明显差异,扬油6号NMR谱图中代表纤维素和木质素的峰明显比白芥和黄籽株系强,这与黄籽材料的木质素和纤维素含量比褐籽材料低的结果是一致的。
     黄、褐籽甘蓝型油菜类黄酮等的HPLC分析通过LC-ESI-MSn我们成功鉴定了油菜种皮中的主要多酚化合物(芥子碱、芥子酸和1,2-芥子酰基蔗糖)和16种类黄酮物质,包括表儿茶素及其单体聚合物、槲皮素、山奈酚、异鼠李素-二己糖苷、山奈酚-芥子酰-三己糖苷、异鼠李素-芥子酰-三己糖苷、异鼠李素-己糖硫酸、异鼠李素-3-O-糖苷。大部分黄酮类物质随着种子成熟过程不断积累,部分类黄酮在种子成熟后期含量减少,黄籽株系的类黄酮含量比褐籽低。此外,不溶性原花青素、可溶性酚酸的含量在黄、褐籽材料中也有明显差异。
     黄、褐籽甘蓝型油菜种子成熟过程中比较蛋白质组分析通过蛋白质组学方法比较了黄、褐籽甘蓝型油菜种子成熟过程蛋白质组学的变化,以期寻找与黄籽性状相关的蛋白质表达特征。利用双向电泳(2-DE)对种子总蛋白进行分离,MALDI-TOF-MS质谱分析鉴定了27个差异蛋白点,成功鉴定出8个蛋白,包括蛋白激酶、烯醇化酶、磷酸异构酶、双加氧酶等。基于差异蛋白的推测氨基酸序列设计引物进行验证,表明蛋白点H3-5为远缘杂交后代的新出现的蛋白,H5-2来自于亲本白芥,且该黄籽材料与现有其他来源的黄籽不同。
     黄、褐籽甘蓝型油菜成熟种子油体蛋白的比较通过分离纯化褐籽扬油6号(Bn)、白芥(Sa)、黄籽株系(W82)的油体,并将提取的油体蛋白进行水解后,经iTRAQ标记肽段,经串联质谱对肽段进行鉴别和定量。我们成功鉴定3091个特异多肽片段,通过同源比对分析鉴定到1511种蛋白,其中包括常见的油体蛋白:15个油质蛋白(oleosin)、5个钙结合油质蛋白(steroleosin)、3个固醇油质蛋白(caleosin)。此外,我们检测出p-葡糖苷酶、α-葡糖苷酶、黑芥子酶、黑芥子酶结合蛋白、胚胎特异蛋白(ATS)、热激蛋白(HSP)和抗氧化蛋白等,以及cruciferin和napin等种子贮藏蛋白;一些质体膜蛋白、膜转移酶、膜受体、ATP合成酶以及ATP结合蛋白也成功检测到,这些蛋白可能源自蛋白体、线粒体等的污染。通过对蛋白的定量比较分析,我们发现白芥和W82之间有270个差异蛋白,其中92个蛋白在W82中上调、178个蛋白表达量下调:白芥与扬油6号相比有167个蛋白上调、86个蛋白下调;W82与扬油6号相比27个蛋白上调、37个蛋白下调。对差异表达蛋白进行聚类分析,我们发现85个蛋白在3个比较组合(Bn vs W82, Sa vs W82, Bn vs Sa)中均有差异,其中包括油质蛋白S1-2、S4-1和S4-3。
     黄、褐籽甘蓝型油菜种子成熟过程的数字基因表达谱分析利用DGE技术比较黄籽后代(W82)与褐籽亲本种子成熟过程中RNA表达水平的差异,通过基因表达注释及差异表达基因的分析,筛选与黄籽性状相关的差异表达基因。我们发现黄、褐籽不同发育时期类黄酮生物合成途径的基因表达差异很大,脂肪酸生物合成、代谢途径的基因表达也有差异。通过对参与类黄酮生物合成途径的差异基因进行qRT-PCR验证,发现这些基因的表达水平随着种子的成熟也呈下降趋势,这与HPLC的分析结果是一致的。
     新型黄籽甘蓝型油莱遗传规律分析将黄籽株系与褐籽扬油6号杂交,对杂种F1、F2代种皮色泽进行统计;同时将杂种F1分别与黄籽株系与褐籽扬油6号进行回交,推断该黄籽性状由2对独立遗传基因控制,当这2对基因都隐性纯合时,种皮表现为黄色。
Yellow-seeded Brassica napus has several admirable advantages over its black-seeded phenotype, including thinner seed coat, higher oil and protein content, lower lignin and fiber content, and purer oil quality. Development of yellow-seeded cultivars is becoming an optimum pathway to improve rapeseed quality and quantity. The objective of this study was to conduct a detailed comparison of yellow-seeded progenies from B. napus-Sinapis alba hybrids and black seeds of B. napus. With the assistant of NIRS, FTIR and NMR analysis, we compared the quality differences between yellow-and black-seeded materials. LC-ESI-MSn analysis of flavonoid extracted from yellow-and black-seeded B. napus revealed the different accumulation and content of these chemicals. Comparative proteomics of seed filling between yellow-and black-seeded materials was taken out using two-dimentional electrophoresis (2-DE). Oil body proteins extracted from yellow and black seed B. napus, S. alba were quantitatively compared using iTRAQ and Q-TOF MS/MS. DGE analysis was also applied to discriminate transcriptome difference between yellow-and black-seeded B. napus, and the differentially expressed genes related to flavonoid biosynthesized pathway were verified using qRT-PCR. The research would aid in dissecting the genes related to the formation of yellow-seeded B. napus. The main results were shown as followings:
     Quality analysis of yellow-and black-seeded B. napus NIRS analysis revealed that yellow seed lines used in this research possess higher oil and protein content, low glucosinolate and erucic acid than black-seeded Yangyou6. The content of NDF, ADF and ADL in yellow seeds was lower than Yangyou6. ATR-FTIR analysis showed many differences in lipid feature, protein feature were observed between yellow-and black-seeded B. napus, and the FTIR spectra was also different among yellow seed lines. Variation of carbohydrate features in yellow and black seed materials was not obvious. By comparing the NMR spectra of yellow and black seed materials, we found the difference between S. alba and Yangyou6were most obvious at peaks representing for lignin. The resonance peaks standing for lignin and fiber were stronger in Yangyou6than S. alba and yellow seed lines, which are consistent with the perspective that yellow seed material possess lower fiber and lignin than black B. napus.
     HPLC analysis of flavonoids in yellow-and black-seeded B. napus We applied LC-ESI-MSn to identify phenylpropanoid and flavonoid in rapeseeds. The most abundant phenolic compounds (sinapine and sinapic acid) and1,2-disinapoylglucose,16different flavonoids were identified and quantified, including (-)-epicatechin and its five monocharged oligomers, quercetin, kaempferol, isorhamnetin-dihexoside, kaempferol-sinapoyl-trihexoside, isorhamnetin-sinapoyl-trihexoside, isorhamnetin-hexoside-sulfate, and isorhamnetin-3-O-glucoside. Most of the flavonoids accumulated with seed development, whereas some rapidly decreased during maturation. The content of these flavonoids was lower in the yellow-seeded materials than in the black seeds. In addition, variations of insoluble procyanidin oligomers and soluble phenolic acids were observed among both rapeseed varieties.
     Proteomics analysis of seed filling between yellow-and black-seeded B. napus Comparative proteomics of seed filling between yellow and black seed were taken out to find proteins related to yellow seed character. By using two-dimensional electrophoresis (2-DE) and MALDI-TOF-MS analysis, eight out of the27discriminate proteins were identified by MASCOT comparison, including protein kinase, enolase, triosephosphate isomerase and dioxygenase. PCR primers contrived for the putative genes were applied for further identification of progenies and both parent, indicating H3-5might be the novel protein of intergeneric hybrid, H5-2derived from S.alba. Applying these specific primers, this study demonstrates that the new yellow seed germplasm is different from the existing yellow seed materials.
     Comparison of oil body proteins in yellow-and black-seeded B. napus Oil body from Yangyou6,S. alba, yellow seed line were purified for protein extraction. The oil body protein were digested and labeled with iTRAQ reagents, and peptides were analyzed and quantified by Q-TOF MS/MS mass spectrometer. Finally, we successfully identified3091unique peptides representing for1511proteins, including fifteen oleosin proteins, five steroleosin and three caleosin. Besides the main OB proteins, beta-glucosidase and alpha-glucosidase, myrosinase, myrosinase-binding protein, myrosinase-associated protein, embryo specific protein (ATS), heat shock protein (HSP) and peroxiredoxin were also identified. Obvious contamination of storage proteins, including cruciferin and napin were found in protein storage vesicles. Besides, mitochondrial import inner membrane translocase, mitochondrial import receptor, secretory carrier membrane protein, mitochondrial ATP synthase and ATP binding protein were also included as contamination from mitochondria. Among all the identified proteins,270proteins displayed significant differences (p<0.05) between W82and S. alba, of which92proteins were up-regulated and178proteins were down-regulated in W82.167proteins were up-regulated and86proteins were down-regulated in S. alba compared with Yangyou6.27proteins were up-regulated and37proteins were down-regulated in W82compared with Yangyou6. Clustering analysis of differentially expressed proteins between each comparison (Bn vs W82, Sa vs W82, Bn vs Sa) was carried out,85identified proteins were found to have commonly changed in each comparison, of which only three oleosins were included (oleosin S1-2, oleosin S4-1and oleosin S4-3).
     Digital gene expression (DGE) analysis on seed filling of yellow-and black-seeded B. napus We compared gene expression difference of yellow seed line (W82) and Yangyou6using DGE analysis. By GO annotation and pathway analysis of differentially expressed genes (DEG), we selected DEGs that might be related to yellow seed character. Obvious gene expression difference was found in the flavonoid biosynthesis pathway, fatty acid biosynthesis, fatty acid metabolism. Transcriptome changes of genes participating in the flavonoid pathway were discovered by qRT-PCR analysis. Consistent with flavonoid changes identified by HPLC analysis, the expression for most genes in the flavonoid biosynthetic pathway was also downregulated.
     Genetic analysis of the new yellow-seeded B. napus In this research, the yellow seed line was hybridized with Yangyou6to obtain Fi and F2, the seed coat color of this two generation was analyzed. F1generation was also backcrossed with the yellow seed parent and Yangyou6, respectively. By calculation of the seed coat color segregation, we deduced that the yellow seed character was controlled by two pairs of independent genes. The yellow seed phenotype was presented only when both pairs of genes were recessive.
引文
陈功华,田森林,刘淑艳.黄籽汕菜的育种及推广.作物研究,2005,19(2):621
    谌利,李加纳,唐章林等.甘蓝型黄籽杂交油菜新品种渝黄1号的选育.西南农业大学学报(自然科学版),2002,24(1):45-47
    巩振辉,何玉科,王鸣.白菜×白芥属间远缘杂种黑斑病抗性研究.园艺学报,1994,21:401-403
    李加纳,闫世江,谌利,王瑞.油菜粒色基因位点间遗传关系初步研究.中国作物学会油料作物专业委员会论文摘要,2000,34-35
    梁艳丽,梁颖,李加纳,湛利.甘蓝型黄、黑籽油菜种皮特性比较研究.中国油料作物学报,2002,24:14-18
    鲁坤存,刘淑艳,郭家保.芥甘杂交选育甘蓝型黄籽油菜的研究.湖南农业大学学报(自然科学版),2006,32:116-119
    马爱芬,李加纳,谌利.甘蓝型油菜种皮色泽相关基因的cDNA-SRAP差异显示.作物学报,2008,34:526-529
    戚存扣,傅寿仲,浦惠明.甘蓝型油菜低芥酸黄籽新品种宁油10号的选育.江苏农业科学,1998,(4):28-29
    孙兵,闫彩霞,张延婷,郑奕雄,毕玉平,陈高,单世华.基因芯片技术在植物基因克隆中的应用研究进展.基因组学与应用生物学,2009,28(1):153-158
    韦存虚,李爱民,张永泰,周卫东,王幼平.白芥和甘蓝型油菜属间杂种后代种子结构比较.作物学报,2009,35(6):1139-1145
    韦存虚,钦风凌,李爱民,张永泰,周卫东,王幼平.油菜种子油体的观察和大小分析.中国油料作物学报,2009,31(4):445-448
    魏文辉,张苏锋,李均等.折芥×甘蓝F1代及BC1代单体异附加系的GISH分析.科学通报,2006,51(21):2490-2494
    伍晓明,许鲲,王汉中.甘蓝型油菜与新疆野生油菜属间杂种的获得与分子鉴定.中国油料作物学报,2002,24(4):5-9
    闫世江,李加纳,唐章林.不同来源甘蓝型黄籽油菜品质性状的遗传分析.西南农业大学学报,2001,23:402-405
    张丽君,姜淑慧,忻如颖,张凤启,王建飞.通过油菜与播娘篙远缘杂交获得黄籽油菜种质.中国油料作物学报,2009,31:434-439
    张瑞茂,李敏,陈大伦.甘蓝型纯黄籽油菜新品系YR5602的选育.种子,2007,26:87-90
    张学昆,谌利,殷家明等.甘蓝型黄籽油菜RAPD和种皮色素遗传多样性.中国农业科学,2003,36:752-756
    张永泰,李爱民,蒋金金,王娟,王幼平.新型黄籽甘蓝型油菜的获得与遗传规律分析.油料作物学报,2011,33(3):302-306
    钟兆飞,朱亚娜,蒋立希.分子标记在油菜遗传作图中的应用.浙江农业科学,2008,3:313-318
    Abrahams S, Lee E, Walker AR, Tanner GJ, Larkin PJ, Ashton AR. The Arabidopsis TSD4 gene encodes leucoanthocyanidin dioxygenase (LDOX) and its essential for proanthocyanidin synthesis and vacuole development. Plant J,2003,35,624-636
    Abrahams S, Tanner GJ, Larkin PJ, Ashton AR. Identification and biochemical characterization of mutants in the proanthocyanidin pathway in Arabidopsis. Plant Physiol,2002,130(2): 561-576
    Alvarez S, Berla BM, Sheffield J, Cahoon RE, Jez JM, Hicks LM. Comparative analysis of the Brassica juncea root proteome in response to cadmium exposure by complementary proteomic approaches. Proteomics,2009,9:2419-2431
    Appelhagen I, Lu GH, Huep G, Schmelzer E, Weisshaar B, Sagasser M. TRANSPARENT TESTA1 interacts with R2R3-MYB factors and affects early and late steps of flavonoid biosynthesis in the endothelium of Arabidopsis thaliana seeds. Plant J,2011,67,406-419
    Audic S, Claverie JM. The significance of digital gene expression profiles. Genome Res,1997,7: 986-1195
    Auger B, Baron C, Lucas MO, Vautrin S, Berges H, Chalhoub B, Fautrel A, Renard M, Nesi N. Brassica orthologs from BANYULS belong to a small multigene family, which is involved in procyanidin accumulation in the seed. Planta,2009,230:1167-1183
    Auger B, Marnet N, Gautier V, Maia-Grondard A, Leprince F, Renard M, Guyot S, Nesi N, Routaboul JM. A detailed survey of seed coat flavonoids in developing seeds of Brassica napus L. JAgri Food Chem,2010,58:6246-6256
    Badani AG, Snowdon RJ, Wittkop B, Lipsa FD, Baetzel R, Horn R, Haro AD, Font R, Luhs W, Friedt W. Colocalization of a partially dominant gene for yellow seed colour with a major QTL influencing acid detergent fibre (ADF) content in different crosses of oilseed rape (Brassica napus). Genome,2006,49:1499-1509
    Bancroft I, Morgan C, Fraser F, Higgins J, Wells R, Clissold L, Baker D, Long Y, Meng JL, Wang XW, Liu SY, Trick M. Dissecting the genome of the polyploidy crop oilseed rape by transcriptome sequencing. Nat Biotechnol,2011,29:762-766
    Benjamini BY, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann Stat,2011,29:1165-1188
    Biermann U, Bornscheuer U, Meier MA, Metzger JO, Schafer HJ. Oils and fats as renewable raw materials in chemistry. Angew Chem Int Ed Engl,2009,50:3854-3871
    Bochkaryova EB, Gorlov SL. Utilization of interspecific hybridization and mutagenesis of yellow seed spring rapeseed. In:GCR IC. Plant Breeding,9th International Rapeseed Congress.Cambridge, England:GCR IC,1995,1150-1152
    Bolon YT, Joseph B, Cannon SB, GrahamMA, Diers BW, Farmer AD, May GD, Muehlbauer GJ, Specht JE, Tu ZJ. Complementary genetic and genomic approaches help characterize the linkage group I seed protein QTL in soybean. BMC Plant Biol,2010,10:41
    Burbulis N, Kott LS. A new yellow-seeded canola genotype originating from double low black-seeded Brassica napus cultivars. Can J Plant Sci,2005,85:109-114
    Cartea ME, Francisco M, Soengas P, Velasco P. Phenolic compounds in Brassica vegetables. Molecules,2011,16:251-280
    Chai YR, Lei B, Huang HL, Li JN, Yin JM, Tang ZL, Wang R, Chen L. TRANSPARENT TESTA 12 genes from Brassica napus and parental species cloning, evolution, and differential involvement in yellow seed trait. Mol Genet Genomics,2009,281:109-123
    Chen BY and Heneen WK. Inheritance of seed color in Brassica campestris L. and breeding for yellow-seeded B. napus L. Euphytica,1992,59:157-163
    Chen EC, Tai SS, Peng CC, Tzen JT. Identification of three novel unique proteins in seed oil bodies of sesame. Plant Cell Physiol,1998,39:935-941
    Chen JCF, Tsai CCY, Tzen JTC. Cloning and secondary structure analysis of caleosin, a unique calcium-binding protein in oil bodies of plant seeds. Plant Cell Physiol 1999,40:1079-1086
    Chen M, Wang Z, Zhu Y, Li Z, Hussain N, Xuan L, Guo W, Zhang G, Jiang L. The effect of TRANSPARENT TESTA2 on seed fatty acid biosynthesis and tolerance to environmental stresses during young seedling establishment in Arabidopsis. Plant Physiol,2012,160: 1023-1036
    Chen Y, Ono T. Simple extraction method of non-allergenic intact soybean oil bodies that are thermally stable in an aqueous medium. J Agric Food Chem,2010,58:7402-7407
    Cheung F, Trick M, Drou N, Lim YP, Park JY, Kwon SJ, Kim JA, Scott R, Pires JC, Paterson AH, Town C, Bancroft I. Comparative analysis between homoeologous genome segments of Brassica napus and its progenitor species reveals extensive sequence-level divergence. Plant Cell,2009,21:1912-1928
    Clark ST, Verwoerd WS. A systems approach to identifying correlated gene targets for the loss of colour pigmentation in plants. BMC Bioinformatics,2011,12,343-360
    Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO:a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics,2005, 21:3674-3676
    Crozier A, Jaganath IB, Clifford MN. Phenols, polyphenols and tannins:An overview. In Plant Secondary Metabolites:Occurrence, Structure and Role in the Human Diet,2006, p1-24
    Dean G, Cao Y, Xiang D, Provart NJ, Ramsay L, Ahad A, White R, Selvaraj G, Dalta R, Haughn G. Analysis of gene expression patterns during seed coat development in Arabidopsis. Mol Plant,2011,4:1074-1091
    Deng W, Chen G, Peng F, Triksa M, Snyder CL, Weselake RJ. Transparent testal6 plays multiple roles in plant development and is involved in lipid synthesis and embryo development in canola. Plant Physiol,2012,160:978-989
    Durstewitz G, Polley A, Plieske J, Luerssen H, Graner EM, Wieseke R, Ganal MW. SNP discovery by amplicon sequencing and multiplex SNP genotyping in the allopolyploid species Brassica napus. Genome,2010,53:948-956
    Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression. Proc Natl Acad Sci USA,1998,95:14863-14868
    Evans C, Noirel J, Ow SY, Salim M, Pereira-Medrano A, Couto N, Pandhal J, Smith D, Pham TK, Karunakaran E, Zou X, Biggs CA, Wright PC. An insight into iTRAQ:where do we stand now? Anal Bioanal Chem,2012,404:1011-1027
    Eynck C, Koopmann B, Karlovsky P, Tiedemann A. Internal resistance in winter oilseed rape inhibits systemic spread of the vascular pathogen Verticillium longisporum. Phytopathology, 2009,99:802-811
    Font R, Wittkop B, Badani AG, del Rio-Celestino M, Friedt W, Luhs W, de Haro-Baillon A. The measurement of acid detergent fiber in rapeseed by visible and near-infrared spectroscopy. Plant Breed,2005,124:410-412
    Fraser CM, Thompson MG, Shirley AM, Ralph J, Schoenherr JA, Sinlapadech T, Hall MC, Chapple C. Related Arabidopsis serine carboxypeptidase-like sinapoylglucose acyltransferases display distinct but overlapping substrate specificities. Plant Physiol,2007, 144:1986-1999
    Fu FY, Liu LZ, Chai YR, Chen L, Yang T, Jin MY, Ma AF, Yan XY, Zhang ZS, Li JN. Localization of QTLs for seed color using recombinant inbred lines of Brassica napus in different environments. Genome,2007,50:840-854
    Gaeta RT, Yoo SY, Pires JC, Doerge RW, Chen ZJ, Osborn TC. Analysis of gene expression in resynthesized Brassica napus allopolyploids using Arabidopsis 70 mer oligo microarrays. PLoS ONE,2009,4(3):e4760
    Ganal MW, Altmann T, Roder MS. SNP identification in crop plants. Curr Opin Plant Biol,2009, 12:211-217
    Gunstone FD. Production and consumption of rapeseed oil on a globle scale. Eur J Lipid Sci Technol,2001,103:447-449
    Hajduch M, Casteel JE, Hurrelmeyer KE, Song Z, Agrawal GK, Thelen JJ. Proteomic analysis of seed filling in Brassica napus. Developmental characterization of metabolic isozymes using high-resolution two-dimensional gel electrophoresis. Plant Physiol,2006,141:32-46
    Hajduch M, Ganapathy A, Stein JW, Thelen JJ. A systematic proteomic study of seed filling in soybean. Establishment of high-resolution two-dimensional reference maps, expression profiles, and an interactive proteome database. Plant Physiol,2005,137:1397-1419
    Harloff HJ, Lemcke S, Mittasch J, Frolov A, Wu JG, Dreyer F, Leckband G, Jung C. A mutation screeing platform for rapeseed(Brassica napus L.) and the detection of sinapine biosynthesis mutants. Theor Appl Genet,2012,124:957-969
    Haughn G, Chaudhury A. Genetic analysis of seed coat development in Arabidopsis. Trends Plant Sci,2005,10(10):472-477
    Henderson CA, Pauls KP. The use of haploid to develop plant that expressed several recessive traits using light-seeded canola (Brassica napus) as an example. Thero Appl Genet,1992,83: 476-479
    Higgins J, Magusin A, Trick M, Fraser F, Bancroft I. Use of mRNA-seq to discriminate contributions to the transcriptome from the constituent genomes of the polyploidy crop species Brassica napus. BMC Genomics,2012,13:247-260
    Hoen PAC, Ariyurek Y, Thygesen HH, Vreugdenhil E, Vossen RHAM, Menezes RX, Boer JM, Ommen GJB, Dunnen JT. Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms. Nucl Acids Res,2008,36:141-151
    Hsieh K, Huang AHC. Endoplasmic reticulum, oleosins, and oils in seeds and tapetum cells. Plant Physiol,2004,136:3427-3434
    Hu ZY, Wang XF, Zhan GM, Liu GH, Hua W, Wang HZ. Unusually large oilbodies are highly correlated with lower oil content in Brassica napus. Plant Cell Rep,2009,28:541-549
    Huang DJ, Luo LP, Jiang CC, Han J, Wang J, Zhang TT, Jiang J, Zhou Z, Chen HW. Sinapine detection in radish taproot using surface desorption atmospheric pressure chemical ionization mass spectrometry. JAgri Food Chem,2011,59:2148-2156
    Huang J, Bhinu VS, Li X, Bashi ZD, Zhou R, Hannoufa A. Pleiotropic changes in Arabidopsis f5h and sct mutants revealed by large-scale gene expression and metabolite analysis. Planta, 2009,230:1057-1069
    Jackson M and Mantsch HH, Infrared spectroscopy ex vivo tissue analysis. In:Bimedical Spectroscopy,2000
    James C. Global review of commercialized transgenic corps. ISAAA Briefs,2001, No.24
    Jiang HL, Liang Y. Studies on purification and properties of phenylalanine ammonia-lyase (PAL) in Brassica napus. Chin Agric Sci Bull,2006,22(7):282-286
    Jiang JJ, Shao YL, Du K, Ran LP, Fang XP, Wang YP. Use of digital gene expression to discriminate gene expression differences in early generations of resynthesized Brassica napus and its diploid progenitors. BMC Genomics,2013,14:72
    Jiang JJ, Shao YL, Li AM, Lu CL, Zhang YT, Wang YP. Phenolic composition analysis and gene expression in developing seeds of yellow-and black-seeded Brassica napus. J Integr Plant Biol,2013, doi:10.1111/jipb.12039
    Jiang YQ, Deyholos MK. Transcriptome analysis of secondary-wall-enriched seed coat tissues of canola (Brassica napus L.). Plant Cell Rep,2010,29:327-342
    Johnson CS, Kolevski B, Smyth DR. TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. The Plant Cell, 2002,14:1359-1375
    Jolivet P, Boulard C, Bellamy A, Larre C, Barre M, Rogniaux H, d'Andrea S, Chardot T, Nesi N. Protein composition of oil bodies from mature Brassica napus seeds. Proteomics,2009,9: 3268-3284
    Jolivet P, Boulard C,Bellamy A, Valot B, d'Andrea S, Zivy M, Besi N, Chardot T. Oil body proteins sequentially accumulate throughout seed development in Brassica napus. J Plant Physiol,2011,168:2015-2020
    Jolivet P, Roux E, d'Andrea S, Davanture M, Negroni L, Zivy M, Chardot T. Protein composition of oil bodies in Arabidopsis thaliana ecotype WS. Plant Physiol Biochem,2004,42:501-509
    Kaczorowski KA, Kim KS, Diers BW, Hudson ME. Microarray based genetic mapping using soybean near-isogenic lines and generation generation of SNP markers in the Rag1 aphid resistance interval. Plant Genome,2008,1:89-98
    Katavic V, Agrawal GK, Hajduch M, Harris SL. Thelen JJ. Protein and lipid composition analysis of oil bodies from two Brassica napus cultivars. Proteomics,2006,6:4586-4598
    Kim HU, Hsieh K, Ratnayake C, Huang AHC. A novel group of oleosins is present inside the pollen of Arabidopsis. J Biol Chem,2002,227:22677-22684
    Kitamura S, Shikazono N, Tanaka A. TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant J,2004,37:104-114
    Kong F, Ge CL, Fang XP, Snowdon R, Wang YP. Characterization of seedling proteomes and development of markers to distinguish the Brassica A and C genomes. J Genet Genomics, 2010,37:333-340
    Kong F, Mao SJ, Jiang JJ, Wang J, Fang XP, Wang YP. Proteomic changes in newly synthesized Brassica napus allotetraploids and their early generations. Plant Mol Biol Rep,2011,29: 927-935
    Kong X, Xie J, Wu X, Huang Y, Boa J. Rapid prediction of acid detergent fiber, neutral detergent fiber, and acid detergent lignin of rice materials by near-infrared spectroscopy. J Agric Food Chem,2005,53:2843-2848
    Kracht W, Danicke S, Kluge H, Keller K, Matzke W, Henning U. Schumann W. Effect of dehulling of rapeseed on feed value and nutrient digestibility of rape products in pigs. Arch Anim Nutr,2004,58:389-404
    Le BH, Wagmaister JA, Kawashima T, Bui AQ, Harada JJ, Goldberg RB. Using genomics to study legume seed development. Plant Physiol,2007,144(2):562-574
    Lepiniec L, Debeaujon I, Routaboul JM, Baudry A, Pourcel L, Nesi N, Caboche M. Genetics and biochemistry of seed favonoids. Annu Rev Plant Biol,2006,57:405-430
    Li AM, Jiang JJ, Zhang YT, Snowdon RJ, Liang GH, Wang YP. Molecular and cytological characterization of introgression lines in yellow seed derived from somatic hybrids between Brassica napus and Sinapis alba. Mol Breed,2012,29:209-219
    Li AM, Wei CX, Jiang JJ, Zhang YT, Snowdon RJ, Wang YP. Genetic variation in the progenies of hybrids between Brassica napus and Sinapis alba. Euphytica,2009,170:289-296
    Li F, Kitashiba H, Inaba K, Nishio T. A Brassica rapa linkage map of EST-based SNP markers for identification of candidate genes controlling flowering time and leaf morphological traits. DNA Res,2009,16:311-323
    Li RQ, Yu C, Li YR, Lam TW, Yiu SM, Kristiansen K, Wang J. SOAP2:an improved ultrafast tool for short read alignment. Bioinformatics,2009b,25:1966-1967
    Li X, Westcott N, Links M, Gruber MY. Seed coat phenolics and the developing silique transcriptome of Brassica carinata. JAgric Food Chem,2010a,58:10918-10928
    Li X, Gao MJ, Pan HY, Cui DJ, Gruber MY. Purple canola:Arabidopsis PAP1 increases antioxidatants and phenolics in Brassica napus leaves. J Agric Food Chem,2010b,58: 1639-1645
    Lin LJ, Tai SSK, Peng CC, Tzen JTC. Steroleosin, a sterol-binding dehydrogenase in seed oil bodies. Plant Physiol,2002,128:1200-1211
    Lin LZ, Sun JH, Chen P, Harnly J. UHPLC-PDA-ESI/HRMS/MSn analysis of anthocyanins, flavonol glycosides, and hydroxycinnamic acid derivatives in red mustard greens (Brassica juncea Coss). JAgri Food Chem,2011,59:12059-12072
    Lipsa FD, Snowdon R, Friedt W. Quantitative genetic analysis of condensed tannins in oilseed rape meal. Euphytica,2012,184,195-205
    Liu HL, Han JX, Hu XJ. Studies on the inheritance of seed coat color and other related characteristics of yellow seeded Brassica napus. Proceedings of the 8th International Rapeseed Congress, Saskatoon, Canada,19915:1438-1444
    Liu LZ, Meng JL, Lin N, Chen L, Tang ZL, Zhang XK, Li JN. QTL mapping of seed coat color for yellow seeded Brassica napus. Acta Genet Sin,2006,33(2):181-187
    Liu LZ, Stein A, Wittkop B, Sarvari P, Li J, Yan X, Dreyer F, Frauen M, Friedt W, Snowdon R. A knockout mutation in the lignin biosynthesis gene CCR1 explains a major QTL for acid detergent lignin content in Brassica napus seeds. TheorAppl Genet,2012,124:1573-1586
    Liu Q, Wu L, Pu HM, Li CY, Hu QH. Profile and distribution of soluble and insoluble phenolics in Chinese rapeseed (Brassica napus). Food Chem,2012,135:616-622
    Liu XP, Tu JX, Chen BY, Fu TD. Identification and inheritance of a partially dominant gene for yellow seed colour in Brassica napus. Plant Breed,2005,124:9-12
    Liu ZW, Fu TD, Tu JX, Chen BY. Inheritance of seed colour and identification of RAPD and AFLP markers linked to the seed colour gene in rapeseed (Brassica napus L.).Theor Appl Genet,2005,110:303-310
    Llorach R, Gil-Izquierdo A, Ferreres F, Tomas-Barberan F. HPLC-DAD-MS/MS ESI characterization of unusual highly glycosylates acylated flavonoids from cauliflower (Brassica oleracea L. var. botrytis) agroindustrial byproducts. JAgri Food Chem,2003,51: 3895-3899
    Lo Scalzo R, Genna A, Branca F, Chedin M, Chassaigne H. Anthocyanin composition of cauliflower (Brassica oleracea L. var. botrytis) and cabbage (B. oleracea L. var. capitata) and its stability in relation to thermal treatments. Food Chem,2008,107:136-144
    Love CG, Batley J, Lim G, Robinson AJ, Savage D, Singh D, Spangenberg GC, Edwards D. New computional tools for Brassica genome research. Comp Fund Genomics,2004, 5(3):276-280
    Lu TT, Lu GJ, Fan D, Zhu C, Li W, Zhao Q, Feng Q, Zhao Y, Guo Y, Li W, Huang X, Han B. Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq. Gemome Res,2010,20:1238-1249
    Lu Y, Liu XJ, Liu SY, Yue YC, Guan CY, Liu ZS. A simple and rapid procedure for identification of seed coat colour at the early developmental stage of Brassica juncea and Brassica napus seeds. Plant Breed,2012,131:176-179
    Lysak MA, Koch MA, Pecinka A, Schubert I. Chromosome triplication found across the tribe Brassiceae. Genome Res,2005,15:516-525
    Majewski J, Pastinen T. The study of eQTLs variations by RNA-Seq:from SNPs to phenotypes. Trend Genet,2010,858-865
    Marles MAS, Gruber MY, Scoles GJ, Muir AD. Pigmentation in the developing seed coat and seeding leaves of Brassica carinata is controlled at the dihydroflavonol reductase locus. Phytochemistry,2003,62:663-672
    Marles MAS, Gruber MY. Histochemical characterization of unextractable seed coat pigments and quantification of extractable lignin in the Brassicaceae. JSci FoodAgric,2004,84:251-262
    Meng JL, Shi SW, Gan L, Li ZY, Qu XS. The production of yellow-seeded Brassica napus (AACC) through crossing interspecific hybrids of B. campestris (AA) and B. carinata (BBCC) with B. napus. Euphytica,1998,103(3):329-333
    Montgomery SB, Sammeth M, Gutierrez-Arcelus M, Lach RP, Ingle C, Nisbett J, Guigo R, Dermitzakis ET. Transcriptome genetics using second generation sequencing in a Caucasian population. Nature,2010,464:773-7
    Moreno DA, Perez-Balibrea S, Ferreres F, Gil-Izquierdo A, Garcia-Viguera C. Acylated anthocyanins in broccoli sprouts. Food Chem,2010,123:358-363
    Morozova O, Marra MA. Application of next-generation sequencing technologies in functional genomics. Genomics,2008,92:255-264
    Morrissy AS, Morin RD, Delaney A, Zeng T, McDonald H, Jones S, Zhao YJ, Hirst M, Marra MA. Next-generation tag sequencing for cancer gene expression profiling. Genome Res,2009,19: 1825-1835
    Muller S, Jardine WG, Evans BW, Vietor RJ, Snape CE and Jarvis MC, Cell wall composition of vascular and parenchyma tissues in broccoli stems. JSci FoodAgric,2003,83:1289-1292
    Nasted H, Frandsen GI, Jauh GY, Hernandez-Pinzon I, Nielsen HB, Murphy DJ, Rogers JC, Mundy J. Caleosins:Ca2+-binding proteins associated with lipid bodies. Plant Mol Biol,2000, 44:463-476
    Nelson MN, Lydiate DJ. New evidence from Sinapis alba L. for ancestral triplication in a crucifer genome. Genome,2006,49:230-238
    Nelson MN, Nixon J, Lydiate DJ. Genome-wide analysis of the frequency and distribution of crossovers at male and female meiosis in Sinapis alba L. (white mustard). Theor Appl Genet, 2005,111:31-43
    Nelson MN, Parkin IAP, Lydiate DJ. The mosaic of ancestral karyotype blocks in the Sinapis alba L. genome. Genome,2011,54:33-41
    Nelsson G. Species crosses within the genus Brassica. Ⅱ. Artificial Brassica napus L. Hereditas, 1960,46:351-396
    Nesi N, Debeaujon I, Jond C, Pelletier G, Caboche M, Lepinieca L. The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. The Plant Cell,2000,12:1863-1878
    Nesi N, Debeaujon I, Jond C, Stewart AJ, Jenkins GI, Caboche M, Lepinieca L. The TRANSPARENT TESTA16 locus encodes the ARABIDOPSIS BSISTER MADS domain protein and is required for proper development and pigmentation of the seed coat. The Plant Cell,2002,14:2463-2479
    Nesi N, Delourme R, Bregeon M, Falentin C, Renard M. Genetic and molecular approaches to improve nutritional value of Brassica napus L. seed. C R Biologies,2008,331:763-771
    Nesi N, Jond C, Debeaujon I, Caboche M, Lepiniec L. The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. The Plant Cell,2001,13:2099-2114
    Nesi N, Lucas MO, Auger B, Baron C, Lecureuil A, Guerche P, Kronenberger J, Lepiniec L, Debeaujon D, Renard M. The promoter of the Arabidopsis thaliana BAN gene is active in proanthocyanidin-accumulating cells of the Brassica napus seed coat. Plant Cell Rep,2009, 28(4):601-617
    Ni Y, Jiang HL, Lei B, Li JN, Chai YR. Molecular cloning, characterization and expression of two rapeseed (Brassica napus L.) cDNAs orthologous to Arabidopsis thaliana phenylalanine ammonia-lyase 1. Euphytica,2008,159:1-16
    Olsen H, Aaby K, Borge GIA. Characterization and quantification of flavonoids and hydroxycinnamic acids in curly kale (Brassica oleracea L. convar. acephala var. sabellica) by HPLC-DAD-ESI-MSn. JAgri Food Chem,2009,57:2816-2825
    Owens DK, Alerding AB, Crosby KC, Bandara AB, Westwood JH, Winkel BSJ. Functional analysis of a predicted flavonol synthase gene family in Arabidopsis. Plant Physiol,2008, 147,1046-1061.
    Pan ZY, Zeng YL, An JY, Ye JL, Xu Q, Deng XX. An integrative analysis of transcriptome and proteome provides new insights into carotenoid biosynthesis and regulation in sweet orange fruits. J Proteomic,2012,75:2670-2684
    Pereira DM, Valentao P, Pereira JA, Andrade PB. Phenolics:from chemistry to biology. Molecules, 2009,14:2202-2211
    Pickrell JK, Marioni JC, Pai AA, Degner JF, Engelhardt BE, Nkadori E, Veyrieras JB, Stephens M, Gilad Y, Pritchard JK. Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature,2010,464:768-72
    Podsedek A. Natural antioxidants and antioxidant capacity of Brassica vegetables:A review. LWT-Food Sci Technol,2007,40:1-11
    Potapov DA, Osipova GM. Development of yellow seeded Brassica napus in Siberia. In: Proceedings of 11th International Rapeseed Congress, Copenhagen,2003, p250
    Purkrtova Z, Bon CL, Kralova B, Ropers MH, Anton M, Chardot T. Caleosins of Arabidopsis thaliana:effect of calcium on functional and structural properties. J Agric Food Chem, 2008,56:11217-11224
    Qi CK, Fu SZ, Pu HM. A successful transfer of yellow-seeded trait from Brassica carinata to B. napus. Proc.9th Int. Rapeseed Congress, Cambridge,1995,4:1137-1140
    Rahman H. Untraditional approaches of interspecific hybridization in Brassica from introgression of traits from allied species. In:Proceedings of 13th International Rapeseed Congress, Prague,2011, p867
    Rahman M, Li GY, Schroeder D, McVetty PBE. Inheritance of seed color genes in Brassica napus (L.) and tagging the genes using SRAP, SCAR and SNP molecular markers. Mol Breed,2010, 26:439-453
    Rahman M, McVetty PBE, Li GY. Development of SRAP, SNP and multiplexed SCAR molecular markers for the major seed coat color gene in Brassica rapa L. TheorAppl Genet,2007,115: 1101-1107
    Rahman M, Sun ZD, McVetty PBE, Li GY. High throughput genome-specific and gene-specific molecular markers for erucic acid genes in Brassica napus (L.) for marker-assisted selection in plant breeding. Theor Appl Genet,2008,117:895-904
    Rahman MH. Production of yellow-seeded Brassica napus through interspecific crosses. Plant Breed,2001a,120:463-472
    Rahman MH. Inheritance of petal colour and its independent segregation from seed colour in Brassica rapa. Plant Breed,2001b,120:197-200
    Rajjou L, Debeaujin I. Seed longevity:survival and maintenance of high germination ability of dry seeds. C R Biol,2008,331:796-805
    Rakow G, Relf-Eckstein JA, Olson T. Review and update on the development of yellow seed Brassica napus canola. In:Abstract Book of 13th International Rapeseed Congress, Prague, 2011, p55
    Rakwal R, Agrawal GK. Rice proteomics xurrent status and future perspectives. Electrophoresis, 2003,24(19-20):3378-3389
    Ran XZ, Liang Y, Li JN. Analysis of the lignin contents and related enzymes activities in seed coat between black-seeded and yellow-seeded rapes (Brassica napus L.). Sci Agric Sin,2005,12: 890-897
    Rashid A, Rakow G, Downey RK. Development of yellow seeded Brassica napus through interspecific crosses. Plant Breed,1994,112:127-134
    Routaboul JM, Kerhoas L, Debeaujon I, Pourcel L, Caboche M, Einhorn J, Lepiniec L. Flavonoid diversity and biosynthesis in seed of Arabidopsis thaliana. Planta,2006,224:96-107
    Ruecker B. The inheritance of seed color in winter oilseed rape (Brassica napus). Crueiferac Newsl,1991,14:50-51
    Sagasser M, Lu GH, Hahlbrock K, Weisshaar B. Arabidopsis thaliana TRANSPARENT TESTA 1 is involved in seed coat development and defines the WIP subfamily of plant zinc finger proteins. Genes Dev,2002,16:138-149
    Saldanha AJ. Java treeview-extensible visualization of microarray data. Bioinformatics,2004,20: 3246-3248
    Salzberg SL. Recent advances in RNA sequence analysis. Biol Rep,2010,2:64-66
    Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, et al. Genome sequence of the paleopolyploid soybean. Nature,2010,463:178-183
    Schwender J, Goffman F, Ohlrogge JB, Shachar-Hill Y. Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature,2004,779-782
    Schwender J, Hay JO. Predictive modeling of biomass component tradeoffs in Brassica napus developing oilseeds based on in silico manipulation of storage metabolism. Plant Physiol, 2012,160:1218-1236
    Schwender J, Ohlrogge JB. Probing in vivo metabolism by stable isotope labeling of storage lipids and proteins in developing Brassica napus embryos. Plant Physiol,2002,130:347-361
    Severin AJ, Peiffer GA, Xu WW, Hyten DL, Bucciarelli B, O'Rourke JA, Bolon YT, Grant D, Farmer AD, May GD, Vance CP, Shoemaker RC, Stupar RM. An integrative approach to genomic introgression mapping. Genome Anal,2010a,154:3-12
    Serverin AJ, Woody JL Bolon YT, Joseph B, Diers BW, Farmer AD, Muehlbauer GJ, Nelson RT, Grant D, Specht JE, Granam MA, Cannon SB,May GD, Vance CP, Shoemaker RC. RNA-Seq atlas of Glycine max:a guide to the soybean tarnscriptome. BMC Plant Biol,2010b, 10:160-175
    Shimada TL, Shimada T, Takahashi H, Fukao Y, Hara-Nishimura I. A novel role for oleosins in freezing tolerance of oilseeds in Arabidopsis thaliana. Plant J,2008,55:798-809
    Shirzadegan M and Robbelen G. Influence of seed color and hull proportions on quality properties of seeds in Brassica napus L. Fette Seifen Anstrichm,1985,87:235-237
    Shirzadegan M. Inheritance of seed colour in Brassica napus L. Z Pflanzenzuecht,1986,96(2): 140-146
    Siloto RMP, Findlay K, Lopez-Villalobos A, Yeung EC, Nykiforuk CL, Moloney MM. The accumulation of oleosins determines the size of seed oilbodies in Arabidopsis. Plant Cell, 2006,18:1961-1974
    Simbaya J, Slominski BA, Rakow G, Campbell LD, Downey RK, Bell JM. Quality characterization of yellow-seeded Brassica seed meals:protein, carbohydrates, and dietary fiber components. JAgric Food Chem,1995,43:2062-2066
    Simkin AJ, Qian TZ, Caillet V, Michoux F, Amor MB, Lin CW, Tanksley S, McCarthy J. Oleosin gene family of coffea canephora:quantitative expression analysis of five oleosin genes in developing and geminating coffee grain. J Plant Physiol,2006,163:691-708
    Slominski BA, Jia W, Rogiewicz A, Nyachoti CM, Hickling D. Low-fiber canola. Part 1. Chemical and nutritive composition of the meal. JAgric Food Chem,2012,60:12225-12230
    Somers DJ, Rakow G, Prabhu VK, Friesen KRD. Identification of a major gene and RAPD markers for yellow seed coat colour in Brassica napus. Genome,2001,44:1077-1082
    Sultan M, Schulz MH, Richard H, Magen A, Klingenhoff A, Scherf M, Seifert M, Borodina T, Soldatov A, Parkhomchuk D, Schmidt D, O'Keeffe S, Haas S, Vingron M. Lehrach H, Yaspo ML. A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science,2008,321:956-1160
    Szydlowska-Czerniak A, Trokowski K, Karlovits G, Szlyk E. Determination of antioxidant capacity, phenolic acids, and fatty acid composition of rapeseed varieties. JAgri Food Chem, 2010,58:7502-7509
    Tabata S, Kaneko T, Nakamura Y,Kotani H,Kato T, et al. Sequence and analysis of chromosome 5 of the plant Arabidopsis thaliana. Nature,2000,408(6814):823-826
    Tang ZL, Li JN, Zhang XK, Chen L, Wang R. Genetic variation of yellow-seeded rapeseed lines (Brassica napus L.) from different genetic sources. Plant Breed,1997,116:471-474
    Terskikh VV, Feurtado JA, Borchardt S, Giblin M, Abrams SR and Kermode AR. In vivo 13C NMR metabolite profiling:potential for understanding and accessing conifer seed quality. J Exp Bot,2005,56:2253-2265
    Thelen JJ, Ohlorogge JB. Metabolic engineering of fatty acid biosynthesis in plants. Metab Eng, 2002,4:12-21
    't Hoen PAC, Ariyurek Y, Thygeson HH, Vreugdenhil E, Vossen RHAM, Menezes RX, Boer JM, Ommen GJB, Dunnen JT:Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms. Nucl Acids Res,2008,36:141-151
    Trick M, Cheung F, Drou N, Fraser F, Lobenhofer EK, Hurban P, Magusin A, Town CD, Bancroft I. A newly-developed community microarray resource for transcriptome profiling in Brassica species enables the confirmation of Brassica-specific expressed sequences. MBC Plant Biol, 2009a,9:50-60
    Trick M, Long Y, Meng JL, Bancroft L. Single nucleotide polymorphism (SNP) discovery in the polyploidy Brassica napus using Solexa transcriptome sequencing. Plant Biotechnol J, 2009b,7:334-346
    Tzen JTC, Chuang RLC, Chen JCF, Wu LSH. Coexitance of both oleosin isoforms on the surface of seed oil bodies and their individual stabilization to the organelles. J Biochem,1998,123: 318-323
    Tzen JTC, Huang AHC. Surface structure and properties of plant seed oil bodies. J Cell Biol,1992, 117(2):327-335
    Tzen JTC, Peng CC, Cheng DJ, Chen ECF, Chiu JMH. New method for seed oil body purification and examination of oil body integrity following germination. J Biochem,1996; 121:762-768
    van Bakel H, Nislow C, Blencowe BJ, Hughes TR. Most "dark matter" transcripts are associated with known genes. PLoS Biol,2010,8:e1000371
    van Deynze AE, Landry BS, et al. The identification of restriction fragment length polymorphisms linked to seed color gene in Brassica napus L. Genome,1995,38:534-542
    Velasco P, Francisco M, Moreno DA, Ferreres F, Garcia-Viguera C, Cartea ME. Phytochemical fingerprinting of vegetable Brassica oleracea and Brassica napus by simultaneous identification of glucosinolates and phenolics. Phytochem Anal,2011,22:144-152
    Wang J, Jiang JJ, Li XM, Li AM, Zhang YT, Guan RZ, Wang YP. Complete sequence of heterogenous-composition mitochondrial genome(Brassica napus) and its exogenous source. BMC Genomics,2012,13:675
    Wang K, Wang Z, Li F, Ye W, Wang J, Song G, Yue Z, Cong L, et al. The draft genome of a diploid cotton Gossypium raimondii. Nat Genet,2012,44(10):1098-1103
    Wang XW, Wang HZ, Wang J, Sun RF, Wu J, Liu SY, Bai YQ, Mun JH, et al. The genome of mesopolyploid crop species Brassica rapa. Nature Genet,2011,43:1035-1039
    Wang YP, Sonntag K, Rudloff E, et al. Intergeneric somatic hybridization between Brassica napus and Sinapis alba. Integrative J Plant Biol,2005a,47:84-91
    Wang YP, Zhao XX, Sonntag K, et al. Behaviour of Sinapis alba addition chromosomes in a Brassica napus background revealed by genomic in situ hybridisation. Chromosome Res, 2005b,13:819-826
    Wang Z, Gerstein M, Snyder M. RNA-Seq:a revolutionary tool for transcriptomics. Nat Rev Genet,2009,10:57-63
    Warwick SI. Guide to wild germplasm of Brassica and allied crops (tribe Brassiceae, Brassicaceae).2nd edition. Ottawa, Ont. Part Ⅳ,2000,11-12
    Wasinger VC, Cordwell SJ, Cerpa-Poljak A, Yan JX, Gooley AA, Wilkins MR, Duncan MW, Harris R, Williams KL, Hunphery-Smith I. Progress with gene-product mapping of the Mollicutes:Mycoplasma genitalium. Electrophoresis,1995,16:1090-1096
    Wei Y, Chai Y, Li J, et al. Molecular cloning of Brassica napus TRANSPARENT TESTA2 gene family encoding potential MYB regulatory proteins of proanthocyanidin biosynthesis. Mol Biol Rep,2007,34:105-120
    Wen J, Tu JX, Li ZY, Fu TD, Ma CZ, Shen JX. Improving ovary and embryo culture techniques for efficient resynthesis of Brassica napus from reciprocal crossed between yellow-seeded diploids B. rapa and B. oleracea. Euphytica,2008,162,81-89
    Wen J, Zhu LX, Qi LP, Ke HM, Yi B, Shen JX, Tu JX, Ma CZ, Fu TD. Characterization of interploid hybrids from crosses between Brassica juncea and B. oleracea and the production of yellow-seeded B. napus. Theor Appl Genet,2012,125:19-32
    Weselake RJ, Shah S, Tang M, Quant PA, Snyder CL, Furukawa-Stoffer TL, Zhu W, Taylor DC, Zou J, Kumar A, et al. Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (Brassica napus) to increase seed oil content. J Exp Bot,2008, 59:3543-3549
    Wetzel DL, Eilert AJ, Pietrzak LN, Miller SS and Sweat JA, Ultraspatially resolved synchrotron infrared microspectroscopy of plant tissue in situ. Cell Mol Biol,1998,44:145-167
    Wetzel DL, LeVine SM. Imaging molecular chemistry with infrared microscopy. Science,1999, 285:1224-1225
    White DA, Fisk ID, Makkhun S, Gray DA. In vitro assessment of the bioaccessilility of tocopherol and fatty acids from sunflower seed oil bodies. JAgric Food Chem,2009,57:5720-5726
    Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for geneties, biochemistry, cellbiology, and biotechnology. Plant Physiol,2001,126:485-493
    Wittkop B, Snowdon RJ, Friedt W. New NIRS calibrations for fiber fractions revealed broad genetic variation in Brassica napus seed quality. JAgric Food Chem,2012,60:2248-2256
    Wittkop B, Snowdon RJ, Friedt W. Status and perspective of breeding for enhanced yield and quality of oilseed crops for Europe. Euphytica,2009,170:131-140
    Wolfram K, Schmidt J, Wray V, Milkowski C, Schliemann W and Strack D. Profiling of phenylpropanoids in transgenic low-sinapine oilseed rape (Brassica napus). Phytochemistry, 2010,71:1076-1084
    Wu JS, Shi SW, Wu DW, et al. Studies on the inheritance of yellow seed coat in rapeseed (Brassica napus L.). Proceeding of 70th International Rapeseed Conference, Australia,1999
    Wu NN, Huang X, Yang XQ, Guo J, Yin SW, He XT, Wang LJ, Zhu JH, Qi JR, Zheng EL. In vitro assessment of the bioaccessibility of fatty acids and tocopherol from soybean oil body emulsions stablized with i-carrageenan. JAgric Food Chem,2012,60:1567-1575
    Xiao SS, Xu JS, Li Y, Zhang L, Shi SJ, Shi SW, Wu JS, Liu KD. Generation and mapping of SCAR and CAPS markers linked to the seed coat color gene in Brassica napus using a genome-walking technique. Genome,2007,50:611-618
    Xie DY, Sharma SB, Paiva NL, Ferreira D, Dixon RA. Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science,2003,396-399
    Xu BB, Li JN, Zhang XK, et al. Cloning and molecular characterization of a functional flavonoid 3'-hydroxylase gene from Brassica napus. J Plant Physiol,2007,164:350-363
    Yan ML, Liu XJ, Guan CY, Chen XB, Liu ZS. Cloning and expression analysis of an anthocyanidin synthase gene homolog from Brassica juncea. Mol Breed,2011,28:313-322
    Yang J and Yen HE, Early salt stress effects on the changes in chemical composition in leaves of ice plant and Arabidopsis. A fourier transform infrared spectroscopy study. Plant Physiol, 2002,130:1032-1042
    Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, Wang J. WEGO: a web tool for plotting GO annotations. Nucl Acids Res,2006,34:293-297
    Yu BY, Gruber M, Khachatourians GG, Hegedus DD, Hannoufa A. Gene expression profiling of developing Brassica napus seed in relation to changes in major storage compounds. Plant Sci, 2010,178:381-389
    Yu CY, Hu SW. Discrimination of two dominant inheritance model of yellow-seededness of Brassica napus. Brassica,2006,8:19-22
    Yu CY, Leisova L, Kucera V, Vyvadilova M, Ovesna J, Dotlacil L, Hu SW. Assessment of genetic diversity of yellow-seeded rapeseed (Brassica napus L.) accessions by AFLP markers. Czech J Genet Plant Breed,2007,43(3):105-112
    Yu CY. Molecular mechanism of manipulating seed coat coloration in oilseed Brassica species. J App Genet,2013, DOI 10.1007/sl 3353-012-0132-y
    Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science,2002,296(5565):79-92
    Yu PQ, Christensen CR, Christensen DA and McKinnon JJ. Ultrastructural-chemical makeup of yellow-seeded (Brassica rapa) and brown-seeded (Brassica napus) canola within cellular dimensions, explored with synchrotron reflection FTIR microspectroscopy. Can J Plant Sci, 2005,85:533-542
    Yu PQ. Application of advanced synchrotron radiation-based Fourier transform infrared (SR-FTIR) microspectroscopy to animal nutrition and feed science:a novel approach. Brit J Nutr,2004, 92:869-885
    Yu PQ. Molecular chemistry of plant protein structure at a cellular level by synchrotron-based FTIR spectroscopy:Comparison of yellow (Brassica rapa) and brown (Brassica napus) canola seed tissues. Infrared Phys Technol,2008,51:473-481
    Zaman MW. Potential for species introgression in Brassica napus with special reference to earliness and seed color. Ph.D. thesis, Dept. of Plant Breeding, Institution for Vaxtforadeling, Swedish Univ. Agric. Sci., Uppsala, Sweden,1987
    Zamir D. Improving plant breeding with exotic genetic libraries. Nat Rev Genet,2001,2:983-989
    Zhu MM, Dai SJ, McClung S, Yan XF, Chen SX. Functional differentiation of Brassica napus guard cells and mesophyll cells revealed by comparative proteomics. Mol Cell Proteomics, 2009,8(4):752-766
    Zhu MM, Dai SJ, Zhu N, Booy A, Simons B, Yi S, Chen SX. Methyl jasmonate responsive proteins in Brassica napus guard cells revealed by iTRAQ-based quantitative proteomics.J Proteome Res,2012,11(7):3728-3742
    Zhu MM, Simons B, Zhu N, Oppenheimer DG, Chen SX. Analysis of abscisic acid responsive proteins in Brassica napus guard cells by multiplexed isobaric tagging. J Proteomics,2010, 73:790-805
    Zieske LR. A perspective on the use of iTRAQ YM reagent technology for protein complex and profiling studies. JExp Bot,2006,57:1501-1508

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700