用户名: 密码: 验证码:
水稻纹枯病接种鉴定体系新探索及抗病新种质YSBR1抗性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纹枯病是世界性的水稻3大病害之一,严重发生时可造成产量的巨大损失和品质的严重降低。水稻对纹枯病的抗性属于典型的数量性状,不存在主基因抗性,现有种质资源中也未发现表现免疫或高抗的品种。
     水稻纹枯病接种鉴定体系涉及到接种方法、接种时间、调查时间、调查标准等多种因素,其合适与否关系到水稻抗纹枯病遗传育种研究的进展。合适的接种鉴定体系不仅可减轻相关研究工作的工作强度,而且能提高试验的可靠性、重复性及结果的精确性。鉴此,本试验以抗感反应不同的5个水稻品种[Lemont、武育粳3号(Wuyujing3)、YSBR1、特青(Teqing)和Jasmine85(J-85)]为试验材料,在人工气候箱、控温室中进行水稻苗期抗纹枯病接种试验,并与田间相应的成株期抗性试验进行比较,初步建立了水稻苗期接种鉴定体系。在此基础上,采用牙签嵌入法在控温室、田间对各试验水稻材料进行成株期不同阶段(分蘖末期、小孕穗期)抗纹枯病接种试验,并于接种后3-11d、抽穗后30d测量病斑长度和采用3种不同调查标准调查病级,对水稻成株期纹枯病的接种鉴定方法进行了发展,并对田间水稻抽穗后30d适宜的纹枯病病级调查标准进行了新探索。
     YSBR1是本研究组选育并经过多年鉴定为较抗病的新种质,目前对其抗性研究报道较少。本试验以YSBR1及易感品种Lemont为试验材料,通过构建这2个品种的F2无性系群体,对其开展了多年份的纹枯病抗性鉴定及农艺性状调查,同时对YSBR1中相关纹枯病抗性QTL、农艺性状QTL进行初步定位,研究这2类QTL之间的相互关系。在此基础上,又以这2个品种为试验材料,对其进行纹枯病病原菌接种,分别于接种后10、20h取样用于基因芯片表达谱分析,从中筛选差异表达基因,尤其是YSBR1特异差异表达基因。最终对YSBR1特异差异表达基因进行pathway分析和GO (gene ontology)分析,并将其与已检测到YSBR1的QTL区间进行整合。
     主要研究结果如下:
     1.85%的相对湿度为纹枯病菌侵染危害水稻苗期植株的适宜湿度;苗期5个水稻品种对纹枯病抗性差异极显著,可将其分为相对感病(Lemont、武育粳3号)和相对抗病(YSBR1、Jasmine85、特青)2大类;接种叶龄对发病程度有显著的影响,5个品种在4叶期接种时的平均病级显著高于5叶期接种的平均病级;苗期水稻品种间抗感差异小于田间鉴定试验结果,但两者间品种抗感趋势基本一致。表明,苗期快速鉴定技术可用于大规模水稻品种(组合)的抗性筛选或初步鉴定。
     2.以病斑长度为调查指标,控温室中分蘖末期接种的5个水稻品种间抗感差异极显著,Lemont和YSBR1表现为稳定的感病、抗病,且和另外3个品种(武育粳3号、特青、Jasmine85)差异极显著,各品种间的抗感趋势与田间抽穗后30d的验证试验结果基本一致;而田间分蘖末期接种的5个水稻品种间虽然抗感差异极显著,但品种间抗感趋势与同期温室及田间抽穗后30d的验证试验结果差异不一致。田间小孕穗期接种的5个水稻品种间抗感差异极显著,品种间抗感趋势与分蘖末期接种并于抽穗后30d调查病级的田间验证试验结果完全一致。表明,温室条件下分蘖末期或田间条件下小孕穗期以病斑长度作为衡量纹枯病抗性的调查指标具有一定的可行性。
     3.在分蘖末期接种的各参试品种,采用叶鞘位调查标准的结果与常用的Rush调查标准的结果相比较,两者在不同年份间、地点间差异均不显著,相关分析结果显示,2种调查标准间相关性在不同年份、地点间分别为0.9455、0.9846,均达到极显著水平,表明叶鞘位标准作为1个新的调查标准在田间纹枯病病级调查时完全可替代Rush调查标准;对于小孕穗期接种的各品种,采用相对病级调查标准,各品种间不仅抗性差异极显著,而且品种间抗感差异大于分蘖末期接种采用叶鞘位调查标准的相应对照,并且这2种调查标准间各品种的抗、感趋势完全一致。在水稻抗纹枯病遗传研究中,小孕穗期接种以相对病级作为调查标准,其适用范围是有限制的。
     4.两年间(2009-2010年)共初步定位到12个抗性QTL,除qSB-1Le、qSB-5Le和qSB-8Le来自感病亲本Lemont外,其余均来自抗病亲本YSBR1,其中qSB-2Y、qSB-12Y被认为是主效QTL,两年的平均贡献率分别为28%和17%。此外,两年间13个主要农艺性状中有4个农艺性状(株高、生育期、穗长、有效穗数)和纹枯病发病程度存在显著或极显著相关,且多为负相关。表明水稻纹枯病的发病情况受到株高、生育期、穗长、有效穗数等性状的影响,尤其是株高的影响最大。
     5.接种后短期内(5d),YSBR1与Lemont间抗感差异明显,接种后10h均产生侵染垫,接种后20h均出现病斑;不同生物学重复芯片质量可靠,按自定筛选标准,在Lemont全基因组共筛选到2826个差异表达基因,在YSBR1全基因组筛选到748个差异表达基因,其中在YSBR1中特异表达的差异基因有247个;247个YSBR1中特异表达基因分布水稻12条染色体上,落入已检测到的QTL区间的为31个,占总数比例为12.55%;落入2个主效QTLqSB-2Y、qSB-12Y区间的YSBRl特异表达基因分别有9、3个,其中qSB-2Y区间9个特异差异表达基因中有4个上调表达,5个下调表达;qSB-12Y区间3个特异差异表达基因中有2个上调表达,1个下调表达。
Sheath blight (SB) disease is one of the three most serious diseases in rice worldwide, and causes severe loss in yield and quality under favorable environmental condition. The resistance of rice to SB is a typical quantitative trait, and resources with strong resistance against this disease in the existing rice germplasm are not found.
     Rice SB inoculation identification system involves the inoculation method, inoculation time, investigation time, investigation standard and other factors, and the appropriateness of the system can affect genetic and breeding research progress of the resistance to SB in rice. Appropriate inoculation identification system can not only reduce the strength of the research work, but also improve the reliability, repeatability, and accuracy of the test results. In view of this point, five rice cultivars with different levels of resistance to SB were adopted to identify their resistance to SB at seedling stage in artificial climate incubator or temperature-controlled greenhouse, and the test results were verified through a field experiment during rice adult stage, then a SB inoculation identification system in rice seedling stage was established preliminarily. Based on the above study, five rice cultivars were inoculated with toothpick-inserting inoculation method during different times in rice adult stage (the late tillering stage, the early booting stage) in field and temperature-controlled greenhouse. The lesion length was measured during3-11days after inoculation, and the SB disease rating at the30th day after heading was investigated with the reference of three different investigation standards. Then, some new inoculation identification methods in rice adult stage were developed and some new investigation standards of SB disease rating at the30th day after heading stage in field were also explored in this study.
     YSBR1developed by our own research group is a new germplasm with stable and high resistance to sheath blight, which has been identified by using many methods in different experimental sites for many years. However, information of its genetic background relevant to SB resistance has been in scarce yet. A F2clonal populations (F2CP) derived from the cross between YSBR1and Lemont (a susceptible cultivar) was constructed, and the identification of resistance to SB and the investigation of agronomic traits for F2CP in a multi-year experiment were carried out in this study. At the same time, the QTLs mapping of resistance to SB in YSBR1and agronomic traits were conducted, and the interrelation between resistance to SB and agronomic traits were also analyzed. On the basis of this study, the two cultivars (YSBRl, Lemont) were used as materials to inoculate SB pathogens, and their leaf sheaths were sampled at10and20hours after inoculation respectively for gene chip expression profiling analysis and screening of differentially expressed genes, especially YSBR1specific differentially expressed gene. Furthermore, the pathway and GO (gene ontology) of YSBR1specific differentially expressed gene and its integration with QTL detected in YSBRl were analyzed.
     The main results were as follows:
     1. The optimal relative humidity for SB mycelium to develop infection structures and to infect rice seedling was approximately85%. The SB resistance levels in5cultivar seedlings differed significantly (P<0.01) and could be divided into two groups, relatively susceptible (Lemont, WuYujing3) and relatively resistant (YSBR1, Jasmine85, Teqing). The symptom severeness degrees of the seedlings at different leaf-age (4-leaf stage and5-leaf stage) were significantly different and the average disease rating at4-leaf stage was significantly higher than that at5-leaf stage. The differences of resistance among different cultivars in greenhouse were smaller than that in the field, but the resistant-to-susceptible order among the cultivars were consistent with that in the field. Rapid identification technique of rice SB resistance in seedling stage proposed in this study could be used for screening resistance of rice germplasm on a large-scale scope or for primary resistance identification.
     2. The SB resistance levels evaluated with the lesion length among5cultivars inoculated at the late tillering stage in temperature-controlled greenhouse differed significantly(.P<0.01) and could be divided into three groups, relatively susceptible (Lemont), moderate susceptible to moderate resistant(Wuyujing3, Jasmine85, Teqing) and relatively resistant (YSBRl), and the resistant-to-susceptible order among five cultivars were consistent with the results tested in field verifying experiment at30th day after heading. Although the SB resistance levels among5cultivars inoculated at the same time in field differed significantly at1%levels, the resistant-to-susceptible order among five cultivars was inconsistent with that of the30th day after heading. Furthermore, the SB resistance levels among5cultivars inoculated at the early booting stage in field differed significantly at1%levels, and the resistant-to-susceptible order among five cultivars were consistent with that of the30th day after heading. These results indicated that the lesion length used as investigation index to evaluate rice SB resistance at the late tillering stage in greenhouse or at the early booting stage in field was feasible.
     3. There were no differences between the SB disease rating data measured with the common Rush's investigation standard and with the "order of leaf sheath" investigation standard in five rice cultivars inoculated at the late tillering stage in different years and locations, and the correlation index of SB disease rating data between two investigation standards in different years and locations were0.9455,0.9846(P<0.01), respectively, which indicated that the "order of leaf sheath" investigation standard as a new standard could replace Rush's investigation standard completely in evaluating rice SB disease rating. The difference of the SB disease rating data measured with the relative disease rating investigation standard among five rice cultivars inoculated at the early booting stage was not only significant (P<0.01), but also greater than that among the cultivars inoculated at the late tillering stage by means of the "order of leaf sheath" investigation standard. The resistant-to-susceptible order among the five cultivars between two investigation standards were consistent completely, which showed that the relative disease rating investigation standard as a new standard could also be used for evaluating rice SB disease rating in some feasible conditions. The application scopes of relative disease rating investigation standard in genetic research of resistance to rice SB was limited.
     4. In two years experiment(2009-2010), twelve resistant QTLs were located, of which qSB-1Le, qSB-5Le and qSB-8Le were from susceptible parent Lemont, and remaining QTLs were all from YSBR1. Among QTLs detected, qSB-2Y and qSB-12Y could be considered as the major effective QTLs, with the average contribution rate of28%and17%in2009and2010, respectively. Furthermore, the QTLs of13major agronomic traits were located and their relationship with the SB QTLs were analyzed. There existed significant correlation (mostly negative, P<0.01or P<0.05) between four agronomic traits (plant height, growth duration, panicle length, effective panicles) and SB disease rating. This result showed that the incidence of rice SB was affected by the traits of plant height, growth duration, panicle length, effective panicles, of which plant height had the most powerful effect on the SB disease rating.
     5. The difference of SB resistance levels within a short-term (5days after inoculation) between Lemont and YSBR1was significant (P<0.05), and the infection cushion and lesion appaered in10and20h after inoculation, respectively. The quality of gene chips of different biological replicates were reliable,2826differentially expressed genes in Lemont whole genome and748differentially expressed genes in YSBR1whole genome were screened out by using our screening standard respectively. Furthermore,247specific expressed differentially genes in YSBR1were also screened out. The specific expressed differentially genes in YSBR1were distributed among12rice chromosomes, and31genes fell into the detected QTL intervals, with the proportion to the total of12.55%. There were9and3YSBR1specific expressed differentially genes fell into the intervals of two major QTLs (qSB-2Y, qSB-12Y). Four and2genes were upregulated, and5and1genes were downregulated in qSB-2Y and qS.B-12Y intervals, respectively.
引文
[1]廖皓年,肖陵生,王华生.水稻纹枯病发生历史及演变原因简析[J].广西植保,1997(3):35-38.
    [2]张楷正,李平,李娜,等.水稻抗纹枯病种质资源、抗性遗传和育种研究进展[J].分子植 物育种,2006,4(5):713-720.
    [3]陈延熙,张敦华,段霞渝,等.关于Rhizoctonia solani菌丝融合分类和有性世代的研究[J].植物病理学报,1985,15(3):139-143.
    [4]李振岐,商鸿生.中国农作物抗病性及其利用[M].北京:中国农业出版社,2005.
    [5]孟庆忠,刘志恒,王鹤影,等.水稻纹枯病研究进展[J].沈阳农业大学学报,2001,32(5):376-381.
    [6]彭绍裘,范坤成.水稻纹枯病研究的新进展[J].湖南农业科学,1986(4):1-6.
    [7]陶家凤.立枯丝核菌对水稻侵染过程的研究[J].四川农业大学学报,1992,10(3)471-477.
    [8]张国良.施硅增强水稻对纹枯病抗性的机制研究[D].扬州:扬州大学,2009.
    [9]Singh A, Rohla R, Savary S, et al. Infection process in sheath blight of rice caused by Rhizoctonia solani [J]. Indian Phytopathology,2003,56(4):434-438.
    [10]Marshall D S, Rush M C. relation between infection by Rhizoctonia solani and R. oryzae and disease severity in rice [J]. Phytopathology,1980,70(10):941-946.
    [11]张红生,朱立宏,沙学延,等.水稻纹枯病抗性机理的初步研究[G]//朱立宏.主要农作物抗病性遗传研究进展[C].南京:江苏科学技术出版社,1990,153-164.
    [12]陈志谊,王玉环,殷尚智.水稻纹枯病抗性机制研究[J].中国农业科学,1992,25(4):41-46.
    [13]童蕴慧,徐敬友,潘学彪,等.水稻植株对纹枯病菌侵染反应及其机理的初步研究[J].江苏农业研究,2000,21(4):45-47.
    [14]左示敏,张亚芳,殷跃军,等.田间水稻纹枯病抗性鉴定体系的确立与完善[J].扬州大学学报:农业与生命科学版,2006,27(4):57-61.
    [15]徐艳.水稻纹枯病菌毒素的致病机理及对寄主防御酶活性的影响[D].扬州:扬州大学,2006.
    [16]董国强,林开江.影响水稻纹枯病菌纤维素晦的产生及晦活条件的初步研究[J].浙江农业科学,1990(6):283-287.
    [17]Bateman D F. Alteration of cell wall components during pathogenesis by Rhizoctonia solani [G]//The Dynamic Role of Molecular Constituent in Plant Parasite Interactions [C]. Mirocha C J, Uritani I. Bruce Publishing Co, St, Paul:8-79.
    [18]陈兵,王坤元,董国强,等.水稻纹枯病菌的致病性与酶活力的关系[J].浙江农业学报,1992,23(1):19-22.
    [19]Ramalingam P. Effect of the phytotoxic metabolites of Rhizoctonia solani Kuhn on the isozyme patterns for peroxidase [J]. Phytopathologia Mediterranea,1984,23 (1):55-56.
    [20]张红,陈夕军,童蕴慧,等.纹枯病菌胞壁降解酶对水稻组织和细胞的破坏作用[J].扬州大学学报:农业与生命科学版,2005,26(4):83-86.
    [21]陈夕军,张红,徐敬友,等.水稻纹枯病菌胞壁降解酶的产生及致病作用[J].江苏农业学报,2006,22(1):24-28.
    [22]Sriram S, Raguchander T, Babu S, et al. Inactivation of phytotoxin produced by the rice sheath blight pathogen Rhizoctonia solani [J]. Canadia Journal Microbiology,2000,46(6):520-524.
    [23]Aoki H, Sassa T, Tamura T. Phytotoxic metabolites of Rhizoctonia solani [J]. Nature,1963,200: 575.
    [24]Mandava N B, Orellana R G, Warthen D J, et al. Phytotoxins in Rhizoctonia solani:Isolation and biological activity of m-hydroxy and m-methoxyphenylacetic acids [J]. Journal of Agricultural Food Chemistry,1980,28:71-75.
    [25]徐敬友,张华东,张红,等.立枯丝核菌毒素的产生及与致病力的关系[J].扬州人学学报:农业与生命科学版,2004,25(2):61-64.
    [26]Vidhyasekaran P, Ponmalar T R, Samiyappan R, et al. Rice sheath blight produces host-specific toxin [J]. Rice-Biotechnology-Quarterly,1998,35:21.
    [27]孟令军.水稻纹枯病菌毒素的提纯、组分分析及钝化[D].扬州:扬州大学,2009.
    [28]Ramalingam P. Involvement of Rhizoctonia solani toxins in phenylalanine ammonialyase and tyrosine ammonialyase activities of rice tissues [J]. Current Science India,1986,55 (3):157-159.
    [29]敖世恩,杨媚,周而勋,等.水稻抗纹枯病突变体的离体筛选[J].华南农业大学学报,2006,27(1):47-50.
    [30]左示敏,王子斌,陈夕军,等.水稻纹枯病改良新抗源YSBR1的抗性评价[J].作物学报,2009,35(4):608-614.
    [31]潘学彪,陈宗祥,张亚芳,等.水稻抗纹枯病育种成效的初步评价[J].中国水稻科学,2001,15(3):218-220.
    [32]陈宗祥,邹军煌,徐敬友,等.对水稻纹枯病抗源的初步研究[J].中国水稻科学2000,14(1)15-18.
    [33]潘学彪,张亚芳,左示敏,等.作物重要数量性状基因鉴定与应用的若干问题[J].扬州大学学报:农业与生命科学版,2005,26(2):50-55.
    [34]Rush M C, Hoff J J, Mcllrath W O. A uniform disease rating system for rice disease in the United States [G]//Proc 16th Rice Tech Working Group. Lake Charles, Louisana, USA,1976:64.
    [35]Wasano K, Oro S, Kido Y. The syringe inoculation method for selecting rice plants resistant to sheath blight, Rhizoctonia solani [J]. Jpn J Trop Agric,1983,27:131-1341.
    [36]Wasano K, Hirota Y. Varietal resistance of rice to sheath blight disease caused by Rhizoctonia solani Kiihn, by the syringe inoculateion method [J]. Bull Fac Agri,1986,60:49-59.
    [37]过崇俭,陈志谊,王德明.水稻纹枯病菌(Thanatephrus cucumeris)致病力分化及品种抗性鉴定技术的研究[J].中国农业科学,1985,18(5):50-57.
    [38]潘学彪,陈宗祥,徐敬友,等.不同接种调查方法对抗水稻纹枯病遗传研究的影响[J].江苏农学院学报,1997,18(3):27-32.
    [39]Eizenga G C, Lee F N, Rutger J N. Screening Oryza species plants for rice sheath blight resistance [J]. Plant Disease,2002,86:808-812.
    [40]Singh A, Rohilla R, Singh U S, et al. An improved inoculation technique for sheath blight of rice caused by Rhizoctonia solani [J]. Can J Plant Pathol,2002,24 (1):65-68.
    [41]Correa-Victoria F, Jia Y, Correll J, et al. Sheath blight screening of two breeding populations at CIAT [J]. RiceCAP News,2007,3(8):2-5.
    [42]赵新华,王艳丽,袁筱萍,等.NY/T水稻抗纹枯病鉴定技术规范[S].
    [43]福建省地方标准.DB35/T 82.2-1996水稻品种抗纹枯病鉴定方法及评价标准[S].
    [44]Jia Y, Correa-Victoria F, McClung A, et al. Rapid determination of rice cultivar responses to the SB pathogen Rhizoctonia solani using a Micro-chamber screening method [J]. Plant Disease,2007,91(5): 485-489.
    [45]王子斌,左示敏,李刚,等.水稻抗纹枯病苗期快速鉴定技术研究[J].植物病理学报,2009,39(2):174-182.
    [46]易润华,朱西儒,周而勋.水稻纹枯病菌人工接种方法的研究[J].广州大学学报:自然科学版,2003,2(3):224-227.
    [47]Sharma P, Singh U S. An Improved in vitro Inoculation Method for Rhizoctonia Causing Sheath Blight of Rice [J]. Journal of Mycology and Plant Pathology,2003,33(2):315-316.
    [48]Park D S, Sayler R J, Hong Y G, et al. A Method for Inoculation and Evaluation of Rice Sheath Blight Disease [J]. Plant Disease,2008,92(1):25-29.
    [49]Ou S H. Rice diseases [G]//Commonwealth Mycological institute [C]. England.:Kew,1985: 109-201.
    [50]Sato H, Ideta O, Audo I, et al. Mapping QTLs for sheath blight resistance in the rice line WSS2 [J]. Breeding Science,2004,54 (3):265-271.
    [51]Rodrigues F A, Datnoff L E, Korndorfer G H, et al. Effect of silicon and host resistance on sheath blight in rice [J]. Plant Disase,2001,85 (5):827-832.
    [52]Rodrigues F A, Vale F X R, Datnoff L E, et al. Effect of rice growth stages and silicon on sheath blight development [J]. Phytopathology,2003,93:256-261.
    [53]Zou J, Pan X, Chen Z, et al. Mapping quantitative trait loci controlling sheath blight resistance to two rice cultivars (Oryza Sativa L.) [J]. Theor Appl Genet,2000,101 (4):569-575.
    [54]潘学彪,邹军煌,陈宗祥.水稻品种Jasmine85抗纹枯病主效QTLs的分子标记定位[J].科学通报,1999,44(15):1629-1635.
    [55]韩月澎,邢永忠,陈宗祥,等.杂交水稻亲本明恢63对纹枯病水平抗性的QTL定位[J].遗传学报,2002,29(7):565-570.
    [56]陈厚德,王彰明,倪桂花.用嵌入法接种小麦纹枯病菌的研究[J].江苏农业科学,2002(5):31-32.
    [57]蔡士宾,任丽娟,颜 伟,等.小麦抗纹枯病种质创新及QTL定位的初步研究[J].中国农业科学,2006,39(5):928-934.
    [58]杨华.玉米纹枯病抗源筛选、抗性QTL定位及其应用研究[D].雅安:四川农业大学,2004.
    [59]赵茂俊,张志明,高世斌,等.玉米抗纹枯病QTL定位[J].作物学报,2006,32(5):698-702.
    [60]左示敏,殷跃军,张丽,等.水稻抗纹枯病QTL qSB-11的育种价值及其进一步定位[J].中国水稻科学,2007,21(2):136-142.
    [61]左示敏.水稻抗纹枯病数量基因qSB-11Le的精细定位、效应研究及其侯选基因分析[D].扬州:扬州大学,2006.
    [62]Li Z K, Pinson S R M, Marchetti M A, et al. Characterization of quantitative trait loci (QTLs) in cultivated rice contributing to field resistance to sheath blight [J]. Theor Appl Genet,1995,91 (2): 382-388.
    [63]Pinson S R M, Capdevielle F M, Oard J H. Confirming QTLs and finding additional loci conditioning sheath blight resistance in rice using recombinant inbred lines [J]. Crop Sci,2005,45 (2):503-510.
    [64]谭彩霞,张亚芳,陈宗祥,等.两个抗水稻纹枯病主效数量基因的鉴定[J].中国生物工程杂志,2004,24(4):79-80.
    [65]谭彩霞,纪雪梅,杨勇,等.水稻回交世代中两个抗纹枯病主效数量基因的鉴定与标记辅助选择[J].遗传学报,2005,32(4):399-406.
    [66]王子斌,左示敏,李刚,等.水稻纹枯病几种田间病级调查标准的比较研究[J].扬州大学学报:农业与生命科学版,2009,30(4):66-71.
    [1]潘学彪,Rush M C美国的水稻纹枯病抗病遗传育种研究[J].江苏农学院学报,1997,18(1):57-63.
    [2]Hashioka Y. Inheritance of resistance to sheath blight in rice varieties [J]. Annals of the Phytopathological Society of Japan,1951,15:98-99.
    [3]Che K P, Zhan Q C, Xing Q H, et al.Tagging and mapping of rice sheath blight resistant gene [J]. Theor Appl Genet,2003,106(2):293-297.
    [4]向珣朝,王世全,何立斌,等.一个高抗水稻纹枯病突变体的发现及其遗传特性的初步分析[J].作物学报,2005,31(9):1236-1238.
    [5]Xie Q J, Linscombe S D, Rush M C, et al. Registration of LSBR-33 and LSBR-5 sheath blight-resistant germplasmlines of rice[J]. Crop Sci,1992,32:507.
    [6]张红生,朱立宏,沙学延,等.水稻纹枯病抗性机理的初步研究[G]//朱立宏.主要农作物抗病性遗传研究进展[C].南京:江苏科学技术出版社,1990,153-164.
    [7]Sha X Y, Zhu L H. Resistance of some rice varieties to sheath blight (ShB) [J].Rice Res Newslett, 1989,14:7-8.
    [8]潘学彪,顾世梁,Rush M C,等.两个水稻改良抗源对纹枯病抗性的遗传分析[J].江苏农学院学报,1997,18(2):1-6.
    [9]潘学彪,顾世梁,Rush M C,等.两个水稻改良抗源对纹枯病抗性的遗传分析(2):抗源间互交F4的抗性表现[J].江苏农学院学报,1997,18(4):1-4.
    [10]Pan X B, Xie Q J, Rush M C, et al. Partial resistance to rice sheath blightmay be controlled by single major genes [J]. Phytopathology,1995,85(4):511.
    [11]陈宗祥,邹军煌,徐敬友,等.对水稻纹枯病抗源的初步研究[J].中国水稻科学,2000,14(1):15-18.
    [12]郑康乐,沈波,于飞,等.水稻DNA限制性片段长度多态性的初步研究[J].中国水稻科学,1990,4(4):145-149.
    [13]Welsh H H. Relictual amphibians and old-growth forests [J]. Conservation Biology,1990(4): 303-319.
    [14]Litt M, Aluty T. A hypervariable microsatellite revealed by in vitro amplification of adinucleotide repeat within the cardiac muscle actin gene [J]. Am J Hum Genet,1989,44:397-401.
    [15]Tautz D, Mtrick K, Dover G A. Cryptic simplicity in DNA is a major source of genetic variation [J].Nature,1986,322:652-656.
    [16]Wang Z, WEBER J L, Zhong G, et al. Survey of plant short tandem DNA repeats [J]. Theor Appl Genet,1994,88:1-6.
    [17]Shen Y J, Jiang H, Jin J P, et al. Developmen t of genome-wide DN A polymorphism database for mapbased cloning of rice genes [J]. Plant Physiol,2004,135:1198-1205.
    [18]Zabeau M, Vos P. Selective restriction fragment amplification a general method for DNA fingerprints [M]. European Patent Application Publ,1993.
    [19]Lu Z X, Sosinski B, Relghard G L, et al. Const ruction of a genetic linkage map and identification of AFLP markers for resistance to root-knotnematodes in peach root stocks [J]. Genome,1998,41: 199-207.
    [20]Neff M, Neff J, Chory J, et al. dCAPS, a simple technique for the g enetic analys is of single nucleotide polymorp hisms:Experimental applications in Arabidopsis thaliana genetics [J]. Plant J,1998, 14(3):387-392.
    [21]Feltus F A, Wan J, Schulze S R, et al. An SNP resource for rice genetics and breeding based on subspecies indica and japonica genome alignments [J]. Genome Res,2004,14:1812-1819.
    [22]徐建龙,薛庆中,梅捍卫,等.水稻数量性状位点(QTL)定位研究进展[J].浙江农业学报,2001,13(5):315-321.
    [23]Thoday L M. Location of polygenes [J]. Nature,1961,191:368-370.
    [24]Edwards M D, Stuber C W, Wendel J F, et al. Molecular-marker-facilitated investigations of quantitative-trait loci in maize:Numbers, genomic distribution and types of gene action [J]. Genetics, 1987,116:113-125.
    [25]Weller J I, Soller M, Brody T, et al. Linkage analysis of quantitative traits in an interspecific cross of tomato (Lycopersicon esculentum×Lycopersicon pimpinellifolium) by means of genetic markers [J]. Genetics,1988,118:329-339.
    [26]Bostein D, White R C, Skolonick M, et al. Construction of genetic linkage map in man using restriction fragment length polymorphism [J]. Genet,1989,32:314-331.
    [27]Curnow K M, Pascoe L, White P C, et al. Genetic analysis of the human type-1 angiotensin II receptor [J]. Molecular Endocrinology,1992,6(7):1113-1118.
    [28]Zeng Z B. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci[J]. Proc Natl Acad Sci,1993,90:10972-10976.
    [29]Zeng Z B. Precision mapping of quantitative trait loci [J]. Genetics,1994,136:1457-1468.
    [30]朱军.运用混合线性模型定位复杂数量性状基因的方法[J].浙江大学学报:工学版,1999,33(3):327-335.
    [31]LiZK, Pinson S R M, Marshetti M A, et al. Characterization of quantitative trait loci (QTLs) in cultivated rice contributing to field resistance to sheath blight(Rhizoctonia solani) [J]. Theor Appl Genet,1995,91:374-381.
    [32]Pan X B, Zou H J, Chen Z X, et al. Tagging major quantitative trait loci for sheath blight resistance in a rice variety Jasmine 85 [J]. Chinese Science Bulletin,1999,44(19):1783-1789.
    [33]邹军煌,潘学彪,陈宗祥,等.两个水稻品种抗纹枯病数量性状基因定位[C]//21世纪水稻遗传育种展望,北京:中国农业科学出版社,1999,176-181.
    [34]Zou J H, Pan X B, Chen Z X, et al. Mapping quantitative trait loci controlling sheath blight resistance to two rice cultivars(Oryza Sativa L.) [J]. Theory Applied Genet,2000,101:569-575.
    [35]纪雪梅.两个水稻品种抗纹枯病数量性状基因定位[D].扬州:扬州大学,2001.
    [36]国广泰史,钱前,佐藤宏之,等.水稻纹枯病抗性QTL分析[J].遗传学报,2002,29(1):50-55.
    [37]杨勇.水稻抗纹枯病遗传及相关主效数量基因的定位[D].扬州:扬州大学,2003.
    [38]韩月澎,邢永忠,陈宗祥,等.杂交水稻亲本明恢63对纹枯病水平抗性的QTL定位[J].遗传学报,2002,29(7):565-570.
    [39]陈恩会.两个新抗源中水稻纹枯病抗性的遗传分析及其和相关农艺性状的QTL定位[D].扬州:扬州大学,2004.
    [40]Sato H, Ideta O, Audo I, et al. Mapping QTLs for sheath blight resistance in the rice line WSS2 [J]. Breeding Science,2004,54:265-271.
    [41]Loan L C, Pham V D, Li Z K. Molecular dissection of quantitative resistance of Sheath Blight in rice (Oryza sativa L.) [J]. Omonrice,2004,12:1-2.
    [42]Pinson S R M, Capdevielle F M, Oard J H. Confirming QTLs and finding additional loci conditioning sheath blight resistance in rice using recombinant inbred lines [J]. Crop Sci,2005,45:503-510.
    [43]谭彩霞,张亚芳,陈宗祥,等.两个抗水稻纹枯病主效数量基因的鉴定[J].中国生物工程杂志,2004,24(4):79-80.
    [44]左示敏.水稻抗纹枯病数量基因qSB-11Le的精细定位、效应研究及其候选基因分析[D].扬州:扬州大学,2006.
    [45]殷跃军.水稻抗纹枯病QTL qSB-9Tq的遗传分析和精细定位研究[D].扬州:扬州大学,2008.
    [46]郑天清,徐建龙,傅彬英,等.回交高代选择导入系的纹枯病抗性与抗旱性的遗传重叠研究[J].作物学报,2007,33(8):1380-1384.
    [47]向珣朝,李季航,张楷正,等.一个水稻抗纹枯病突变体的遗传分析及其基因的初步定位[J].西南科技大学学报,2007,22(2):76-81.
    [48]谢学文,许美容,藏金萍,等.水稻抗纹枯病QTL表达的遗传背景及环境效应[J].作物学报, 2008,34:1885-1893.
    [49]李芳,程立锐,许美容,等.利用品质性状的回交选择导入系挖掘水稻抗纹枯病QTL[J].作物学报,2009,35(9):1729-1737.
    [50]Liu G, Jia Y, Correa-Victoria F J, et al. Mapping quantitative trait loci responsible for resistance to Sheath Blight in Rice [J] Phytopathology,2009,99(9):1078-1084.
    [51]Sonah V, Chand M, Sharma H. Identification of major quantitative trait loci qSBR11-1 for sheath blight resistance in rice [J]. Mol Breeding,2010,25:155-166.
    [52]Sharma A, McClung A M, Pinson S R M, et al. Genetic mapping of Sheath Blight resistance QTLs within tropical Japonica rice cultivars [J]. Crop Science,2009,49:256-264.
    [53]高晓清,谢学文,许美容,等.水稻抗纹枯病导入系的构建及抗病位点的初步定位[J].作物学报,2011,37(9):1559-1568.
    [54]Li Z K, Fu B Y, Gao Y M, et al. Genome-wide introgression lines and their use in genetic and molecular dissection of complex phenotypes in rice(Oryza sativa L.) [J]. Plant Mol Biol,2005,59: 33-52.
    [55]谭彩霞,纪雪梅,杨勇,等.水稻回交世代中两个抗纹枯病主效数量基因的鉴定与标记辅助选择[J].遗传学报,2005,32(4):399-406.
    [56]潘学彪,张亚芳,左示敏,等.作物重要数量性状基因鉴定与应用的若干问题[J].扬州大学学报:农业与生命科学版,2005,26(2):50-55.
    [57]曾宇翔,李西明,马良勇,等.水稻纹枯病抗性基因定位及抗性资源发掘的研究进展[J].中国水稻科学,2010,24(5):544-550.
    [58]Srinivasachary, Willocquet L, Savary S. Resistance to rice sheath blight (Rhizoctonia solani Kuhn)[(teleomorph:Thanatephorus cucumeris (A. B. Frank) Donk.]disease:current status and perspectives [J]. Euphytica,2010,18 November(Published online).
    [59]张丽霞,刘丕庆,刘学义,等.染色体单片段代换系的构建及应用于QTL精细定位[J].分子植物育种,2004,2(3):743-746.
    [60]刘冠明,李文涛,曾瑞珍,等.水稻亚种间单片段代换系的建立[J].中国水稻科学,2003,17(3):201-204.
    [1]廖皓年,肖陵生,王华生.水稻纹枯病发生历史及演变原因简析[J].广西植保,1997(3):35-38.
    [2]Li Z K, Pinson S R M. Characterization of quantitative trait loci (QTLs) in cultivated rice contributing to field resistance to sheath blight [J]. Theory Applied Genet,1995,91:382-388.
    [3]Pan X B, Zou J H, Chen Z X, et al. Molecular marker mapping of major QTLs for resistance to sheath blight in rice variety, Jasmine85 [J]. Chinese Science Bulletin (科学通报),1999,44(15):1629-1635.
    [4]Zou J H, Pan X B, Chen Z X, et al. Mapping quantitative trait loci controlling sheath blight resistance to two rice cultivars(Oryza Sativa L.)[J]. Theory Applied Genet,2000,101:569-575.
    [5]纪雪梅.两个水稻品种抗纹枯病数量性状基因定位[D].扬州:扬州大学,2001.
    [6]Kunihiro Y, Qian Q, Sato H, et al. QTL Analysis of Sheath Blight Resistance in Rice(Oryza sativa L.) [J]. Journal of Genetics and Genomics,2002,29(1):50-55.
    [7]韩月澎,邢永忠,陈宗祥,等.杂交水稻亲本明恢63对纹枯病水平抗性的QTL定位[J].遗传学报,2002,29(7):565-570.
    [8]杨勇.水稻抗纹枯病遗传及相关主效数量基因的定位[D].扬州:扬州大学,2003.
    [9]Sato H, Ideta O, Audo I, et al. Mapping QTLs for sheath blight resistance in the rice line WSS2 [J]. Breeding Science,2004,54:265-271.
    [10]Guo C J, Chen Z Y, Wang F M. Pathogenic variability of sheath blight of rice caused by Thanatephrus cucumeris (Frank) Donk and identification techniques of varieties resistance [J]. Agricultural Sciences in China (中国农业科学),1985,18(5):50-57.
    [11]潘学彪,陈宗祥,徐敬友,等.不同接种调查方法对抗水稻纹枯病遗传研究的影响[J].江苏农学院学报,1997,18(3):27-32.
    [12]Singh A, Rohilla R, Singh U S, et al. An improved inoculation technique for sheath blight of rice caused by Rhizoctonia solani[J]. Can J Plant Pathol,2002,24:65-68.
    [13]易润华,朱西儒,周而勋.水稻纹枯病菌人工接种方法的研究[J].广州大学学报:自然科学版,2003,2(3):224-227.
    [14]左示敏,张亚芳,殷跃军,等.田间水稻纹枯病抗性鉴定体系的确立与完善[J].扬州大学学报:农业与生命科学版,2006,27(4):57-61.
    [15]Correa-Victoria F, Jia Y, Correll J, et al. Sheath blight screening of two breeding populations at CIAT [J]. RiceCAP News,2007,3(8):2-5.
    [16]陈夕军,王玲,左示敏,等.水稻纹枯病寄主-病原物鉴别品种和菌株的筛选[J].植物病理学报,2009,39(5):514-520.
    [17]Jia Y, Correa-Victoria F, McClung A, et al. Rapid determination of rice cultivar responses to the SB pathogen Rhizoctonia solani using a micro-chamber screening method [J]. Plant Disease,2007,91(5): 485-489.
    [1]Rush M C, Hoff B J, Mcllrath W O. A uniform disease rating system for rice disease in the United States [G]//Proc 16th Rice Tech Working Group, Lake Charles, Louisana, USA,1976:64.
    [2]Wasano K, Oro S, Kido Y. The syringe inoculation method for selecting rice plant s resistant to sheath blight, Rhizoctonia solani [J]. Jpn J Trop Agric,1983,27:113121341.
    [3]过崇俭,陈志谊,王德明.水稻纹枯病菌(Thanatephrus cucumeris)致病力分化及品种抗性鉴定技术的研究[J].中国农业科学,1985,18(5):50-57.
    [4]潘学彪,陈宗祥,徐敬友,等.不同接种调查方法对抗水稻纹枯病遗传研究的影响[J].江苏农学院学报,1997,18(3):27-32.
    [5]Eizenga G C, Lee F N, Rutger J N. Screening Oryza species plants for rice sheath blight resistance [J]. Plant Disease,2002,86 (7):808-812.
    [6]Singh A, Rohilla R, Singh U S, et al. An improved inoculation technique for sheath blight of rice caused by Rhizoctonia solani [J]. Can J Plant Pathol,2002,24:65-68.
    [7]易润华,朱西儒,周而勋.水稻纹枯病菌人工接种方法的研究[J].广州大学学报:自然科学版,2003,2(3):224-227.
    [8]左示敏,张亚芳,殷跃军,等.田间水稻纹枯病抗性鉴定体系的确立和完善[J].扬州大学学报:农业与生命科学版,2006,27(4):57-61.
    [9]王子斌,左示敏,李刚,等.水稻抗纹枯病苗期快速鉴定技术研究[J].植物病理学报,2009,39(2):174-182.
    [10]王子斌,左示敏,李刚,等.水稻纹枯病几种田间病级调查标准的比较研究[J].扬州大学学报:农业与生命科学版,2009,30(4):57-62.
    [11]Jia Y, Correa-Victoria F, McClung A, et al. Rapid determination of rice cultivar responses to the SB pathogen Rhizoctonia solani using a micro-chamber screening method [J]. Plant Disease,2007,91(5): 485-489.
    [12]潘学彪,邹军焊,陈宗祥,等.水稻品种Jasmine85抗纹枯病主效QTLs的分子标记定位[J].科学通报,1999,44(15):1629-1635.
    [13]Zou J, Pan X, Chen Z, et al. Mapping quantitative trait loci controlling sheath blight resistance to two rice cultivars(Oryza Sativa L.)[J]. Theor Appl Genet,2000,101:569-575.
    [14]韩月澎,邢永忠,陈宗祥,等.杂交水稻亲本明恢63对纹枯病水平抗性的QTL定位[J].遗传学报,2002,29(7):565-570.
    [15]左示敏.水稻抗纹枯病数量基因qSB-11Le的精细定位、效应研究及其候选基因分析[D].扬州:扬州大学,2006.
    [16]殷跃军.水稻抗纹枯病QTLqSB-9Tq的遗传分析和精细定位研究[D].扬州:扬州大学,2008.
    [17]左示敏,王子斌,陈夕军,等.水稻纹枯病改良新抗源YSBR1的抗性评价[J].作物学报,2009,35(4):608-614.
    [1]廖皓年,肖陵生,王华生.水稻纹枯病发生历史及演变原因简析[J].广西植保,1997(3):35-38.
    [2]Li Z K, Pinson S R M, Marchetti M A, et al. Characterization of quantitative trait loci (QTLs) in cultivated rice contributing to field resistance to sheath blight [J]. Theor Appl Genet,1995,91:382-388.
    [3]潘学彪,邹军煌,陈宗祥,等.水稻品种Jasmine85抗纹枯病主效QTLs的分子标记定位[J].科学通报,1999,44(15):1629-1635.
    [4]Zou J, Pan X, Chen Z, et al. Mapping quantitative trait loci controlling sheath blight resistance to two rice cultivars(Oryza Sativa L.)[J]. Theor Appl Genet,2000,101:569-575.
    [5]纪雪梅.两个水稻品种抗纹枯病数量性状基因定位[D].扬州:扬州大学,2001.
    [6]国广泰史,钱前,佐藤宏之,等.水稻纹枯病抗性QTL分析[J].遗传学报,2002,29(1):50-55.
    [7]韩月澎,邢永忠,陈宗祥,等.杂交水稻亲本明恢63对纹枯病水平抗性的QTL定位[J].遗传学报,2002,29(7):565-570.
    [8]杨勇.水稻抗纹枯病遗传及相关主效数量基因的定位[D].扬州:扬州大学,2003.
    [9]Sato H, Ideta O, Audo I, et al. Mapping QTLs for sheath blight resistance in the rice line WSS2 [J]. Breeding Science,2004,54:265-271.
    [10]左示敏,殷跃军,张丽,等.水稻抗纹枯病QTL qSB-11的育种价值及其进一步定位[J].中国水稻科学,2007,21(2):136-142.
    [11]左示敏.水稻抗纹枯病数量基因qSB-11Le的精细定位、效应研究及其侯选基因分析[D].扬州:扬州大学,2006.
    [12]殷跃军,左示敏,王辉,等.抗水稻纹枯病qSB-9Tq基因效应及作用方式分析[J].作物学报,2009,35(2):279-285.
    [13]殷跃军.水稻抗纹枯病QTL qSB-9Tq的遗传分析和精细定位研究[D].扬州:扬州大学,2008.
    [14]Rush M C, Hoff J J, Mcllrath W O. A uniform disease rating system for rice disease in the United States [G]//Proc 16th Rice Tech Working Group. Lake Charles, Louisana, USA,1976:64.
    [15]Wasano K, Oro S, Kido Y. The syringe inoculation method for selecting rice plants resistant to sheath blight, Rhizoctonia solani [J]. Jpn J Trop Agric,1983,27:131-1341.
    [16]过崇俭,陈志谊,王德明.水稻纹枯病菌(Thanatephrus cucumeris)致病力分化及品种抗性鉴定技术的研究[J].中国农业科学,1985,18(5):50-57.
    [17]潘学彪,陈宗祥,徐敬友,等.不同接种调查方法对抗水稻纹枯病遗传研究的影响[J].江苏农学院学报,1997,18(3):27-32.
    [18]Singh A, Rohilla R, Singh U S, et al. An improved inoculation technique for sheath blight of rice caused by Rhizoctonia solani [J]. Can J Plant Pathol,2002,24:65-68.
    [19]中华人民共和国国家标准.GB/T15791-1995稻纹枯病测报调查规范[S].
    [20]Pinson S R M, Capdevielle F M, Oard J H. Confirming QTLs and finding additional loci conditioning sheath blight resistance in rice using recombinant inbred lines [J]. Crop Sci,2005,45:503-510.
    [21]谭彩霞,张亚芳,陈宗祥,等.两个抗水稻纹枯病主效数量基因的鉴定[J].中国生物工程杂志,2004,24(4):79-80.
    [22]谭彩霞,纪雪梅,杨勇,等.水稻回交世代中两个抗纹枯病主效数量基因的鉴定与标记辅助选择[J].遗传学报,2005,32(4):399-406.
    [23]左示敏,张亚芳,殷跃军,等.田间水稻纹枯病抗性鉴定体系的确立与完善[J].扬州大学学报:农业与生命科学版,2006,27(4):57-61.
    [24]左示敏,王子斌,陈夕军,等.水稻纹枯病改良新抗源YSBR1的抗性评价[J].作物学报,2009, 35(4):608-614.
    [25]福建省地方标准.DB35/T82.2-1996水稻品种抗纹枯病鉴定方法及评价标准[S].
    [26]Jia Y, Correa-Victoria F, McClung A, et al. Rapid determination of rice cultivar responses to the SB pathogen Rhizoctonia solani using a Micro-chamber screening method [J]. Plant Disease,2007,91(5): 485-489.
    [27]王子斌,左示敏,李刚,等.水稻抗纹枯病苗期快速鉴定技术研究[J].植物病理学报,2009,39(2):174-182.
    [1]王艳青.近年来中国水稻病虫害发生及趋势分析[J].中国农学通报,2006,22(2):343-347.
    [2]廖皓年,肖陵生,王华生.水稻纹枯病发生历史及演变原因简析[J].广西植保,1997(3):35-38.
    [3]LiZK, Pinson S R M, Marshetti MA, et al. Characterization of quantitative trait loci (QTLs) in cultivated rice contributing to field resistance to sheath blight(Rhizoctonia solani) [J]. Theor Appl Genet,1995,91:374-381.
    [4]Pan XB, Zou H J, Chen Z X, et al. Tagging major quantitative trait loci for sheath blight resistance in a rice variety Jasmine 85 [J]. Chinese Science Bulletin,1999,44(19):1783-1789.
    [5]邹军煌,潘学彪,陈宗祥,等.两个水稻品种抗纹枯病数量性状基因定位[C]//21世纪水稻遗传育种展望,北京:中国农业科学出版社,1999,176-181.
    [6]Zou J H, Pan X B, Chen Z X, et al. Mapping quantitative trait loci controlling sheath blight resistance to two rice cultivars(Oryza Sativa L.)[J]. Theory Applied Genet,2000,101:569-575.
    [7]纪雪梅.两个水稻品种抗纹枯病数量性状基因定位[D].扬州:扬州大学,2001
    [8]国广泰史,钱前,佐藤宏之,等.水稻纹枯病抗性QTL分析[J].遗传学报,2002,29(1):50-55.
    [9]杨勇.水稻抗纹枯病遗传及相关主效数量基因的定位[D].扬州:扬州大学,2003.
    [10]韩月澎,邢永忠,陈宗祥,等.杂交水稻亲本明恢63对纹枯病水平抗性的QTL定位[J].遗传学报,2002,29(7):565-570.
    [11]陈恩会.两个新抗源中水稻纹枯病抗性的遗传分析及其和相关农艺性状的QTL定位[D].扬州:扬州大学,2004.
    [12]Sato H, Ideta O, Audo I, et al. Mapping QTLs for sheath blight resistance in the rice line WSS2 [J]. Breeding Science,2004,54:265-271.
    [13]Loan L C, Pham V D, Li Z K. Molecular dissection of quantitative resistance of Sheath Blight in rice (Oryza sativa L.)[J]. Omonrice,2004,12:1-2.
    [14]Pinson S R M, Capdevielle F M, Oard J H. Confirming QTLs and finding additional loci conditioning sheath blight resistance in rice using recombinant inbred lines [J]. Crop Sci,2005,45:503-510.
    [15]谭彩霞,张亚芳,陈宗祥,等.两个抗水稻纹枯病主效数量基因的鉴定[J].中国生物工程杂志,2004,24(4):79-80.
    [16]郑天清,徐建龙,傅彬英,等.回交高代选择导入系的纹枯病抗性与抗旱性的遗传重叠研究 [J].作物学报,2007,33(8):1380-1384.
    [17]谢学文,许美容,藏金萍,等.水稻抗纹枯病QTL表达的遗传背景及环境效应[J].作物学报,2008,34:1885-1893.
    [18]李芳,程立锐,许美容,等.利用品质性状的回交选择导入系挖掘水稻抗纹枯病QTL[J].作物学报,2009,35(9):1729-1737.
    [19]Liu G, Jia Y, Correa-Victoria F J, et al. Mapping quantitative trait loci responsible for resistance to Sheath Blight in rice [J]. Phytopathology,2009,99(9):1078-1084.
    [20]Sonah V, Chand M, Sharma H. Identification of major quantitative trait loci qSBR11-1 for sheath blight resistance in rice [J]. Mol Breeding,2010,25:155-166.
    [21]Sharma A, McClung A M, Pinson S R M, et al. Genetic mapping of Sheath Blight resistance QTLs within tropical Japonica rice cultivars [J]. Crop Science,2009,49:256-264.
    [22]高晓清,谢学文,许美容,等.水稻抗纹枯病导入系的构建及抗病位点的初步定位[J].作物学报,2011,37(9):1559-1568.
    [23]殷跃军.水稻抗纹枯病QTL qSB-9Tq的遗传分析和精细定位研究[D].扬州:扬州大学,2008.
    [24]左示敏.水稻抗纹枯病数量基因qSB-11Le的精细定位、效应研究及其候选基因分析[D].扬州:扬州大学,2006.
    [25]左示敏,王子斌,陈夕军,等.水稻纹枯病改良新抗源YSBR1的抗性评价[J].作物学报,2009,35(4):608-614.
    [26]袁隆平.高产杂交水稻育种[J].杂交水稻,1997,12(6):1-6.
    [27]潘学彪,陈宗祥,徐敬友,等.不同接种调查方法对抗水稻纹枯病遗传研究的影响[J].江苏农学院学报,1997,18(2):27-32.
    [28]左示敏,张亚芳,殷跃军,等.田间水稻纹枯病抗性鉴定体系的确立与完善[J].扬州大学学报:农业与生命科学版,2006,27(4):57-61.
    [29]Mccouchs R R W. QTL mapping in rice [J]. Trends.Genet,1995,11:482-487.
    [30]Ji Q, Lu J, Chao Q, et al. Delimiting a rice wide compatibility gene Sn5 to a 50 kb regon [J]. Thero Appl Genet,2005.111:1495-1503.
    [31]潘学彪,张亚芳,左示敏,等.作物重要数量性状基因鉴定与应用的若干问题[J].扬州大学学报:农业与生命科学版,2005,26(2):50-55.
    [1]Li Z K, Pinson S R M, Marshetti M A, et al. Characterization of quantitative trait loci (QTLs) in cultivated rice contributing to field resistance to sheath blight(Rhizoctonia solani) [J]. Theor Appl Genet, 1995,91:374-381.
    [2]Pan X B. Zou H J, Chen Z X, et al. Tagging major quantitative trait loci for sheath blight resistance in a rice variety Jasmine 85 [J]. Chinese Science Bulletin,1999,44(19):1783-1789.
    [3]邹军煌,潘学彪,陈宗祥,等.两个水稻品种抗纹枯病数量性状基因定位[C]//21世纪水稻遗传育种展望,北京:中国农业科学出版社,1999,176-181.
    [4]Zou J H, Pan X B, Chen Z X, et al. Mapping quantitative trait loci controlling sheath blight resistance to two rice cultivars(Oryza Sativa L.)[J]. Theory Applied Genet,2000,101:569-575.
    [5]纪雪梅.两个水稻品种抗纹枯病数量性状基因定位[D].扬州:扬州大学,2001.
    [6]国广泰史,钱前,佐藤宏之,等.水稻纹枯病抗性QTL分析[J].遗传学报,2002,29(1):50-55.
    [7]杨勇.水稻抗纹枯病遗传及相关主效数量基因的定位[D].扬州:扬州大学,2003.
    [8]韩月澎,邢永忠,陈宗祥,等.杂交水稻亲本明恢63对纹枯病水平抗性的QTL定位[J].遗传学报,2002,29(7):565-570.
    [9]陈恩会.两个新抗源中水稻纹枯病抗性的遗传分析及其和相关农艺性状的QTL定位[D].扬州:扬州大学,2004.
    [10]Sato H, Ideta O, Audo I, et al. Mapping QTLs for sheath blight resistance in the rice line WSS2 [J]. Breeding Science,2004,54:265-271.
    [11]Loan L C, Pham V D, Li Z K. Molecular dissection of quantitative resistance of Sheath Blight in rice (Oryza sativa L.)[J]. Omonrice,2004,12:1-2.
    [12]Pinson S R M, Capdevielle F M, Oard J H. Confirming QTLs and finding additional loci conditioning sheath blight resistance in rice using recombinant inbred lines [J]. Crop Sci,2005,45:503-510.
    [13]郑天清,徐建龙,傅彬英,等.回交高代选择导入系的纹枯病抗性与抗旱性的遗传重叠研究[J].作物学报,2007,33(8):1380-1384.
    [14]向殉朝,李季航,张楷正,等.一个水稻抗纹枯病突变体的遗传分析及其基因的初步定位[J].西南科技大学学报,2007,22(2):76-81.
    [15]谢学文,许美容,藏金萍,等.水稻抗纹枯病QTL表达的遗传背景及环境效应[J].作物学报,2008,34:1885-1893.
    [16]李芳,程立锐,许美容,等.利用品质性状的回交选择导入系挖掘水稻抗纹枯病QTL[J].作物学报,2009,35(9):1729-1737.
    [17]Liu G, Jia Y, Correa-Victoria F J, et al. Mapping quantitative trait loci responsible for resistance to Sheath Blight in rice [J]. Phytopathology,2009,99(9):1078-1084.
    [18]Sonah V, Chand M, Sharma H. Identification of major quantitative trait loci qSBR11-1 for sheath blight resistance in rice [J]. Mol Breeding,2010,25:155-166
    [19]Sharma A, McClung A M, Pinson S R M, et al. Genetic mapping of Sheath Blight resistance QTLs within tropical Japonica rice cultivars [J]. Crop Science,2009,49:256-264.
    [20]高晓清,谢学文,许美容,等.水稻抗纹枯病导入系的构建及抗病位点的初步定位[J].作物学报,2011,37(9):1559-1568.
    [21]左示敏.水稻抗纹枯病数量基因qSB-11Le的精细定位、效应研究及其候选基因分析[D].扬州:扬州大学,2006.
    [22]殷跃军.水稻抗纹枯病QTL qSB-9Tq的遗传分析和精细定位研究[D].扬州:扬州大学,2008.
    [23]Walia H, Wilson C, Zeng L, et al. Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage [J]. Plant Molecular Biology,2007,63(5): 609-623.
    [24]Zhou J L, Wang X F, Jiao Y L, et al. Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle [J]. Plant Molecular Biology,2007,63(5): 591-608.
    [25]Jorstad T S, Langaas M, Bones A M. Understanding sample size:what determines therequired number of mocroarrays for an experiment? [J]. Trends in Plant Science,2007,12(2):46-50.
    [26]Lian X M, Wang S P, Zhang J W, et al. Expression Profiles of 10,422 Genes at Early Stage of Low Nitrogen Stress in Rice Assayed using a cDNA Microarray [J]. Plant Molecular Biology,2006,60(5): 617-631.
    [27]Perchepied L, Kroj T, Tronchet M, et al. Natural Variation in Partial Resistance to Pseudomonas syringae Is Controlled by Two Major QTLs in Arabidopsis thaliana[J]. PLOS ONE,2006,1(1):1-10.
    [28]Tao Y, Xie Z, Chen W, et al. quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterical pathogen Pseudomonas syringae [J]. The Plant Cell,2003, 15(2):317-330.
    [29]Wisser R J, Sun Q, Hulbert S H, et al. Identification and Characterization of Regions of the Rice Genome Associated With Broad-Spectrum, Quantitative Disease Resistance [J]. Genetics,2005,169(4): 2277-2293.
    [30]Zhang J W, Li C S, Wu C Y, et al. RMD:a rice mutant database for functional analysis of the rice genome [J]. Nucleic Acids Research,2006,34(S1):D745-D748.
    [31]左示敏,王子斌,陈夕军,等.水稻纹枯病改良新抗源YSBR1的抗性评价[J].作物学报,2009,35(4):608-614.
    [32]潘学彪,陈宗祥,徐敬友,等.不同接种调查方法对抗水稻纹枯病遗传研究的影响[J].江苏农学院学报,1997,18(3):27-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700