用户名: 密码: 验证码:
中空电液伺服马达低速特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高精度中空式电液伺服马达作为液压仿真转台内框的驱动元件,其性能的优劣直接影响了转台的性能和仿真精度。低速性能是中空电液伺服马达的关键技术指标之一。良好的低速性能不仅能简化整个系统的结构,也为系统实现宽调速创造了条件。因此,对中空电液伺服马达的低速性能进行深入的研究,对于提升高精度仿真转台的性能具有重要意义。
     本文在查阅国内外资料的基础上,综述了中空电液伺服马达的研究现状和发展趋势,概述其关键技术及其系统低速理论研究进展,确定了本文的研究方向。
     首先,本文通过推导中空电液伺服马达动力学方程,建立了马达的数学模型。通过对不同摩擦模型的对比分析,选用工程上常用的Stribeck摩擦模型作为分析和仿真的依据,并在此基础上对系统性能进行了分析。
     其次,针对中空电液伺服马达的爬行现象,对其爬行机理做详细的探讨,在此基础上进行深入的理论分析,讨论了影响马达爬行的若干因素。
     在控制策略上,针对马达的爬行问题,采用了传统的PID控制策略,由于马达爬行的周期性,在PID基础上引入了插入式重复控制方法,仿真结果表明,此方法能够很好地抑制马达的爬行。
     最后,针对理论分析的结果,本文在中空马达实验台上进行了马达低速实验。实验结果表明插入式重复控制方法能够在PID的基础上进一步改善马达的爬行,提高马达的低速性能。
Hollow-axis high precision electro-hydraulic servo motor is a drive component which applied in inner frame of flight motion simulator and its performance directly determines fidelity of simulation results. Low speed performance is a key index in accessing the hollow-axis electro-hydraulic servo motor. Good performance of low speed not only simplified the structure of the flight simulation, but also offer the possibility of wide-velocity regulation. As a result, performing deep analysis on the low speed performance of the Hollow-axis electro-hydraulic servo motor plays an important role in improving the performance of the high precision flight simulation.
     After synthesizing large numbers of related literatures and reference materials at home and abroad, this paper summarize the outline of hollow-axis electro-hydraulic servo motor at home and abroad, introduces the key techniques and the development of the low speed theory on which the research fields are derived.
     Firstly, the dynamic model of the hollow-axis electro hydraulic servo motor is constructed using relevant theories on which the mathmatical model of the servo motor is derived. By means of comparison of different friction models, the Stribeck friction models is chosed as basis of further analysis on which the analysis of the performance of the system is performed.
     Secondly, as to the slip-stick phenomenon of the servo motor, this paper perform detailed discussion on the crawling mechanism, and the theoretical analysis is performed, and then the influence factor of the low speed is disscussed at length and the Matlab simultion is also performed.
     Regarding to the controll strategy, the PID control means is applied, and considering the periodicity of the slip-stick, the plug in repetitive control means is also adopted, the result of the simulation shows that the plug in repetitive control means can restrain the slip-stick phenomenon effetively.
     Finally, as to the result of the theoretical analysis, experiment is performed on the servo motor laboratory table which shows that the plug in repetitive control means can make further improvements on the slip-stick phenomenon.
引文
[1] Wu Shenlin,Zhao Keding,Li Shangyi,Liu Qinghe.The Design Characteristic and Experiment Study on Electrohydraulic Servo Motor with Super-Low-Speed High Frequency Response and High Accuracy. Proceedings of the 1st International Symposium on Fluid Power Transmission and Control[C]. 1991:148~151
    [2]刘春芳,吴盛林,贾锦虹.液压仿真转台中液压爬行现象分析及消除措施[J].液压与气动.2002,(5):18~19
    [3]北京瑞赛长城航空技术有限公司.FS系列液压模拟转台. http://www.c-bmc.com.cn/product/p7.htm
    [4]九江精密测试技术研究所.三轴中空液压马达仿真转台. http://www.jjjmcs.com/cpjs013z5.htm
    [5] Ideal Aerosmith Inc.Model 2405H-ER Five-Axis Electro-Hydraulic Flight Motion Simulator(FMS).http://www.ideal-aerosmith.com/pdf/MP-2405H-ER.pdf
    [6]赵园懿.液压密封技术的应用与发展概述[J].润滑与密封.2004, (4):132~135
    [7]黄兴,林原.新世纪密封技术面临的问题及其发展趋势[J].润滑与密封. 2002,29(1):76~78
    [8]王占林.近代液压伺服控制[M].北京:机械工业出版社.1997:112~113
    [9] Xuesong Mei,Maosaomi Tsutsumi et al.Study of the Friction Error for a High-Speed High Precision Table[J].International Journal of Machine Tools and Manufacture.2001:1405~1415
    [10] H. Olsson,K.J Astrom.Friction Generated Limited Cycles[J].IEEE Transactions on Control Systems Technology.2001,9(4):629~636
    [11] A H Sacks,W. Messner.“Advanced Methods for Repeatable Runout Compensation”[J].IEEE Trans.on Magnetics,Vol.31,No.2,pp.1031-1035,Mar, 1995.
    [12]李翠艳.重复控制的一些设计问题研究[D].哈尔滨:哈尔滨工业大学博士学位论文.2005
    [13]王旭永.三轴转台外框电液位置伺服系统低速运动的研究[D].哈尔滨:哈尔滨工业大学博士学文论文.1993:1~19,80~95
    [14]李尚义,吴盛林,聚四氟乙烯组合式密封件的工作机理与结构分析[J].机械工程师.1988,(3):5~8
    [15]谷云彪,王旭永等.马达摩擦转矩对电液位置伺服系统低速性能的影响[J].机械工程师.1995,(5):9~10
    [16] E. Takano.Oscillation Caused by Solid Friction in a Hydraulic Driving System[J]. JSME International Journal.1988,31(1):48~57
    [17]谷云彪,李尚义等.液压马达起动摩擦特性的测试方案设计[J].机床与液压. 1996,(4):39~41
    [18]李跃磊,王武,葛瑜.飞行模拟转台伺服系统滑模控制仿真[J].机械设计与制造. 2011,(3):206~208
    [19]王春行.液压控制系统[M].北京:机械工业出版社,2006:40~65
    [20]贾社娜.电液伺服马达摩擦特性分析及试验研究[D].哈尔滨工业大学硕士学位论文.2007:42~50
    [21] Armstrong-Helouvry,Brian.Stick-slip arising from Stribeck friction[C]. Proceedings of the 1990 IEEE international Conference on Robotics and Automation.1990:1377~1382
    [22] M.Kaneta,T.Takeshima,S.Toqami, H.Nishikawa,Y.Kanzaki. Stribeck curve in reciprocating seals[C].18th International Conference of Fluid Sealing. 2005:333~347
    [23]董景新,赵长德.控制工程基础[M].北京:清华大学出版社.2002
    [24]刘丽兰,刘宏昭,吴子英,王忠民.机械系统中摩擦模型的研究进展[J].力学进展.2008,38(2):201~213
    [25] Ejcewicz J,Olejnik P.Analysis of dynamic systems with various friction laws[J]. ASME Appl Mech Rev. 2005,58:389~410
    [26] Aniec M.Friction compensation by the use of friction observer[J].Dissertation of Lund Institute of Technology.2004:5~16
    [27] Berger E.J.Friction modeling for dynamic system simulation[J].ASME Appl Mech Rev. 2002,55(6):535~577
    [28]丁文静,樊世超.摩擦力的若干数学模型[C].第六届全国一般力学学术会议.1998:133~137
    [29] Karnopp.Computer simulations of stick slip friction in mechanical dynamic systems[J].ASME journal of Dynamic Systems,Measurement and Control. 1985,(107):100~103
    [30] Gao Chao,Kuhlmann-Wilsdorf Doris,Makel David D.Dynamic analysis of stick-slip motion[J].Wear.1994,173(1):1~12
    [31]王林鸿,杜润生,吴波,杨叔子.液压缸低速运动的动态分析[J].中国机械工程. 2006,17(20):2098~2101
    [32]陈兴林,张福恩.仿真转台的低速性能研究[J].宇航学报.1995,16(4):66~69
    [33]杜璧秀,张淑梅,高慧斌,张玉良.高精度转台速度稳定性研究[J].光电工程. 2011,38(3):14~18
    [34]宋彦,高慧斌,田彦涛,张淑梅.伺服系统受摩擦扰动产生极限环的原因及稳定性分析[J].吉林大学学报(工学版).2011,41(1):214~220
    [35]陈运广.液压三轴仿真转台低速性能分析及其控制的研究[D].哈尔滨工业大学硕士学位论文.2008
    [36]李汉平.仿真转台用中空电液伺服马达的性能研究[D].哈尔滨工业大学硕士学位论文.2006
    [37]王平.三轴角振动液压转台理论分析与实验研究[D].哈尔滨工业大学硕士学位论文.2006
    [38]崔晓.仿真转台用中空式电液伺服马达摩擦及泄漏特性的研究[D].哈尔滨工业大学博士学位论文.2010
    [39]马菲.重复控制在DVD机伺服系统中的研究与应用[D].上海交通大学硕士论文.2008
    [40]葛翔.基于重复控制方法的高精度速率伺服控制系统设计[D].哈尔滨工业大学硕士学位论文.2007
    [41] Wu-Sung Yau,Mi-Ching Tsai.Repetitive Control Design for Linear Servo Systems[C].Proceedings of the American Control Conference.San Diego, California.June 1999:3728~3732
    [42] Tadashi Inoue.Practical Repetitive Control System Design[C].Procedings of the 29th conference on Decision and Control.Honolulu,Harwall.December 1990:1673~1678
    [43] Wu-Sung Yao,Mi-Chine Tsai.Analysis and Estimation og Tracking Errors of Plug-in Type Repetitive Control Systems[J].IEEE Transactions on automation control.2005,50(8):1190~1195
    [44]童子磊.摆镜扫描的重复控制系统[J].红外与毫米学报.2006,25(3):229~232
    [45]彭宏刚,于豫民,张敏华.基于插入式重复控制的摆镜扫描控制系统研究[J].航天返回与遥感.2008,29(3):51~56
    [46]孟浩然,王建立,阴玉梅.基于重复控制的光电望远镜低速平稳性改善方法[J].机床与液压.2009,37(8):327~330
    [47]李锐,黄文新,储剑波.基于重复控制的抑制电机周期性负载扰动的方法[J]. Electric Drive.2010,40(12):48~51
    [48]简林柯,李新忠,何钺.基于重复控制的跟踪系统设计及应用[J].机床与液压. 1998,(6):13~15
    [49] YangQuan Chen,Kevin L. Moore,Jie Yu,Tao Zhang.Iterative learning control and repetitive control in hard disk drive industry-A tutorial[J].International journal of adaptive control and signal processing.2008:22:325-323
    [50] Goele Pipeleers,Bram Demeulenaere,Joris De Schutter,jan Swevers.Robust high-order repetitive control:Optimal performance trade-offs[J].Automatica. 2008,44:2628~2634
    [51]缪天舒,王隆太,许晓峰.基于重复控制的数控系统伺服调节技术的研究[J].机械科学与技术.2008:27(6):837~840

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700