用户名: 密码: 验证码:
基于CMAC的多驱动系统协调控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于由分散的多个电机驱动的长距离带式运输机和由多个机器人进行的提升和装配操作,协调控制用于解决这些复杂运动控制系统中各子系统之间负载、功率、速度和张力的平衡,平稳启动和停车,以及机器人的快速跟随等问题是必不可少的。这些系统由于具有非线性和时变特性而难以用一般的解析方法来辨识、建模和控制,但是这些问题往往可以用人工智能导出的方法来加以解决。从控制的角度看,人工智能算法也就是控制器。
     通过对有关工程背景和一些用于协调控制的人工智能方法的学习,作者认为小脑模型关联控制器(CMAC)方法是一种可有效地应用于协调控制的手段,并针对一些典型的复杂运动控制系统开发了一些基于CMAC的算法,应用于工程实践。
     作者提出了一种DCMAC+P控制器。该控制器使用一个主CMAC粗略地逼近控制对象的逆,同时使用一个辅助CMAC来补偿由于不够精确的逆所导致的残差。针对一个由两个伺服系统组成的复杂系统,其中两个子系统具有相同的周期性变化的速度给定,但是承担不同的周期性变动负载,系统仿真验证了DCMAC+P控制策略;该算法可使两个子系统达到速度同步,其快速性优越于常用的CMAC+P控制器。
     ASE/ACE算法具有与CMAC+P算法不同的机制且也可用于复杂运动控制系统的协调,其特点是通过两个互相协作的单元来实现的一种强化学习机制,其中一个单元提供控制输出,而另一个单元则通过对控制效果的评价来修正前者的参数。为了改善这种机制的实时性,作者提出将CMAC引入这两个单元从而形成CMAC-ASE/CMAC-ACE控制器并将这种控制器应用于上述复杂运动控制系统,仿真验证了独立控制的两个伺服系统快速而自动地实现了同步。基于上述由CMAC改进和增强的控制器,作者试图将其应用于典型的或在工程项目中的复杂运动控制系统。在一个机器人跟踪系统中,作者使用两个基于CMAC的ASE/ACE控制器分别控制一个跟踪机器人的相对于逃逸机器人的距离和角度。相对于另一个采用一般CMAC算法的跟踪机器人,该算法在快速响应和控制精度上占优。
     在一个由三台交流电机驱动的带式运输机中,三台电机会因为回路电阻或供电电压的差别而导致功率不平衡,为此采用了DCMAC+P算法用于自动功率调节,仿真结果验证了这种算法的有效性及其相对于一种模糊控制器的优越性。
     论文中介绍了控制算法在带式输送机上的应用,该长距离带式输送机由分布安置的多台电机驱动。为了保障工程成功,在预研中对系统进行了深入细致分析;对系统的主要部件如传送带、滚筒、变速箱以及具有双闭环的驱动系统进行了建模,采用有限元法对传送带的粘弹性进行了处理。由于各驱动子系统通过传送带而互相耦合,工程中采用基于CMAC的ASE/ACE算法进行功率平衡。仿真证明该算法可以获得良好系统性能并实现功率平衡。
     论文最后对于研究内容进行了总结,描述了后续的研究工作。
Coordination in complex motion control systems, such as long-distance belt conveyor driven by multiple geographically distributed electric drives or a lift and assembly task performed by multiple cooperative robots,is mandatory to the problems such as the static and dynamic balance of load, power, speed and tension among the subsystems, the smooth startup and shutdown of the whole system, the quick catch-up of robot tracking etc. Those systems characterized of nonlinear and time-varying properties are quite hard to be identified, modeled and controlled by commonly used analytical methods but it happens that those problems might fortunately be solved by the methods deduced from artificial intelligence. In the sense of control, AI algorithm is a synonymous of controller.
     With the preliminary study on the engineering background and some AI methods used for coordination, the author found CMAC to be a useful measure for system coordination and developed algorithms for typical complex motion control systems in his engineering project, as well as for the preparation of his dissertation.
     The author proposed a DCMAC+P controller that uses a main CMAC to roughly approximate the inverse of the object and an auxiliary CMAC is used to fetch up the residue error caused by the roughness of acquired inverse. This strategy is verified superior to CMAC+P controller by simulating a difficult task of a complex system composed of two servo subsystems that are required to reach speed synchronization with same periodical speed set-value but different periodically varying loads.
     The ASE/ACE algorithm is a different mechanism from CMAC+P and may also be used for coordinated control of complex motion control systems. It is characterized of reinforced learning that is implemented by two mutually assisted elements that the first delivers control action and the second yields a judgment used to refine the parameters of the former. To improve real-time ability of such a mechanism, CMAC is introduced into the ASE and ACE respectively to form CMAC-ASE/CMAC-ACE controllers. The simulation is performed by applying such an algorithm to the two servo subsystems of the complex system mentioned above with the results that the two independently controlled subsystems can reach synchronization quickly and automatically.
     With the acquired knowledge of the CMAC improved and enhanced controllers the author tried to apply them to some typical complex motion control systems as well as the systems met in the engineering project. In a robot tracking system, two CMAC based ASE/ACE controllers are applied to the tracking robot to respectively control the distance and angle relative to the escaping robot. This algorithm is verified superior in response and accuracy to common CMAC algorithm running on a reference tracking robot performing the same tracking task.
     In solving the power unbalance among the three AC motors cooperatively driving a long belt conveyer, DCMAC+P algorithm is used to perform APR (Automatic Power Regulation) to achieve balanced load currents of the motors with unequal operating conditions such as circuit resistances and supply voltages. Simulation validates the effectiveness of the controller, as well as the better performance than that of a fuzzy controller.
     An important chapter of the dissertation is concerned with the application to long distance belt conveyers driven by multiple distributed electric drive systems. To secure the success of the projects, more thorough and detailed analysis has been done in the preliminary research. Main system components such as conveyer belt, gearbox, as well as the drives with speed and current loops are modeled with special attention paid to the treatment of the viscoelasticity of the conveyer belt. Because the drive subsystems are coupled via the conveyer belt, a CMAC based ASE/ACE is used for the power balance. Simulations proved that the algorithm can obtain good system performance and solve the problem of power balance.
     The dissertation is ended with a summary and some problems to be solved in the future.
引文
[1]秦养浩:超长胶带多电动机拖动的控制方法合肥工业大学学报(自然科学版)1996.12第19卷第4期
    [2]邓永胜,宋伟刚,赵琛双滚筒传动带式输送机的电动机功率平衡东北大学学报(自然科学版) 2000年10月第21卷第5期
    [3]杜少武,秦养浩,徐宁5kw胶带运输机负载平衡装置的研究电工技术杂志1997.7第4期
    [4]欧阳名三,莫丽红采用参数预测及模糊控制的胶带多机驱动功率平衡的研究煤炭学报2005年4第30卷第2期
    [5]韩东劲梁平蒋卫良带式输送机差动液黏调速器多机功率平衡的研究煤炭学报第31卷第6期2006.12
    [6]付峻青王聪李玉瑾带式输送机多滚筒驱动特性的研究起重运输机械2005
    [7]姜雪包继华于岩多点驱动的上运带式输送机起动控制策略起重运输机械2007.11
    [8]刘立伟刘福才张学莲内模控制在多电动机同步驱动系统中的应用燕山大学学报2002.7第26卷第3期
    [9]刘福才张学莲基于模糊PID补偿控制的多电动机同步驱动系统电工技术杂志2002.8
    [10]李鑫张崇巍陈梅陈薇分布式运动控制系统的控制模型及功率平衡起重运输机械2009.7
    [11]李鑫,陈薇,张崇巍蒋琳陈波基于CMAC的功率平衡算法在多机协同驱动中的应用中国科学技术大学学报增刊2009 vol1.39
    [12]李鑫陈梅蒋琳陈薇液粘软启动装置在长胶带运输机的应用研究机床与液压36卷11期2008-11
    [13] H. Lau Hoff speed control on belt conveyors-does it really save energy? Bulk solids handling 2 Vol 25(2005) NO.6
    [14]段志生黄琳王金枝王龙两个系统间的协调控制问题自动化学报2003.1第29卷第1期
    [15] Harrison. A, Simulation of conveyor dynamics, bulk solids handling, 1996, vol, 16(NO.1)
    [16] Funke.H.Zum, Dynamichen Verhalten von Forderbanlagen beim Anfahren und utillsetzen, [Dissertation], university of Hannover, Germany, 1973
    [17]李光布带式输送机动力学及设计北京机械工业出版社1998.7
    [18]宋伟刚著通用带式输送机.,北京:机械工业出版社,2006.5
    [19]孙文焕,程善美,王晓翔,秦忆,多电动机协调控制的发展电气传动1999.6
    [20] Kulkarni P, Srinivasaa K, Cross-couple Compensators for Contouring Control of Multi-axial Machine Tools. In proceedings of the 13th North American Manufacturing Research Conference, 1985:558-566
    [21] Kulkarni P, Srinivasaa K, Cross-couple Compensators for Mult-axial Feed Drive Servomechanisms. In proceedings of the Japan-USA symposium of Flexible Automation, 1986:585-594
    [22] Tomizuka M.Hu J,Chiu T,Kamano T. Synchronization of Two Motion Control Axes Under Adaptive Feedforward Control. ASME Journal of dynamic systems, measurement and control,1992,114(6):196-203
    [23]陈伯时等著电力电子与电力传动自动化-陈伯时教授文集机械工业出版社2008.6
    [24]诸静等编著模糊控制原理与应用机械工业出版社:北京2005.1.
    [25]蔡自兴智能控制原理与应用[M]北京:清华大学出版社2007.11
    [26]黄发钧,杨孟远迭代学习控制的研究与现状计算机与现代化2008年9期,
    [27]孙云平李俊民王元亮二阶系统非一致目标跟踪混合自适应迭代学习控制工程数学学报2008.2 Vol.25 No.1
    [28]程晓北,沈晶等分层强化学习研究进展计算机工程与应用2008.44-13
    [29]许力智能控制与智能系统[M]北京:机械工业出版社2007 270-271
    [30]张代远著神经网络新理论与方法清华大学出版社2006.11
    [31]戴先中,刘国海,张兴华著交流传动神经网络逆控制机械工业出版社2007.9
    [32]段培永任化芝超闭球CMAC的性能分析及多CMAC结构自动化学报2000.7 Vol.26,No.4
    [33] Albus J S.A new approach to manipulator control: The cerebella model articulation controller(CMAC)[J] ,J of Dynamic systems Measurement and Control. 1975,79(2):220-227
    [34] Albus J S. Data storage in cerebella model articulation controller(CMAC)[J], J of Dynamic systems Measurement and Control. 1975,79(2):228-233
    [35] YIU F W. ATHANASIOS S. Learning convergence in the cerebellar model articulation controller[J],IEEE Trans on Neural networks.1992.3(1):115-121
    [36]朱大齐孔敏基于平衡学习的CMAC的神经网络非线性滑模容错控制控制理论与应用2008.2 Vol.25 No.1
    [37] NIE,J,LINKENS D A. FCMAC:A Fuzzified cerebellar model articulation controller with self-organizing capacity[J]. Automatic 1994,30(4) 655-664.
    [38] SHUN F S,TED T. HUNG T H. Credit assigned CMAC and its application to online learning robust controllers[J]. IEEE Trans on systems.man andCybernatics-partB:Cybenatics,2003.33(2):202-213.
    [39]朱大奇,张伟.基于平衡学习的CMAC神经网络非线性辨识算法[J]控制与决策2004 19(12) 1425-1428
    [40]时文飞,侯世英,李学远等.基于CMAC与PID复合控制的柴油机调速系统[J].控制理论与应用,2006,25(4):11-13.
    [41]杨辉,王爽心,李亚光.汽轮机调速系统CMAC网络PID并行优化控制[J].系统仿真学报,2008,20(10) 2662-2665
    [42]宋宏志多电动机功率平衡模糊控制器的设计[J]:工矿自动化2005.4 60~62
    [43]陈涌马勇陈涛FCMAC实现的强化学习稳定控制系统设计[J]电动机与控制学报2001,12 5(4):263-266
    [44] CHEN Y G,TENG C C. A model reference control structure using a fuzzy nerwork[J]. Fuzzy Sets and Systems 1995,73:292-312
    [45] LIN C J, LIN C T. Reinforcement learning for an ART-base fuzzy adaptive learning control network[J]. IEEE Trans Neural Network,1996,7(3):709-731
    [46] KUO Y H, HSU J P. A parallel Fuzzy inference model with distributed prediction scheme for reinforcement learning[J] IEEE Trans SMC 1998 78(2):160-172
    [47]李强,复杂连续系统的强化学习系统-算法设计及应用[D].上海:上海交通大学电子信息学院,2000.
    [48]张芳,颜国正,林良明一种新的CMAC函数逼近器及其强化学习方法[J]上海交通大学学报2002.10 Ver36 No10:1439-1442
    [49]张崇巍运动控制系统[M]武汉:武汉理工大学出版社2002 133-139
    [50]陈伯时电力拖动自动控制系统-运动控制系统[M]北京:机械工业出版社第3版2006
    [51]孟宝星,刘金龙,王成勤带式输送系统动力学分析方法的研究[J],煤矿机械2008.3 Vol.29 No.3,
    [52]韩子勇,基于耦合动力学模型的带式输送机滚筒摩擦驱动性能的研究[硕士学位论文],西安:西安科技大学,2006
    [53]史忠植著智能科学清华大学出版社北京2006.8
    [54] Chin-Min Lin, Te-Yu Chen,“Self-Organizing CMAC Control for a Class of MIMO Uncertain Nonlinear Systems”, IEEE TRANSACTIONS ON NEURAL NETWORKS, accepted for inclusion in a future issue 2009
    [55]机械工业部北京起重运输机械研究所编DTII型固定式带式输送机设计选用手册冶金工业出版1994.4
    [56] Zhi yong Tang, Xiang’an Yan. Fuzzy CMAC Model Predictive Control 4th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007), Hainan, china, 2007
    [57]王华,何晋等,基于模糊CMAC的水下灵巧手手指轨迹控制,Proceedings of the 26th Chinese control conference,2007 zhangjiajie,hunan,china,p121-124
    [58] Wong Y F,et al,Learning Convergence in CMAC.IEEE Trans NN,1992,3:115~121
    [59] Thompaon D E. Neighborhood Sequential and Random Training Techniques for CMAC.IEEE Trans NN,1995,6:196~202
    [60]刘金锟.先进PID控制MATLAB仿真[M].第2版.电子工业出版社,2004,183-189.
    [61]王晓东,陈伯时单神经元自适应控制传动系统的稳定性分析电气传动,2003.1
    [62]宋伟刚一种大型带式输送机的可控启动曲线[J]:煤炭机械,2002.6
    [63]李胜,马国梁,胡维礼基于Backstepping方法的车式移动机器人轨迹跟踪控制,东南大学学报(自然科学版) 2005.3 vol35 No2 p248-252
    [64] (美)Joseph L Jones等著原魁等译机器人编程技术-基于行为的机器人实战指南[M]机械工业出版社2006.3
    [65] R.西格沃特I.R.诺巴克什著,李人厚译自主移动机器人导论西安交通大学出版社2006年9月
    [66]许建新,侯忠生学习控制的现状与展望[J].自动化学报.2005,31,943-955.
    [67] Ya-Fu Peng, Chih-Hui Chiu, The Implementation of Wheeled Robot Using Adaptive Output Recurrent CMAC,2008 International Joint Conference on Neural Networks(IJCNN 2008),Hong Kong. p2942-2947
    [68]李明爱,焦利芳,乔俊飞,阮晓钢用基于CMAC的Q学习方法实现机器人的平衡控制2008 Chinese Control and Decision Conference(CCDC2008)Yantai p2668-2672.
    [69] Wang Weihong,“Application of CMAC control in servo system with friction”,2008 Chinese Control and Decision Conference(CCDC 2008), yantai , china ,p3708-3711
    [70]李鑫,陈薇,陈梅,张崇巍,“Tracking Control Algorithm based on CMAC of autonomous mobile robot”, 20th china process control conference(2009), Hefei ,china.
    [71]张蕾,曹其新CMAC的频域收敛性及其改进算法的研究Proceeding of the 7th world congress on intelligent control automation June 25-27,2008 Chongqing, china. P6212-6216
    [72] Chin-Min Lin, Te-Yu Chen,“Self-Organizing CMAC Control for a Class of MIMO Uncertain Nonlinear Systems”, IEEE TRANSACTIONS ON NEURAL NETWORKS, accepted for inclusion in a future issue 2009
    [73]杨辉,王爽心,李亚光.汽轮机调速系统CMAC网络PID并行优化控制[J].系统仿真学报,2008,20(10) 2662-2665
    [74]谭民王硕曹志强多机器人系统清华大学出版设北京2005.10
    [75]宋伟刚动态分析方法在带式输送机设计中的作用起重运输机械2001增刊
    [76] Lone S H,et al. Theory and Development of Higher-order CMAC NN. IEEE Control System Magazine,1992,4:23~30;
    [77] Chiang C T ,et al. CMAC With General Basis Function.Networks,1996,9
    [78]蒋志明广义模糊CMAC神经网络控制理论及其在机电系统中的应用研究西安交通大学博士学位论文2000.10.1
    [79]阎平凡张长水等著人工神经网络与模拟进化计算[M]北京:清华大学出版社2005.9(2)
    [80] Wang Weihong,“Application of CMAC control in servo system with friction”,2008 Chinese Control and Decision Conference(CCDC 2008) yantai , china,p3708-3711
    [81]刘建昌,林琳,基于CMAC强化学习控制的电梯群控调度方法信息与控制[J] 2008.8 vol34.4 495-499
    [82] XU Kui—zhao.LIU Chun-xia,Multi_drums Belt Conveyor Driving Force Distribution Influencing Factor Simulation,Qingdao Harbour Vocational and Technical College,Qingdao 266404,China
    [83] Liquan Wang, Caidong Wang, Jianjun Yao and Zhuo Wang,A CMAC-based Control Method for the Underwater Manipulator,2008 IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application
    [84] Yuan-Pao Hsu1,Wei-Cheng Jiang, Hsin-Yi Lin,A CMAC-Q-Learning Based Dyna Agent,SICE Annual Conference 2008,August 20-22, 2008, The University Electro-Communications, Japan.
    [85] Sun Wei, Zhang Lujin,Wang Cong, Wang Yaonan,A Fuzzy CMAC for AC Servo System,Proceedings of the 27th Chinese Control Conference,July 16–18, 2008, Kunming, Yunnan, China.
    [86] Chan Wai Ting and Chai Quek, A Novel Blood Glucose Regulation Using TSK_-FCMAC: A Fuzzy CMAC Based on the Zero-Ordered TSK Fuzzy Inference Scheme,IEEE transactions on neural networks, VOL. 20, NO. 5, MAY 2009
    [87] Po-Lun Chang, Ying-kuei Yang, Horng-Lin Shieh,A Novel Learning Framework of CMAC via Grey-area-time Credit Apportionment and Grey Learning Rate,Proceedings of the Seventh International Conference on Machine Learning and Cybernetics, Kunming, 12-15 July 2008.
    [88] Changfeng Yan1 , Hao Zhang,Lixiao Wu, A Novel Real-Time Fault Diagnostic System by Using Strata Hierarchical Artificial Neural Network, 2009 IEEE, University of Science and Technology of China.
    [89] Jen-Yang Chen, A Robust Adaptive Fuzzy CMAC Controller for Nonlinear Systems, 2007 IEEE, University of Science and Technology of China
    [90] WANG Wei-hong ,1 ZHANG Zhi, A Servo System Control Research Based on Fuzzy CMAC, 2008 Asia Simulation Conference,
    [91] Chun-Fei Hsu , Chao-Ming Chung , Chih-Min Lin , Chia-Yu Hsu , Adaptive CMAC neural control of chaotic systems with a PI-type learning algorithm, Expert Systems with Applications,36 (2009) 11836–11843
    [92] Jen-Yang Chen, and Haw-Yun Shin, Adaptive Fuzzy CMAC Control for Nonlinear Systems, The 3rd Intetnational Conference on Innovative Computing Information and Control (ICICIC'08)
    [93] Floriberto Ortiz, Wen Yu, Marco Moreno-Armendariz, Adaptive hierarchical fuzzy CMAC controller with stable learning algorithm for unknown nonlinear systems, Sixth Mexican International Conference on Artificial Intelligence, Special Session.
    [94] Jia-cai Fu, Juan Shi, Minhnhut Nguyen, An Early Warning System based on Fuzzy CMAC, Proceedings of the Sixth International Conference on Machine Learning and Cybernetics, Hong Kong, 19-22 August 2007 .
    [95] Jianjun Yao, Liquan Wang,Caidong Wang, Zhonglin Zhang and Peng Jia,ANN -based PID Controller for an Electro-hydraulic Servo System, Proceedings of the IEEE International Conference on Automation and Logistics Qingdao, China September 2008
    [96] Floriberto Ortiz Rodriguez, Wen Yu, Marco A. Moreno-Armendariz, Anti-swing control with hierarchical fuzzy CMAC compensation for an overhead crane,22nd IEEE International Symposium on Intelligent Control Part of IEEE Multi-conference on Systems and Control Singapore, 1-3 October 2007
    [97] Zheng LI, CMAC Neural Networks Based Combining Control for BLDC Motor, 2009 IEEE
    [98] Cheng-Hung Tsai, Ming-Feng Yeh , Application of CMAC neural network to the control of induction motor drives, Applied Soft Computing.J. (2009),
    [99] Gang Wang, Wenjun Ning, Application of Fuzzy CMAC to Filament Tension Control, Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007).
    [100]曹少中著非线性协调控制理论研究及应用[北京]科学技术出版社2009.8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700