用户名: 密码: 验证码:
四象限级联型多电平高压大功率逆变器控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
四象限级联型多电平逆变器采用电压型PWM整流器取代传统级联型多电平逆变器中的二极管整流器,从而能够实现能量的双向流动,克服传统级联型多电平逆变器不能再生运行的局限性,扩展级联型多电平逆变器的应用范围。它通过多个功率单元的串联来实现高压输出,每个功率单元由网侧电压型PWM整流器、直流电容和电机侧H桥逆变器组成。每个网侧电压型PWM整流器需要单独控制,所有的H桥逆变器能够统一调制。四象限级联型多电平逆变器主要应用于高压大功率交流电机变频调速领域。
     本文针对四象限级联型多电平逆变器,从网侧电压型PWM整流器的控制、电机侧H桥逆变器的调制和级联型多电平逆变器在高压大功率交流电机调速系统中的应用等三个方面展开研究,通过仿真分析验证了所提的所有控制策略和调制方法的有效性,取得的研究成果主要包括以下几个方面。
     (1)网侧电压型PWM整流器的非线性控制策略
     针对三相电压型PWM整流器,提出了2种非线性控制策略。在第1种控制策略中,电流内环采用滑模控制,根据趋近律算法设计滑模控制器,提高了系统对参数扰动的鲁棒性,具有设计过程简单,易于实现的优点。电压外环采用负载电流前馈控制和输出直流电压反馈控制相结合的方法,既充分发挥了前馈控制作用及时的优点,又保持了反馈控制能克服多个扰动和具有对被调量实现反馈检验的长处。在第2种控制策略中,采用自抗扰控制技术设计了电压和电流控制器,控制系统对负载扰动和参数扰动具有很强的鲁棒性。
     (2)电机侧H桥逆变器的PWM方法
     将空间矢量控制技术分别应用到采用5电平H桥逆变器的级联型多电平逆变器和非对称级联型多电平逆变器的调制中,这种调制方式能够使级联型多电平逆变器以较低的开关频率输出接近正弦波的电压且只有很低的共模电压,从而有效地降低了开关损耗,提高了转换效率
     (3)级联型多电平逆变器在异步电机调速系统中的应用
     提出了一种级联型多电平逆变器供电的异步电机矢量控制方案,该方案采用自抗扰控制技术设计速度控制器,利用载波移相脉宽调制方法生成级联型多电平逆变器的开关信号,通过自适应观测器来观测转子磁链。仿真结果表明,系统具有良好的动态和静态性能。
     提出了一种级联型多电平逆变器供电的异步电机直接转矩控制方案,该方案采用圆形磁链轨迹的直接转矩控制技术得到参考电压矢量,利用载波移相脉宽调制技术生成级联型多电平逆变器的开关信号,通过自适应观测器来观测定子磁链。仿真结果表明,在整个速度范围内,转矩的脉动都比较小。
     (4)级联型多电平逆变器在永磁同步电机调速系统中的应用
     提出了一种永磁同步电机矢量控制方案,该方案通过滑模控制技术和自抗扰控制技术来实现永磁同步电机的高性能控制,永磁同步电机既可以采用两电平逆变器供电,也可以采用级联型多电平逆变器供电。仿真结果表明,系统具有良好的动态和静态性能。
     提出了一种永磁同步电机直接转矩控制方案。在该方案中,设计了一种自适应定子磁链观测器,该观测器能快速准确地估计定子磁链和定子电阻;采用自抗扰控制技术设计了速度控制器,该控制器能对负载扰动进行估计和补偿;采用了基于负载角控制的直接转矩控制技术得到参考电压矢量,利用载波移相脉宽调制技术生成级联型多电平逆变器的开关信号。仿真结果表明,在整个速度范围内,转矩的脉动都比较小。
     (5)中点箝位式三电平逆变器的空间矢量脉宽调制
     提出了一种具有中点电位平衡控制的中点箝位式三电平逆变器空间矢量PWM方法,该方法只需检测中点电流方向和电容电压,通过调整冗余小电压矢量对的作用时间来控制中点电位,具有控制算法简单,易于实现的优点。当网侧电压型PWM整流器采用中点箝位式三电平PWM整流器,就可以采用该空间矢量PWM方法。
Compared with a conventional cascaded multilevel inverter (CMI) using the diode rectifiers and limiting regeneration operation, a four-quadrant CMI using the voltage source PWM rectifiers enables a bidirectional power flow and finds wider application fields than the classical one. A CMI synthesizes a high-voltage output based on series connection of power cells, each consisting of a voltage source PWM rectifier at the line side, a dc capacitor, and a H-bridge inverter at the motor side. Each voltage source PWM rectifier at the line side needs to be individually controlled, while all the H-bridge inverters are subject to unified modulation. The four-quadrant CMIs are mainly applied in variable frequency speed control field of high-voltage high-power ac electric machines.
     This dissertation studies the four-quadrant CMI from three aspects: the control of the voltage source PWM rectifiers at the line side, the modulation of the H-bridge inverters at the motor side, and its application in the speed control systems of high-voltage high-power ac electric machines. All the control strategies and modulation methods presented here are verified to be valid by simulation analysis. The main research fields and results are as follows.
     (1) The nonlinear control strategy for the voltage source PWM rectifier at the line side
     Two nonlinear control strategies for the three phase voltage source PWM rectifier are put forward. For the first strategy, the sliding mode control was applied to the inner current control loop, and a sliding mode controller was designed according to the reaching law algorithm, which raised the robustness of the system rejecting the disturbance of the parameters. The advantages of the first strategy lie in the simple design and the easy implementation. The control of the outer voltage loop combines the feed-forward control of the load current and the feedback control of the output dc voltage. This combination brings the advantage into full play of the timely operation of the feed-forward control, while keeps the other advantage of the feedback control rejecting other disturbances and checking the feedback of the controlled variables. For the second strategy, a voltage controller and a current controller were designed by the active disturbance rejection control (ADRC) technique, and the corresponding control system manifests high robustness in rejecting disturbances from the load and some other parameters.
     (2) The PWM technique for the H-bridge inverters at the motor side
     Space vector control technique was respectively applied to modulating a CMI using five-level H-bridge inverters and an asymmetric CMI. This modulation method enables a CMI to generate almost sinusoidal voltage at low switching frequency and low common-mode voltage, thus effectively reducing switching losses, and raising conversion efficiency.
     (3) The application of the CMI in the speed control system of an asynchronous machine
     A vector control scheme was put forward for an asynchronous machine driven by a CMI. The scheme involves the design of a speed controller by an ADRC technique, the generation of the switching signals by the carrier phase-shifted PWM method, and the using of an adaptive observer for the rotor flux. The simulation results have shown that the system has good dynamic and static performance.
     A direct torque control scheme was presented for an asynchronous machine driven by a CMI. The reference voltage vector was obtained by the direct torque control based on the radial flux trajectory, the switching signals for the CMI were generated by the carrier phase-shifted PWM method, and the stator flux was observed by an adaptive observer. The simulation results have shown that at any speed within the limit, the pulsation of the torque is small.
     (4) The application of CMI in the speed control system of a permanent magnet synchronous machine
     A vector control scheme was put forward for a permanent magnet synchronous machine. The scheme uses the sliding mode control technique and the ADRC technique to realize the high performance control of a permanent magnet synchronous machine driven by two-level inverter or CMI. The simulation results have shown that the system has good dynamic and static performance.
     A direct torque control scheme was designed for the permanent magnet synchronous machine. In this scheme, an adaptive stator flux observer was presented that can quickly and exactly estimate both the stator flux and the stator resistance. A speed controller was designed based on the ADRC technique that estimates and compensates the load disturbance. The reference voltage vector was obtained by a direct torque control technique based on the control of the load angle. The switching signals for the CMI were generated by the earner phase-shifted PWM method. The simulation results have shown that at any speed within the limit, the pulsation of the torque is small.
     (5) The space vector PWM of a neutral-point-clamped three level inverter
     A space vector PWM method was presented for a neutral-point-clamped three level inverter with the balancing control of the neutral-point potential. The method only needs to check the direction of the neutral-point current and the capacitor voltage. The neutral-point potential is controlled by rearranging the time distribution of the redundant small voltage vectors. The method only involves some simple calculations. This space vector PWM method can be easily applied as long as the PWM rectifiers at the line side are neutral-point-clamped three level ones.
引文
[1]张皓,续明进,杨梅.高压大功率交流变频调速技术[M].北京:机械工业出版社,2006.
    [2]李永东,肖曦,高跃.大容量多电平逆变器—原理·控制·应用[M].北京:科学出版社,2005.
    [3]何湘宁,陈阿莲.多电平逆变器的理论和应用技术[M].北京:机械工业出版社,2006.
    [4]吴忠智,吴加林.中(高)压大功率变频器应用手册[M].北京:机械工业出版社,2003.
    [5]Rodriguez J, Lai J S, Peng F Z. Multilevel inverters:A survey of topologies, controls, and applications [J]. IEEE Transactions on Industrial Electronics,2002, 49 (4):724-738.
    [6]Malinowski M, Gopakumar K, Rodriguez J, et al. A survey on cascaded multilevel inverters [J]. IEEE Transactions on Industrial Electronics,2010,57 (7): 2197-2206.
    [7]倚鹏.高压大功率变频器技术原理与应用[M].北京:人民邮电出版社,2008.
    [8]竺伟,陈伯时,周鹤良,等.单元串联多电平高压变频器的起源、现状与展望[J].电气传动,2006,36(6):3-7.
    [9]Nabae A, Takahashi I, Akagi H. A new neutral-point-clamped PWM inverter [C]. IEEE Proceeding of IAS'80,1980:761-766.
    [10]Meynard T A, Foch H. Multilevel conversion:high voltage choppers and voltage-source inverters [C]. IEEE Proceeding of PESC'92,1992:397-403.
    [11]Hammond P W. A new approach to enhance power quality for medium voltage AC drives [J]. IEEE Transactions on Industry Applications,1997,33 (1): 202-208.
    [12]Hammond P W. Medium voltage PWM drive and method [P]. US Patent 5625545, Apr,1997.
    [13]Bin Wu. High-power converter and AC drives [M]. New York:Wiley-IEEE Press, 2006.
    [14]Baier C R, Guzman J I, Espinoza J R, et al. Performance evaluation of a multicell topology implemented with single-phase nonregenerative cells under unbanced supply voltages [J]. IEEE Transactions on Industrial Electronics,2007,54 (6): 2969-2978.
    [15]Dixon J, Breton A A, Rios F E, et al. High-power machine drive using nonredundant 27-level inverters and active front end rectifiers [J]. IEEE Transactions on Power Electronics,2007,22 (6):2527-2533.
    [16]Rech C, Pinheiro J R. Hybrid multilevel converters:Unified analysis and design considerations [J]. IEEE Transactions on Industrial Electronics,2007,54 (2): 1092-1104.
    [17]Astudillo R R, Ruiz-Caballero D, Ortmann M S, et al. New symmetrical hybrid multilevel DC-AC converters [C]. IEEE Proceeding of PESC'2008,2008: 1916-1922.
    [18]Wu Z, Zou Y, Ding K. Analysis of output voltage spectra in a hybrid diode-clamp cascade 13-level inverter [C]. IEEE Proceeding of PESC'2005, 2005:873-879.
    [19]Kou X, Corzine K A, Wielebski M W. Overdistention operation of cascaded multilevel inverters [J]. IEEE Transactions on Industry Applications,2006,42 (3):817-824.
    [20]Rodriguez J, Pontt J, Perez M, et al. High power synchronous machine fed by a cascaded regenerative inverter [C]. IEEE Proceeding of IAS'2008,2008:1-7.
    [21]Lezana P, Silva C A, Rodriguez J, et al. Zero-steady-state-error input current controller for regenerative multilevel converters based on single-phase cells [J]. IEEE Transactions on Industrial Electronics,2007,54 (2):733-740.
    [22]吴凤江,赵克,孙力,等.一种新型四象限级联型多电平逆变器拓扑[J].电工技术学报,2008,23(4):81-86.
    [23]吴凤江,刘大为,孙力,等.基于虚拟磁链直接功率控制的四象限级联型多电平逆变器简化结构[J].中国电机工程学报,2008,28(15):49-54.
    [24]Lezana P, Rodriguez J, Rojas D, et al. Novel cell based on reduced single-phase active front end for multicell converters [C]. IEEE Proceeding of IECON'2005, 2005:733-738.
    [25]Lezana P, Rodriguez J, Oyarzun D A. Cascaded multilevel inverter with regeneration capability and reduced number of switches [J]. IEEE Transactions on Industrial Electronics,2008,55 (3):1059-1066.
    [26]陈伯时.电力拖动自动控制系统—运动控制系统[M].3版.北京:机械工业出版社,2003.
    [27]江友华,曹以龙,龚幼民.基于载波相移角度的级联型多电平变频器输出性 能的研究[J].中国电机工程学报,2007,27(1):76-81.
    [28]王立乔,齐飞.级联型多电平变流器新型载波相移SPWM研究[J].中国电机工程学报,2010,30(3):28-34.
    [29]李建林,王立乔,李彩霞,等.基于现场可编程门阵列的多路PWM波形发生器[J].中国电机工程学报,2005,25(10):55-59.
    [30]Tolbert L M, Peng F Z, Cunnyngham T, et al. Charge balance control scheme for cascade multilevel converter in hybrid electric vehicles [J]. IEEE Transactions on Industrial Electronics,2002,49 (5):1058-1064.
    [31]Tolbert L M, Peng F Z, Habetler T G. Multilevel PWM methods at low modulation indices [J]. IEEE Transactions on Power Electronics,2000,15 (4): 719-725.
    [32]孙宜峰,阮新波.级联型多电平逆变器的功率平衡控制策略[J].中国电机工程学报,2006,26(4):126-133.
    [33]单庆晓,李永东,潘孟春.级联型逆变器的新进展[J].电工技术学报,2004,19(2):1-9.
    [34]单庆晓,李永东,李圣怡,等.一种新型的级联型逆变器PWM信号随机分配方法研究[J].中国电机工程学报,2004,24(2):156-160.
    [35]Chiasson J N, Tolbert L M, Mckenzie K, et al. Control of multilevel converter using resultant theory [J]. IEEE Transactions on Control Systems Technology, 2003,11 (3):345-354.
    [36]Tolbert L M, Chiasson J N, Du Z, et al. Eliminating of harmonics in a multilevel converter with nonequal DC sources [J]. IEEE Transactions on Industry Applications,2005,41 (1):75-82.
    [37]刘庆丰,王华民,刘丁.级联型多电平逆变器中的谐波控制[J].电工技术学报,2006,21(10):38-43.
    [38]刘庆丰,王华民,冷朝霞,等.采用波形合成法的的级联型多电平逆变器谐波控制[J].中国电机工程学报,2008,28(6):69-73.
    [39]陈坚.电力电子学—电力电子变换和控制技术[M].北京:高等教育出版社,2002.
    [40]Lee Y, Suh B, Hyun D. A novel PWM scheme for a three-level voltage source inverter with GTO thyristors [J]. IEEE Transactions on Industry Applications, 1996,32 (2):260-268.
    [41]Zhou D. A self-balancing space vector switching modulator for three-level motor drives [J]. IEEE Transaction on Power Electronics,2002,17 (6):1024-1031.
    [42]Seo J H, Choi C H, Hyun D S. A new simplified space-vector PWM method for three-level inverters [J]. IEEE Transactions on Power Electronics,2001,16 (4): 545-550.
    [43]宋文祥.三电平逆变器异步电机直接转矩控制的研究[D].上海大学博士学位论文,2006.
    [44]吴洪洋,何湘宁.多电平载波PWM法与SVPWM法之间的本质联系及其应用[J].中国电机工程学报,2002,22(5):10-15.
    [45]Gupta A K, Khambadkone A M. A general space vector PWM algorithm for multilevel inverters, including operation in overmodulation range [J]. IEEE Transactions on Power Electronics,2007,22 (2):517-526.
    [46]Gupta A K, Khambadkone A M. A space vector modulation scheme to reduce common mode voltage for cascaded multilevel inverter [J]. IEEE Transactions on Power Electronics,2007,22 (5):1672-1681.
    [47]Lopez O, Alvarez J, Doval-Gandoy J, et al. Multilevel multiphase space vector PWM algorithm [J]. IEEE Transactions on Industrial Electronics,2008,55 (5): 1933-1942.
    [48]Rodriguez J, Moran L, Pontt J, et al. A high-performance vector control of an 11-level inverter [J]. IEEE Transactions on Industrial Electronics,2003,50 (1): 80-85.
    [49]Rodriguez J, Pontt J, Correa P, et al. A new modulation method to reduce common-mode voltages in multilevel inverters [J]. IEEE Transactions on Industrial Electronics,2004,51 (4):834-839.
    [50]张崇巍,张兴.PWM整流器及其控制[M].北京:机械工业出版社,2003.
    [51]王久和.电压型PWM整流器的非线性控制[M].北京:机械工业出版社,2008.
    [52]Rodriguez J, Dixon J W, Espinoza J, et al. PWM regenerative rectifiers:state of the art [J]. IEEE Transactions on Industrial Electronics,2005,52 (1):5-22.
    [53]Bose B K. Modern power electronics and AC drives [M]. New Jersey:Prentice Hall,2003.
    [54]王兆安,黄俊.电力电子技术[M].4版.北京:机械工业出版社,2000.
    [55]Kazmierkowski M P, Malesani L. Current control techniques for three-phase voltage source PWM converters:a survey [J]. IEEE Transactions on Industrial Electronics,1998,45 (5):691-703.
    [56]徐德鸿.电力电子系统建模及控制[M].北京:机械工业出版社,2006.
    [57]沈传文,刘玮,路强,等.基于前馈解祸的三相PWM整流器研制[J].电力电子技术,2006,40(2):28-30.
    [58]Noguchi T, Tomiki H, Kondo S, et al. Direct power control of PWM converters without power-source voltage sensors [J]. IEEE Transactions on Industry Applications,1998,34 (3):473-479.
    [59]Malinowski M, Kazmierkowski M P, Hansen S, et al. Virtual-flux-based direct power control of three-phase PWM rectifiers [J]. IEEE Transactions on Industry Applications,2001,37 (4):1019-1027.
    [60]王久和,李华德.一种新的电压型PWM整流器直接功率控制策略[J].中国电机工程学报,2005,25(16):47-52.
    [61]王久和,李华德,王立明.电压型PWM整流器直接功率控制系统[J].中国电机工程学报,2006,26(18):54-60.
    [62]陈伟,邹旭东,唐健,等.三相电压型PWM整流器直接功率控制调制机制[J].中国电机工程学报,2010,30(3):35-41.
    [63]罗悦华,伍小杰,王晶鑫.三相PWM整流器及其控制策略的现状及展望[J].电气传动,2006,36(5):3-8.
    [64]Lee D, Lee G, Lee K. DC-bus voltage control of three-phase AC/DC PWM converters using feedback linearization [J]. IEEE Transactions on Industry Applications,2000,36 (3):826-833.
    [65]Lee T. Input-output linearization and zero-dynamics control of three-phase ac/dc voltage-source converters [J]. IEEE Transactions on Power Electronics,2003, 18(1):11-22.
    [66]邓卫华,张波,丘东元.三相电压型PWM整流器状态反馈精确线性化解耦控制研究[J].中国电机工程学报,2005,25(7):97-103.
    [67]Gensior A, Sira-Ramirez H, Rudolph J, et al. On some nonlinear current controllers for three-phase boost rectifiers [J]. IEEE Transactions on Industrial Electronics,2009,56 (2):360-370.
    [68]Fernando S J. Sliding-mode control of boost-type unity-power-factor PWM rectifiers [J]. IEEE Transactions on Industrial Electronics,1999,46 (3): 594-603.
    [69]陈瑶,金新民,童亦斌.基于滑模控制的三相PWM整流器系统仿真[J].系统仿真学报,2007,19(8):1849-1852.
    [70]赵葵银.PWM整流器的模糊滑模变结构控制[J].电工技术学报,2006,21(7):49-53.
    [71]Shtessel Y, Baev S, Biglari H. Unity power factor control in three-phase AC/DC boost converter using sliding modes [J]. IEEE Transactions on Industrial Electronics,2008,55 (11),3874-3882.
    [72]帅定新,谢运祥,王晓刚.三相PWM整流器混合非线性控制研究[J].中国电机工程学报,2009,29(12):30-35.
    [73]Perez M, Ortega R, Espinoza J R. Passivity-based PI control of switched power converters [J]. IEEE Transactions on Control Systems Technology,2004,12 (6), 881-890.
    [74]乔树通,姜建国.三相Boost型PWM整流器输出无误差无源性控制[J].电工技术学报,2007,22(2):68-73.
    [75]Perez M A, Cortes P, Rodriguez J. Predictive control algorithm technique for multilevel asymmetric cascaded H-bridge inverters [J]. IEEE Transactions on Industrial Electronics,2008,55 (12):4354-4361.
    [76]Zanchetta P, Gerry D B, Monopoli V G, et al. Predictive current control for multilevel active rectifiers with reduced switching frequency [J]. IEEE Transactions on Industrial Electronics,2008,55 (1):163-172.
    [77]Hua C C, Wu C W, Chuang C W. A digital predictive current control with improved sampled inductor current for cascaded inverters [J]. IEEE Transactions on Industrial Electronics,2009,56 (5):1718-1726.
    [78]邵立伟,廖晓钟.自抗扰控制器在电压型PWM整流器中的应用[J].北京理工大学学报,2008,28(1):50-53.
    [79]Chattopadhyay S, Ramanarayanan V. A voltage-sensorless control method to balance the input currents of a three-wire boost rectifier under unbalanced input voltages condition [J]. IEEE Transactions on Industrial Electronics,2005,52 (2): 386-398.
    [80]张兴,季建强,张崇巍,等.基于内模控制的三相电压型PWM整流器不平衡控制策略研究[J].中国电机工程学报,2005,25(13):51-56.
    [81]Blaschke F. The principle of field orientation as applied to the new transvector closed loop control system for rotating field machines [J]. Siemens Review,1972, 34:217-220.
    [82]Depenbrock M. Direct self control(DSC) of inverter-fed induction machine [J]. IEEE Transactions on Power Electronics,1988,3 (4):420-429.
    [83]Takahashi I, Noguchi T. A new quick-response and high-efficiency control strategy of an induction motor [J]. IEEE Transactions on Industry Applications, 1986,22(5):820-827.
    [84]阮毅,陈伯时.电力拖动自动控制系统—运动控制系统[M].4版.北京:机械工业出版社,2009.
    [85]李华德,李擎,白晶.电力拖动自动控制系统[M].北京:机械工业出版社,2009.
    [86]高为炳.变结构控制的理论及设计方法[M].北京:科学出版社,1996
    [87]胡寿松.自动控制原理[M].5版.北京:科学出版社,2007.
    [88]金以慧.过程控制[M].北京:清华大学出版社,1993.
    [89]韩京清.自抗扰控制技术—估计补偿不确定因素的控制技术[M].北京:国防工业出版社,2008.
    [90]Lee K, Song J, Choy I, et al. Torque ripple reduction in DTC of induction motor driven by three-level inverter with low switching frequency [J]. IEEE Transactions on Power Electronics,2002,17 (2):255-264.
    [91]Zhou D, Rouaud D G. Experimental comparisons of space vector neutral point balancing strategies for three-level topology [J]. IEEE Transactions on Power Electronics,2001,16 (6):872-879.
    [92]Bendre A, Krstic S, Meer J V, et al. Comparative evaluation of modulation algorithms for neutral-point-clamped converters [J]. IEEE Transactions on Industry Applications,2005,41 (2):634-643.
    [93]Yamanaka K, Hava A, Kirino H, et al. A novel neutral point potential stabilization technique using the information of output current polarities and voltage vector [J]. IEEE Transactions on Industry Applications,2002,38 (6): 1572-1580.
    [94]Pou J, Boroyevich D, Pindado R. New feed-forward space vector PWM method to obtain balanced AC output voltages in a three-level neutral-point-clamped converter [J]. IEEE Transactions on Industrial Electronics,2002,49 (5): 1026-1034.
    [95]Espinoza J E, Espinoza J R, Moran L A. A systematic controller design approach for neutral point clamped three-level inverters [J]. IEEE Transactions on Industrial Electronics,2005,52 (6):1589-1599.
    [96]Corzine K, Familiant Y. A new cascaded multilevel H-bridge drive [J]. IEEE Transactions on Power Electronics,2002,17(1):125-131.
    [97]Rodriguez J, Pontt J, Kouro S, et al. Direct torque control with imposed switching frequency in an 11-level cascaded inverter [J]. IEEE Transactions on Industrial Electronics,2004,51 (4):827-833.
    [98]王毅,石新春,李和明,等.级联型多电平逆变器的新型直接转矩控制[J].中国电机工程学报,2005,25(22):83-87.
    [99]Buja G, Kazmierkowski P. Direct torque control of PWM inverter-fed AC motors-a survey [J]. IEEE Transactions on Industrial Electronics,2004,51 (4):744-757.
    [100]Sun B, Gao Z. A DSP-based active disturbance rejection control design for a 1-kw H-bridge DC-DC power converter [J]. IEEE Transactions on Industrial Electronics,2005,52 (5):1271-1277.
    [101]邓文浪,令狐文娟,朱建林.应用自抗扰控制器的双级矩阵变换器闭环控制[J].中国电机工程学报,2008,28(12):13-19.
    [102]Su Y, Zheng C, Duan B. Automatic disturbances rejection controller for precise motion control of permanent-magnet synchronous motors [J]. IEEE Transactions on Industrial Electronics,2005,52 (3):814-823.
    [103]任一峰,刘刚,赵敏.自抗扰技术在异步电机DTC系统中的应用[J].电气传动,2009,39(6):15-18.
    [104]Kubota H, Matsuse K. DSP-based adaptive flux observer of induction motor [J]. IEEE Transactions on Industry Applications,1993,29 (2):344-348.
    [105]Chiasson J. Modeling and high-performance control of electric machine [M]. New York:Wiley-Interscience,2005.
    [106]奚国华,高宏洋,许为,等.定子磁链全阶观测器增益矩阵的确定方法[J].中南大学学报:自然科学版,2008,39(4):793-798.
    [107]唐任远.现代永磁电机理论与设计[M].北京:机械工业出版社,1997.
    [108]黄雷,赵光宙,贺益康PMSM的自适应滑模观测器无传感器控制[J].浙江大学学报:工学版,2007,41(7):1107-1110.
    [109]童克文,张兴,张昱,等.基于新型趋近律的永磁同步电动机滑模变结构控制[J].中国电机工程学报,2008,28(21):102-106.
    [110]Mohamed Y. A hybrid-type variable-structure instantaneous torque control with a robust adaptive torque observer for a high-performance direct-drive PMSM [J]. IEEE Transactions on Industrial Electronics,2007,54 (5):2491-2499.
    [111]汪海波,周波,方斯琛.永磁同步电机调速系统的滑模控制[J].电工技术学报,2009,24(9):71-77.
    [112]刘贤兴,卜言柱,胡育文,等.基于精确线性化解耦的永磁同步电机空间矢量调制系统[J].中国电机工程学报,2007,27(30):55-59.
    [113]林立,黄苏融.基于精确线性化解祸的内置式永磁同步电机牵引系统[J].系统仿真学报,2009,21(20):6529-6533.
    [114]Vilathgamuwa D M, Rahman M A, Tseng K, et al. Nonlinear control of interior permanent magnet synchronous motor [J]. IEEE Transactions on Industry Applications,2003,39 (2):408-416.
    [115]Mohamed Y. Design and implementation of a robust current control scheme for a PMSM vector drive with a simple adaptive disturbance observer [J]. IEEE Transactions on Industrial Electronics,2007,54 (4):1981-1988.
    [116]孙丹,贺益康.基于转子磁链观测的无速度传感器PMSM DTC [J]浙江大学学报:工学版,2006,40(7):1276-1280.
    [117]Wang G, Feng C, Chang K. Neural-network-based self tuning PI controller for precise motion control of PMAC motors [J]. IEEE Transactions on Industrial Electronics,2001,48 (2):408-415.
    [118]王超,李世华,田玉平.基于自抗扰技术的永磁同步电机直接转矩控制[J].电气传动,2007,37(7):14-17.
    [119]Han J. From PID to active disturbance rejection control [J]. IEEE Transactions on Industrial Electronics,2009,56 (3):900-906.
    [120]French C, Acarnley P. Direct torque control of permanent magnet drives [J]. IEEE Transactions on Industry Applications,1996,32 (5):1080-1088.
    [121]Zhang L, Rahman M F, Hu Y, et al. Analysis of direct torque control in permanent magnet synchronous motor drives [J]. IEEE Transactions on Power Electronics,1997,12 (3):528-536.
    [122]Tang L, Zhong L, Rahman M F, et al. A new direct torque controlled interior permanent magnet synchronous machine drive with low ripple in flux and torque and fixed switching frequency [J]. IEEE Transactions on Power Electronics,2004,19 (2):346-354.
    [123]Foo G, Rahman M F. Sensorless direct torque control and flux-controlled IPM synchronous motor drive at very low speed without signal injection [J]. IEEE Transactions on Industrial Electronics,2010,57(1):395-403.
    [124]冯江华,许峻峰.基于定子磁链自适应观测的永磁同步电动机直接转矩控制系统[J].中国电机工程学报,2006,26(12):122-127.
    [125]Piippo A, Hinkkanen M, Luomi J. Adaptation of motor parameters in sensorless PMSM drives [J]. IEEE Transactions on Industry Applications,2009,45 (1): 203-212.
    [126]Xu Z, Rahman M F. An adaptive sliding stator flux observer for a direct-torque-controlled IPM synchronous motor drive [J]. IEEE Transactions on Industrial Electronics,2007,54 (5):2398-2406.
    [127]陈振,刘向东,靳永强,等.采用扩展卡尔曼滤波磁链观测的永磁同步电动机直接转矩控制[J].中国电机工程学报,2008,28(33):75-81.
    [128]陈新海,李言俊,周军.自适应控制及应用[M].西安:西北工业大学出版社,1998.
    [129]Schauder C. Adaptive speed identification for vector control of induction motors without rotational transducers [J]. IEEE Transactions on Industry Applications,1992,28 (5):1054-1061.
    [130]郝雯娟,邓智泉,王晓琳.基于增强型自适应观测的永磁同步电动机无速度传感器[J].电工技术学报,2009,24(3):41-46.
    [131]王庆龙,张崇巍,张兴.基于变结构模型参考自适应系统的永磁同步电动机转速辨识[J].中国电机工程学报,2008,28(9):71-75.
    [132]年晓红,王坚,李祥飞,等,基于感应电机定子磁链U-N模型的速度自适应辨识方法[J].中国电机工程学报,2006,26(14):159-163.
    [133]路强,沈传文,季晓隆,等.一种用于感应电机控制的新型滑模速度观测器研究[J].中国电机工程学报,2006,26(18):164-168.
    [134]Ghanes M, Zheng G. On sensorless induction motor drives:sliding-mode observer and output feedback controller [J]. IEEE Transactions on Industrial Electronics,2009,56 (9):3404-3413.
    [135]Chi S, Zhang Z, Xu L. Sliding-mode sensorless control of direct-drive PM synchronous motors for washing machine applications [J]. IEEE Transactions on Industry Applications,2009,45 (2):582-590.
    [136]Barut M, Bogosyan S, Gokasan M. Experimental evaluation of braided EKF for sensorless control of induction motors [J]. IEEE Transactions on Industrial Electronics,2008,55 (2):620-632.
    [137]秦峰,贺益康,刘毅,等.两种高频信号注入法的无传感器运行研究[J].中国电机工程学报,2005,25(5):116-121.
    [138]Gao Q, Asher G, Sumner M. Sensorless position and speed control of induction motors using high-frequency injection and without offline precommissioning [J]. IEEE Transactions on Industrial Electronics,2007,54 (5):2474-2481.
    [139]王耀南,王辉,邱四海,等.基于递归模糊神经网络的感应电机无传感器矢量控制[J].中国电机工程学报,2004,24(5):84-89.
    [140]日本电气学会半导体电力变换系统调查专门委员会编.电力电子电路[M].陈国呈译.北京:科学出版社,2003.
    [141]程善美,蔡凯,龚博.DSP在电气传动系统中的应用[M].北京:机械工业出版社,2010.
    [142]陈国呈.新型电力电子变换技术[M].北京:中国电力出版社,2004.
    [143]李发海,朱东起.电机学[M].4版.北京:科学出版社,2007.
    [144]李永东.交流电机数字控制系统[M].北京:机械工业出版社,2002.
    [145]李夙.异步电动机直接转矩控制[M].北京:机械工业出版社,1994.
    [146]马小亮.大功率交-交变频调速及矢量控制[M].3版.北京:机械工业出版社,2004.
    [147]周扬忠,胡育文.交流电动机直接转矩控制[M].北京:机械工业出版社,2010.
    [148]孙孝峰,王立乔.三相变流器调制与控制技术[M].北京:国防工业出版社,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700