用户名: 密码: 验证码:
火电厂石膏旋流器空气柱特性及结构优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石膏旋流器是火电厂石灰石-石膏湿法烟气脱硫系统的重要设备,主要作用是对吸收塔中脱硫反应的副产物石膏浆液进行浓缩和分级,经真空皮带机脱水后生成的脱硫石膏广泛应用于水泥、建筑等领域。石膏旋流器在实际生产过程中存在底流夹细、分级效果不理想等问题,不仅干扰整个脱硫系统的正常运行,还会影响生成石膏的品质。因此正确认识旋流器内部的流动特性,设计高效节能的石膏旋流器具有重要意义。
     本文阐述了旋流器内流场的流动特性,对不同排口比的石膏旋流器进行性能实验,得到了分股比、底流浆液密度、底流排出方式、底流含固量等参数的变化规律,拟合得出分股比与排口比之间的关系式,并对排口比在0.3~1之间时,石膏旋流器的分级效率曲线进行了比较,分析了底流夹细现象的产生原因。
     利用Fluent软件,选取RSM雷诺应力模型与VOF流体体积模型,对固液旋流器中的重要现象——空气柱进行了数值模拟,包括其形成的整个过程、外观形状、三维速度场随时间、空间的变化,分析了空气柱对旋流器工作性能、能耗的影响,得到了空气柱直径随入口速度、溢流管与底流管直径以及介质密度的变化规律。
     基于空气柱带来的负面影响,设计倒锥形中心棒并选择合理的安装方式。对插入不同结构尺寸中心棒的石膏旋流器进行性能实验,得到入口压强、生产能力、底流与溢流浆液特性参数的变化情况,分析了中心棒对旋流器分级性能的影响,并以某4×600MW火电厂石膏旋流器的石膏生产情况为基础,通过计算得到了中心棒对整个实验系统的节能效果。
     为提高石膏旋流器的分级性能,设计具有分离块和隔板的新型旋流器入口结构。采用DPM离散相模型,对不同粒径石膏颗粒在新型入口中的运动情况进行数值模拟,分析了入口结构与入口速度对颗粒运动的影响,并对具有新型入口结构的石膏旋流器进行性能实验,得到了入口结构对指标参数的影响,通过分级效率曲线反映出该入口结构对中等粒度石膏颗粒的分级效率有明显的提高。
Gypsum cyclone is an important equipment of wet flue gas desulfurization system (WFGD) in power plant, it's main function is concentration and classification of gypsum slurry from absorber tank and the final production is widely used in cement and construction field. The operation of WFGD system will be disturbed and the quality of final gypsum will be affected because of the serious problems as air core and fish-hook in cyclone's operation. Therefore, it's very important to have a correct understanding of the flow characteristics in cyclone, and it's imperative to design new and efficient cyclone.
     The flow mechanisms of hydrocyclone were studied. In addition, the performance tests of gypsum cyclone with different structures were carried out in order to deserve the variation of indicator parameters, such as split flow ratio, underflow density, discharge style and so on, the classification efficiency curves with different structures were compared and analyzed, and the reasons of fish hook phenomenon were discussed.
     Air core is an inevitable problem in hydrocyclone, it's shape and diameter always changed in cyclone's operation. It may cause some problems such as:waste of energy, unsteady flow condition, lower separation efficiency and so on. The development process of air core were simulated with RSM and VOF model by Fluent. The simulation results contained certain aspects of the velocity and pressure distribution, the diameter of air core on different axial position, and the energy consumption, et al.
     A new style of central solid rod with a conical shape was designed aimed at eliminating the air core and imp roving the performance of gypsum cyclone. Experiments were conducted in order to have a further understand about the negative influences by air core. At the same time, the performances of gypsum cyclones with different central solid rod include production capacity, concentration of underflow, solid-containing content in underflow and particle size distribution were measured and compared, the effects on above-mentioned parameters by inlet pressure were studied also. A simple calculation of energy consumption with different central solid rods indicate that:the energy consumption can be reduced about13.41%with conical central solid rod.
     A new inlet with separation block and bulkhead was designed in order to improve the classification efficiency of gypsum cyclone. The trajectory of particles in new inlet were simulated with Discrete Phase Mode by Fluent, the effects on particles with different inlet structures and velocity were discussed also. The change of characteristics about gypsum cyclone with different inlet structures were tested by experiment, the results indicate that:there is an apparent improvement of classification efficiency about medium-grained particles.
引文
[1]赵志峰,都丽红,李秋萍.电厂烟气脱硫脱水系统的研究[J].化工装备技术,2004,25(2):7-10.
    [2]胡斌,温治,孔维军.石灰石湿法烟气脱硫石膏含水率超标原因初探[J].装备制造技术,2008,(02):138-140.
    [3]潘卫国,豆斌林,李红星,等.影响石灰石湿法烟气脱硫系统运行的几个关键问题的探讨[J].上海电力学院学报,2006,(03):201-204+212.
    [4]崔向丽,刘畅.水力旋流器在湿法烟气脱硫装置中的应用[J].山东电力技术,2005,(6):48-51.
    [5]杨亚龙.石膏旋流器分离性能研究与结构优化[D].北京:华北电力大学,2012.
    [6]禾志强,祁利明,周鹏,等.石灰石-石膏湿法烟气脱硫优化运行[M].北京:中国电力出版社,2012.
    [7]Bretney E. Cyclone Seperator[P]. US453105,1891.
    [8]Colman D.A, Thew M.T, Gomey D.R. Hydrocyclones for Oil/Water Separation[C]. Proc.of Int.Conf.on Hydrocyclones, Cambridge,1980.
    [9]褚良银,陈文梅,戴光清,等.水力旋流器[M].北京:化学工业出版社,1998.
    [10]赵庆国,张明贤.水力旋流器分离技术[M].北京:化学工业出版社,2003.
    [11]黄素逸等译.流动可视化[M].北京:科学出版社,1991.
    [12]Kelsall D F. A Study of The Motion of Solid Particles in Hydraulic cyclone[J]. Trans.Instn Chem. Engrs,1952,30 (1):80-108.
    [13]Bergstrom J, Vomhoff H. Experimental hydrocyclone flow field studies[J]. Separation and Purification Technology,2007,53 (1):8-20.
    [14]Shah R. K. Advances in Compact Heat Exchanger Technology and Design Theory[C]. Proceedings of the 7th International Heat Transfer Conference,1984.
    [15]Narasimha M, Brennan M. S, Holtham P. N. CFD modeling of hydrocyclones: Prediction of particle size segregation[J]. Minerals Engineering,2012,39 173-183.
    [16]Narasimha M, Sripriya R, Banerjee P. K. CFD modelling of hydrocyclone-prediction of cut size[J]. International Journal of Mineral Processing, 2005,75 (1-2):53-68.
    [17]Murthy Y. Rama, Bhaskar K. Udaya. Parametric CFD studies on hydrocyclone[J]. Powder Technology,2012,230 36-47.
    [18]Wissink J. G. DNS of separating, low Reynolds number flow in a turbine cascade with incoming wakes[J]. International Journal of Heat and Fluid Flow,2003,24 (4): 626-635.
    [19]张凯,王瑞金,王刚.Fluent技术基础与应用实例[M].北京:清华大学出版社,2010.
    [20]李晓钟,褚良银,陈文梅.水力旋流器内流体流动的湍流数值模拟研究进展[J].化工装备技术,1996,(03):46-53.
    [21]王志斌,陈文梅,褚良银,等.旋流器流场的数值模拟及对流场特性的分析[J].四川大学学报(工程科学版),2006,38(3):59-64.
    [22]王志斌,陈文梅,褚良银,等.旋流分离器中固体颗粒随机轨道的数值模拟及分离特性分析[J].机械工程学报,2006,(06):34-39.
    [23]Marins L. P. M, Duarte D. G, Loureiro J. B. R, et al. LDA and PIV characterization of the flow in a hydrocyclone without an air-core[J]. Journal of Petroleum Science and Engineering,2010,70 (3-4):168-176.
    [24]Delgadillo Jose A, Rajamani Raj K. A comparative study of three turbulence closure models for the hydrocyclone problem[J]. International Journal of Mineral Processing,2005,77 (4):217-230.
    [25]He P, Salcudean M, Gartshore I. S. A Numerical Simulation of Hydrocyclones[J]. Chemical Engineering Research and Design,1999,77 (5):429-441.
    [26]Emil C Statie, Martha E Salcudean, Ian S Gartshore. The influence of hydrocyclone geometry on separation and fibre classification[J]. Filtration & Separation 2001,38 (6):36-41.
    [27]Jose A. Delgadillo, Raj K. Rajamani. Exploration of hydrocyclone designs using computational fluid dynamics[J]. International Journal of Mineral Processing,2007, 84 (1-4):252-261.
    [28]Slack M.D, Prasad R.O, Bakker A, et al. Advances in Cyclone Modelling Using Unstructured Grids[J]. Chemical Engineering Research and Design,2000,78 (8): 1098-1104.
    [29]Narasimha M, Brennan Mathew, Holtham P. N. Large eddy simulation of hydrocyclone-prediction of air-core diameter and shape[J]. International Journal of Mineral Processing,2006,80 (1):1-14.
    [30]Kuo-Jen Hwang, Ya-Wen Hwang, Hideto Yoshida, Kazuha Shigemori. Improvement of particle separation efficiency by installing conical top-plate in hydrocyclone[J]. Powder Technology,2012,232 (0):41-48.
    [31]Kawatra S.K, Bakshi A.K, Rusesky M.T. Effect of viscosity on the cut (d50) size of hydrocyclone classifiers[J]. Minerals Engineering,1996,9 (8):881-891.
    [32]Kawatra S.K, Bakshi A.K, Rusesky M.T. The effect of slurry viscosity on hydrocyclone classification[J]. International Journal of Mineral Processing,1996, 48 (1-2):39-50.
    [33]Williams R. A, Ilyas O. M, Dyakowski T, et al. Air core imaging in cyclonic separators:implications for separator design and modelling [J]. The Chemical Engineering Journal and the Biochemical Engineering Journal,1995,56 (3): 135-141.
    [34]Neesse Th, Dueck J. Dynamic modelling of the hydrocyclone[J]. Minerals Engineering,2007,20 (4):380-386.
    [35]Neesse Th, Schneider M, Dueck J, et al. Hydrocyclone operation at the transition point rope/spray discharge[J]. Minerals Engineering,2004,17 (5):733-737.
    [36]Kraipech W, Chen W, et al. Modelling the fish-hook effect of the flow within hydrocyclones[J]. International Journal of Mineral Processing,2002,66 (1-4): 49-65.
    [37]Kraipech W, Nowakowski A, Dyakowski T, et al. An investigation of the effect of the particle-fluid and particle-particle interactions on the flow within a hydrocyclone[J]. Chemical Engineering Journal,2005,111 (2-3):189-197.
    [38]Majumder A. K, Yerriswamy P, Barnwal J.P. The "fish-hook" phenomenon in centrifugal separation of fine particles[J]. Minerals Engineering,2003,16 (10): 1005-1007.
    [39]Majumder A. K, Shah H, Shukla P, et al. Effect of operating variables on shape of "fish-hook" curves in cyclones[J]. Minerals Engineering,2007,20 (2):204-206.
    [40]Concha F, Barrientos A, Montero J, et al. Air core and roping in hydrocyclones[J]. International Journal of Mineral Processing,1996,44-45 (0):743-749.
    [41]Doby Michael J, Nowakowski Andrzej F, Yiu Ida, et al. Understanding air core formation in hydrocyclones by studying pressure distribution as a function of viscosity[J]. International Journal of Mineral Processing,2008,86 (1-4):18-25.
    [42]Malcolm R, Davidson. An adaptive method of predicting the air core diameter for numerical models of hydrocyclone [J]. International Journal of Mineral Processing, 1995,43 (3-4):167-177.
    [43]Cullivan J. C, Williams R. A, Dyakowski T, et al. New understanding of a hydrocyclone flow field and separation mechanism from computational fluid dynamics[J]. Minerals Engineering,2004,17 (5):651-660.
    [44]Hararah M. A, Endres E, Dueck J, et al. Flow conditions in the air core of the hydrocyclone[J]. Minerals Engineering,2010,23 (4):295-300.
    [45]Dyakowski T, Williams R A. Prediction of air-core size and shape in a hydrocyclone [J]. International Journal of Mineral Processing,1995,43 (1-2):1-14.
    [46]Narasimha M, Mainza A. N, Holtham P. N, et al. Air-core modelling for hydrocyclones operating with solids[J]. International Journal of Mineral Processing, 2012,102-10319-24.
    [47]Evans Wanwilai Kraipech, Suksangpanomrung Anotai, Nowakowski Andrzej F. The simulation of the flow within a hydrocyclone operating with an air core and with an inserted metal rod[J]. Chemical Engineering Journal,2008,143 (1-3): 51-61.
    [48]Sripriya R, Kaulaskar M. D, Chakraborty S, et al. Studies on the performance of a hydrocyclone and modeling for flow characterization in presence and absence of air core[J]. Chemical Engineering Science,2007,62 (22):6391-6402.
    [49]徐继润,罗茜.水力旋流器流场理论[M].北京:科学出版社,1998.
    [50]徐继润,罗茜.水力旋流器内固液两相间的相对运动(Ⅰ)——颗粒运动方程及其求解[J].中国有色金属学报,1998,(3):122-126.
    [51]徐继润,罗茜.水力旋流器内固液两相间的相对运动(Ⅱ)——颗粒性质与液流特性的影响[J].中国有色金属学报,1998,(04):132-135.
    [52]徐继润,罗茜.水力旋流器内固液两相间的相对运动(Ⅲ)——湍流频率与固液跟随特性[J].中国有色金属学报,1999,(01):137-142.
    [53]褚良银,陈文梅,李晓钟,等.水力旋流器结构与分离性能研究(一)——进料管结构[J].化工装备技术,1998,(03):1-5.
    [54]褚良银,陈文梅,李晓钟,等.水力旋流器结构与分离性能研究(二)——溢流管结构[J].化工装备技术,1998,(04):1-3.
    [55]褚良银,陈文梅,李晓钟,等.水力旋流器结构与分离性能研究(三)——锥段结 构[J].化工装备技术,1998,(05):3-6.
    [56]褚良银,陈文梅,李晓钟,等.水力旋流器结构与分离性能研究(四)——底流管结构[J].化工装备技术,1998,(06):14-16.
    [57]褚良银,陈文梅,李晓钟,等.水力旋流器结构与分离性能研究(五)——强制涡区辅助件结构[J].化工装备技术,1999,(01):24-27.
    [58]褚良银,陈文梅,李晓钟,等.水力旋流器能耗机制与节能原理研究 Ⅰ.能量耗损理论分析[J].化工机械,1998,(02):3-9+25+62.
    [59]褚良银,陈文梅,李晓钟,等.水力旋流器能耗机制与节能原理研究Ⅱ.湍流压力场时均结构[J].化工机械,1998,(03):7-10+50+63.
    [60]褚良银,陈文梅,李晓钟,等.水力旋流器能耗机制与节能原理研究Ⅲ.湍流压力场脉动结构[J].化工机械,1998,(04):10-14+62.
    [61]褚良银,陈文梅,李晓钟,等.水力旋流器能耗机制与节能原理研究Ⅳ.湍动能分布与湍动能耗散率[J].化工机械,1998,(05):8-12+62.
    [62]褚良银,陈文梅,李晓钟,等.水力旋流器能耗机制与节能原理研究Ⅴ.流场结构与能量耗损[J].化工机械,1998,(06):8-12+57.
    [63]褚良银,陈文梅,李晓钟,等.水力旋流器能耗机制与节能原理研究Ⅵ.低能耗旋流器压力场结构及能耗降减原理[J].化工机械,1999,(01):7-11+63.
    [64]褚良银,陈文梅,李晓钟,等.水力旋流器能耗机制与节能原理研究Ⅶ.流场结构与分离性能[J].化工机械,1999,(02):6-10+63.
    [65]褚良银,陈文梅,李晓钟,等.水力旋流器能耗机制与节能原理研究Ⅷ.优化节能原则[J].化工机械,1999,(03):3-7+63.
    [66]蒋巍.新型固—液水力旋流器结构设计及分离性能研究[D].大庆石油学院,2005.
    [67]高晨曦.旋流器入口结构优化及制造技术研究[D].大庆:大庆石油大学,2002.
    [68]庞学诗.水力旋流器工艺计算[M].北京:中国石化出版社,1997.
    [69]庞学诗.水力旋流器分离粒度的计算方法[J].国外金属矿选矿,1992,515-23.
    [70]庞学诗.根据分级粒度计算水力旋流器直径的半经验算法[J].现代矿业,2010,7(7):46-47.
    [71]庞学诗.螺旋涡的基本性质及其在旋流器中的应用[J].有色金属,1991,8 30-34.
    [72]李慧.固-液分离用水力旋流器的三维数值模拟研究[D].郑州:郑州大学,2006.
    [73]黄思,周先华.单锥旋流器分离过程的三维数值模拟[J].西华大学学报(自然科学版),2005,(04):43-45+96.
    [74]彭炯,王晓瑾,邹磊,等.旋流分离器内三维两相流场的数值模拟[J].计算机与应用化学,2006,(08):728-732.
    [75]王立洋,郑之初,郭军,等.液固旋流器分离效率的研究[J].力学与实践,2007,29(2):24-27.
    [76]胥思平,朱宏武,张宝强.固液分离水力旋流除砂器的数值模拟[J].石油机械,2006,(03):24-27+86.
    [77]马文兵.水力旋流器的流场模拟与控制研究[D].辽宁科技大学,2006.
    [78]张玉洁,蒋明虎,赵立新,等.基于CFD的三相分离旋流器流场分析与结构优化[J].化工机械,2010,(06):744-749.
    [79]蒋明虎,王尊策,李枫,等.旋流器轴向速度分布规律——液-液水力旋流器速度场研究之三[J].石油机械,1999,(03):21-23+22.
    [80]Jiang Minghu, Liu Daoyou, Zhao Lixin. Study on the Effect of Cone Angle Values on the Pressure and Velocity Field of Hydrocyclones[J].2011 IEEE,2011,1-4.
    [81]Minghu Jiang, Yujie Zhang, Lixin Zhao. Flow Field Analysis and Structural Optimization of a Three-Phase Hydrocyclone Based on CFD Method[J].2010 IEEE, 2010,1-4.
    [82]蒋明虎,赵立新.水力旋流器压力场分布规律研究[J].高技术通讯,2000,(11):78-80.
    [83]刘刚.对称入口固液分离水力旋流器的数值模拟[D].四川大学,2006.
    [84]王元文,张少明,方莹.水力旋流器结构参数对其性能的影响[J].广东化工,2005,(10):32-36.
    [85]王元文,张少明,方莹.水力旋流器分离性能实验研究[J].化工矿物与加工,2005,(11):25-28.
    [86]曹卫,方莹.烟气脱硫用水力旋流器的性能参数研究[J].盐城工学院学报(自然科学版),2006,(02):31-34+41.
    [87]曹卫,方莹.脱硫用水力旋流器进口压力与浓度对其性能影响的研究[J].中国非金属矿工业导刊,2007,(3):50-52.
    [88]曹卫,方莹.脱硫用水力旋流器原料细度对其性能的影响研究[J].中国非金属矿工业导刊,2008,(6):44-45,48.
    [89]严祯荣,耿丽萍,杨茉,罗晓明.WFGD水力旋流器中石灰石颗粒分级试验与数值模拟[J].热能动力工程,2010,(03):321-325+360.
    [90]黄军,安连锁,吴智泉.石膏旋流器结构参数优化设计研究[J].热力发电,2009, (05):25-28+34.
    [91]黄军,安连锁.溢流口结构对石膏旋流器分离性能的影响[J].动力工程学报,2011,(02):137-141.
    [92]黄军,安连锁.石膏旋流器分离粒度模型建立研究[J].华北电力大学学报(自然科学版),2011,(03):83-86.
    [93]沈国清,杨亚龙,安连锁,等.石灰石-石膏湿法脱硫系统石膏旋流器分级效率的研究[J].动力工程学报,2012,32(08):639-646.
    [94]安连锁,张敬辉,黄军,等.影响脱硫石膏旋流器性能的关键指标[J].中国电力,2011,44(4):71-74.
    [95]刘晓敏,檀润华,蒋明虎,等.水力旋流器结构形式及参数关系研究[J].机械设计,2005,(02):26-29.
    [96]张淼.溢流管对旋流器分离性能的影响及优化研究[D].东北石油大学,2011.
    [97]Liancheng Ren, Zhenzhen Lei. A quantificational study on the radial velocity of fluid in Hydrocyclone[J].2011 IEEE,2011,988-991.
    [98]梁政,王进全,任连城,等.固液分离水力旋流器流场理论研究[M].北京:石油工业出版社,2011.
    [99]曾永英.细颗粒分离用固液旋流器结构设计及实验研究[D].东北石油大学,2012.
    [100]Nageswararao K. A critical analysis of the fish hook effect in hydrocyclone classifiers[J]. Chemical Engineering Journal,2000,8 (1-3):251-256.
    [101]黄军,安连锁,杨阳,等.结构参数对石膏旋流器分股比的影响分析[J].动力工程学报,2011,(09):678-681+688.
    [102]Dueck J, Pikushchak E, Minkov L, et al. Mechanism of hydrocyclone separation with water injection[J]. Minerals Engineering,2010,23 (4):289-294.
    [103]张静.水力旋流器气液固流场的数值模拟[D].天津大学,2010.
    [104]王志斌,褚良银,陈文梅,等.基于高速摄像技术的旋流器空气柱特征研究[J].金属矿山,2010,(8):140-143.
    [105]苗青,袁惠新,王跃进.水力旋流器内空气柱直径的研究[J].金属矿山,2004,633-35.
    [106]杨阳,安连锁,刘春阳.石膏旋流器空气柱内三维速度场的数值模拟[J].中国电力,2013,46(9):155-159.
    [107]王志斌,陈文梅,褚良银,等.应用数值模拟方法对旋流器空气柱特性的探讨 [J].化工装备技术,2005,26(6):14-18.
    [108]Patankar S V. Numerical heat transfer and fluid flow[M].New York:McGraw-Hill, 1980.
    [109]Dai Guangqing, Li Jianming, Chen Wenmei. Numerical prediction of the liquid flow within a hydrocyclone[J]. Chemical Engineering Journal,1999,74 (3): 217-223.
    [110]陆耀军,周力行,沈熊.不同湍流模型在液-液旋流分离管流场计算中的应用及比较[J].清华大学学报(自然科学版),2001,41(2):105-109.
    [111]Grady S.A, Wesson G.D, Abdullah M, et al. Prediction of 10-mm Hydrocyclone Separation Efficiency Using Computational Fluid Dynamics[J]. Filtration & Separation,2003,40 (9):41-46.
    [112]Yang IH, Shin CB, Kim T H. Three-dimensional Simulation of a Hydrocyclone for The Sludge Separation in Water Purifying Plants and Comparision with Experimential Data[J]. Minerals Engineering,2004,17 (5):637-641.
    [113]Hirt C W, Nichols B D. Volume of fluid(VOF) method for the dynamics of free boundarieS[J]. J Comput, phys,1981,39201-205.
    [114]曹晓娟,顾伯勤.旋流器内空气柱形成与发展及其影响因素研究[J].煤矿机械,2008,29(12):58-60.
    [115]Chu Liang-Yin, Yu Wei, Wang GuangJin, et al. Enhancement of hydrocyclone separation performance by eliminating the air core[J]. Chemical Engineering and Processing:Process Intensification,2004,43 (12):1441-1448.
    [116]Lee M. S, Williams R. A. Performance characteristics within a modified hydrocyclone[J]. Minerals Engineering,1993,6 (7):743-751.
    [117]黄聪,汪华林,陈聪,等.微旋流器组并联配置性能对比:U-U型与Z-Z型[J].化工学报,2013,64(02):624-632.
    [118]白云峰.湿法脱硫系统安全运行于节能降耗[M].北京:中国电力出版社,2010.
    [119]李枫,刘彩玉,蒋明虎,等.水力旋流器中阿基米德螺线入口的设计[J].化工机械,2004,31(3):139-141.
    [120]PK Liu, LY Chu, J Wang, et al. Enhancement of hydrocyclone classification efficiency for fine particles by introducing a volute chamber with a pre-sedimentation function[J]. Chemical Engineering & amp;amp; Technology, 2008,31 (3):474-478.
    [121]Noroozi S, Hashemabadi S. H. CFD analysis of inlet chamber body profile effects on de-oiling hydrocyclone efficiency[J]. Chemical Engineering Research and Design,2011,89 (7):968-977.
    [122]Driesen M.G. Review of Industryial Mining[M].St. Etienne:1951.
    [123]Bloor MIG, Ingham DB. Trans. Instn Chem.Engrs,1973,5136-41.
    [124]Hsieh KT. Phenomenological Model of the Hydrocyclone[D]. Salt Lake:University of Utah,1988.
    [125]俞接成,陈家庆,王波.液-液分离用水力旋流器内部流场的三维数值模拟[J].石油矿场机械,2007,36(5):9-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700