用户名: 密码: 验证码:
北京市热环境变化与空气质量分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用传统的气象资料不能实时、动态、连续的反映地表温度空间分布的差异。卫星遥感为地表温度的求取提供了新思路,利用MODIS ( Moderate Resolution Imaging Spectroradiometer,中分辨率成像光谱仪)数据宏观、实时、周期性的特点,可以很好地对地表温度进行分析。随着遥感应用的深入,现有的热红外遥感数据地表温度反演算法分为三大类:单通道算法、分裂窗算法和多波段算法。本文比较了这三种算法,并建立了基于MODIS和分裂窗算法的北京市地表温度反演模型。其中,用来演算地表温度的分裂窗算法是以NOAA--AVHRR所观测到的热辐射数据为基础。根据Planck热辐射函数,将AVHRR的两个热通道(即通道4和5)数据转化为相应的亮度温度。选择与AVHRR的两个热通道(4,10.5-11.3μm和5,11.5-12.5μm)波段范围接近的MODIS 31(10. 780- 11. 280μm),32(11. 770- 12. 270μm)两波段来计算。通过对Planck方程的辐射强度和温度计算模拟,发现温度和辐射强度的近似关系,由此建立线性方程,以简化计算。然后通过模拟计算得到大气透过率与大气水汽含量的关系,从相同MODIS影像数据中计算得到MODIS 31/32波段透过率。最后运用分裂窗算法和MODIS的31和32通道反演地表温度。研究表明:利用MODIS数据和分裂窗算法反演北京市地表温度是可行的。结果发现:随着北京城市建设和城市化速度的加快,城市地表热量分布有着明显的季节变化分布特征。具体如下:春季,由于地表植被覆盖低,城市热岛强度很低、近似为0;夏季热岛强度和热岛面积都增至最大,热岛面积甚至超过五环,到达通州;秋季热岛强度和面积减小;冬季有冷岛现象存在,即城市地表温度低于乡村。揭示出植被覆盖对城市地表温度的影响显著。城市植被的分布及季节变化影响着城市热岛的强度与时空分布,对于降低热岛效应有显著效果。
     大气气溶胶是指由自然过程和人类活动造成,悬浮在大气中沉降速度小、尺度范围为0.001-20μm大小的液态或固态粒子。气溶胶对天气和气候起着重要作用,同时对人类的居住环境产生巨大的影响。遥感具有面状观测、准实时获取、更新周期短、成本低的特点,对城市地区大气污染的重要组成部分气溶胶,可以进行快速的监测。本文利用MODIS 1B数据为数据源,使用6S进行辐射传输计算构建查找表,进行气溶胶光学厚度的反演,并对其结果进行了比较。结果表明,该算法在假定气溶胶与大气分子的散射相函数相同的情况下,能较好得监测气溶胶,反映城市气溶胶的区域变化,结合北京市及周边地区的地理状况进行分析,具体如下:气溶胶光学厚度的高值区基本分布在人口密集、交通和工商业活动频繁的地区,高分辨率卫星遥感结果对污染物的排放源分布监测具有潜在的应用价值,能够在一定程度上表征北京市空气质量的状况。
     通过对北京市地表温度和气溶胶光学厚度在空间水平尺度上的对比,以夏季为例,可以发现北京市地表温度和气溶胶光学厚度高值区虽然大致都是北京城区即人口密集、交通和商业活动频繁的地方,但北京城市热岛效应和空气污染主要来源于城市本身,温度对气溶胶浓度变化的影响并不大。由于温度在一定程度上可以表征城市热环境,气溶胶光学厚度在经过垂直和湿度影响因子订正后,可以作为监测颗粒物污染物地面分布的一个有效手段,用以表征城市污染,而可吸入颗粒物是目前北京首要空气污染物,在此基础上,本文结合北京市环保局发布的空气质量状况和地面实测数据,从微观上对温度和可吸入颗粒物进行分析,发现城市环境中温度与可吸入颗粒物个数关联影响不大。从温度的变化来看,可吸入颗粒物的个数随着温度的升高反而减少,也就是说,温度高,可吸入颗粒物个数反而少,这可能是高温时地面湍流强烈,大气垂直方向输送较大,垂直方向有利于可吸入颗粒物的扩散,所以空气中的可吸入颗粒物个数偏少。
With the acceleration of urbanization, the phenomenon of temperature in urban cities which is higher than that in suburbs is called Urban Heat Island (UHI), which is put forward by Lake Howard[1] in 1833. This paper chose split window algorithm to retrieve land surface temperature after comparing with single window algorithm, split window algorithm and multi-band algorithm. And this paper improves the split window algorithm of AVHRR, so as to be suitable for MODIS image data. In this paper, land surface temperature is retrieved by split window algorithm based on MODIS images, and the temporal and spatial characteristics of Beijing urban heat island as well as its influencing factors are also analyzed. The result indicates that there is a clear urban heat island in summer, and it is quite close with vegetation index. Besides, the negative correlation relationship between land surface temperature and PM10 is also emphasizely analyzed.Land surface temperature (LST) plays an important role in energy balance of land surface and widely used in quite many fields. For example, soil moisture survey, forest fire monitoring, discrimination of geothermal locations, military camouflage applications and even deposit research, all these can not be separated from the land surface temperature. With the development of remote sensing applications, Single channel algorithm, split window algorithm and multi-band algorithm are the three algorithms of land surface temperature retrieval of existing thermal infrared remote sensed data. At first, this paper chooses split window algorithm after comparing the three algorithms and improves the split window algorithm of AVHRR, so as to be suitable for MODIS image data. This split window algorithm is based on the thermal radiation data which is observed by NOAA—AVHRR. With the basis of thermal radiation function, the brightness temperature can be translated from the two corresponding thermal channels (channel 4 and 5) of AVHRR, and that is to say: Choose MODIS 31(10. 780- 11. 280μm)and 32(11. 770- 12. 270μm)to take the place of the thermal channels (4,10.5-11.3μm and 5,11.5-12.5μm)of AVHRR. Secondly, this thesis discusses how to determine atmospheric transmittance and land surface emissivity, which are the two basic parameter of split window algorithm. Atmospheric transmittance can be retrieved by MODIS 2 and 19 with the relationship of the moisture of atmosphere and atmospheric transmittance. Thirdly, Land surface emissivity mainly depends on the structure of land surface substance, especially the vegetation index, and so land surface emissivity can be obtained by the land surface classification and vegetation index. Finally, land surface temperature can be retrieved through the land surface temperature model, and then the thesis analyses the retrieval precision and error causes.The result indicates that there is a clear urban heat island in summer and autumn, especially summer, with its maximum of not only the intensity but also the area. UHI seems does not exist in spring. In winter, urban cold island effect appears and takes the place of urban heat island. Another conclusion: the land cover types are sensitive to urban heat island effect, and there is a significant negative correlation between vegetation index and distribution of the urban heat island. That is to say: the higher land surface vegetation cover, the less urban heat island is. Therefore, land surface vegetation cover plays an important role on reducing urban heat island.
     Atmospheric aerosol refers to particles of small-scale range of 0.001-20μm size of liquid or solid caused by natural processes and human activities, which are suspended in the atmosphere. Aerosol plays an important role on weather and climate, while impacts the living environment of mankind. This paper takes Beijing area as an example ,the aerosol optic depth of Beijing has been tried to retrieve using DDV(Dark Dense Vegetation) method from MODIS 1B data. Firstly , the Look Up Table is built by 6S , the dark dense pixel is checked based on NDVI and the retrieved AOD(Aerosol Optical Depth) is validated by the comparation. The results show the DDV method can be used to monitor the urban aerosol very well during the summer in Beijing. analysis of geographic situation combined with Beijing and its surrounding area, the specific is as follows: AOD has higher value in densely populated areas, transportation, and areas of industrial and frequent commercial activities. High-resolution satellite remote sensing results has potential value in monitoring the distribution of emission sources,and can be characterized to the status of air quality in Beijing on a certain extent.
     Compared the land surface temperature to aerosol optical depth of Beijing on the horizontal scale in the space, this paper taking summer as an example, and find both land surface temperature and AOD have higher value in densely populated areas, transportation, and areas of industrial and frequent commercial activities, but urban heat island and air pollution of Beijing come mainly from the city itself, and temperature effects AOD is not great. the temperature can be characterized urban heat environment on a cetain extent. AOD after revising the vertical and humidity impact can be used to monitor the distribution of particulate matter pollutants in the ground as an effective means,and AOD can be the characterization of urban pollution. Respirable particulate matter is the most important air pollutant of Beijing at present. This paper combines the Municipal Environmental Protection Agency of Beijing air quality conditions and ground measurements, and analyses the relationship between temperature and respirable particulate matter from the microscopic, and finds that the temperature affectes the number of respirable particulate matter little. The number of particles can be decreased as the temperature increases,that is to say: The higher the temperature is, the lower the number of respirable particulate matter is.
引文
[1]Howard L. Climate of London Deduced from Metrological Observations (Vol.1), 3rd edition [M].London: Harvey and Dorton Press.1833.
    [2]Mao Kebiao, Qin Zhihao, Shi Jiancheng Retrieval of Land Surface Temperature of Shandong Peninsula Using MODIS Image and Split Window Algorithm.Journal of China University of Mingning&Tecnology,2005(34):46-50
    [3]Qin Z,Dall'Olmo G,Karnieli A,et al.Derivation of split window algorithm and its sensitivity analysis for retrieving land surface temperature from NOAA-AVHRR data[J].Journal of Geophysical Research,2001,106(D19):22655-22670.
    [4]王开燕气象条件对北京夏季气溶胶浓度变化的影响研究[D].南京:东南大学,2006
    [5]朱广一大气可吸入颗粒物进展[J]环境保护科学,2002,28(10):3-5
    [6]http://terra.nasa.gov/
    [7]http://aqua.nasa.gov/
    [8]戴昌达,姜小光,唐伶俐.遥感图像应用处理与分析[J].北京:清华大学出版社,2004
    [9]Kerr Y H, Lagouarde J P, Imbernon J. Accurate land surface temperature retrieval from AVHRR data with use of an imp roved sp litwindow algorithm [ J ]. Remote Sensing of Environment, 1992, 41: 197 - 209.
    [10]Ottl C,Vidal - MadjarD. Estimation of land surface temperature with NOAA - 9 Data [ J ]. Remote Sensing of Environment, 1992, 40: 27 - 41.
    [11]Price J C. Land surface temperature measurements from the sp lit window channels of the NOAA 7 Advanced Very High Resolution Radiometer[ J ]. Journal of Geophysical Research, 1984, 89: 7231 - 7237.
    [12]Becker F,Li Z L. Towards a local sp lit window method over land surface [ J ]. International Journal of Remote Sensing, 1990, 3: 369 - 393.
    [13]Prata A J, PlattM. Land surface temperature measurements from the AVHRR [A ]. In: Proceedings of the 5 th AVHRR Data Users’Meeting[C ]. Tromso (NORWAY) . 24 - 28 June 1991 EUMETSAT, Darmstadt. 433 - 438.
    [14]Vidal A. Atmospheric and emissivity correction of land surface temperature measured from satellite using ground measurements or satellite data[ J ]. International Journal of Remote Sensing, 1991, 12: 2449 - 2460.
    [15]Ulivieri C, CastronuovoM M, Francioni R, Cardillo A. A sp lit - window algorithm for estimating land surface temperatures from satellites [ J ].Advances in Space Research, 1996, 14: 1279 - 1292.
    [16]Coll C, CasellesV, Sobrino J A, Valor E. On the atmospheric dependence of the sp lit - window equation for land surface temperature [ J ]. International Journal of Remote Sensing, 1994, 15: 105 - 122.
    [17]Sobrino J A, Coll C, CasellesV. Atmospheric correction for land surface temperature usingNOAA - 11 AVHRR channels 4 and 5 [ J ]. Remote Sensing of Environment, 1991, 38: 19 - 34.
    [18]Prata A J. Land surface temperature derived from the advanced very high resolution radiometer and the along-track scanning radiometer 1. Theory[ J ]. Journal of Geophysical Research, 1993, 98: 16689 - 16702.
    [19]Frana GB, CracknellA P. Retrieval of land and sea surface temperature usingNOAA - 11 AVHRR data in northeastern Brazil [ J ]. International Journal of Remote Sensing, 1994, 15: 1695 - 1712.
    [20]Qin Z, Dall’Olmo G, KarnieliA, Berliner P. Derivation of sp litwindow algorithm and its sensitivity analysis for retrieving land surface temperature from NOAA - AVHRR data [ J ]. Journal of Geophysical Research, 2001, 106 (D19) : 22655 - 22670.
    [21]Sobrino J A, Raissouni N. Toward remote sensingmethods for land cover dynamic monitoring: app lication toMorocco [ J ]. International Journal of Remote Sensing, 2002, 21 (2) , 353 - 366.
    [22]Franois C,Ottl C. Atmospheric corrections in the thermal infrared: global and water vapor dependent sp lit window algorithms app lications to ATSR and AVHRR data [ J ]. IEEE Transaction on Geosciences and Remote Sensing, 1996, 34 (2) : 457 - 470.
    [23]Becker F, Li Z L. Surface temperature and emissivity at various scales: definition, measurement and related p roblems [ J ]. Remote Sensing Review, 1995, 12: 225 - 253.
    [24]Sobrino J A, Li Z L, StollM P, Becker F. Imp rovements in the sp lit - window technique for land surface temperature determination [ J ]. IEEE Transaction on Geosciences and Remote Sensing, 1994, 32 (2) : 243– 253
    [25]Becker F,Li Z-L.Surface temperature and emissivity at various scales:Definition,measurements and related problems[J].Remote Sens Reviews,1995,12:225-253.
    [26]高懋芳,覃志豪,徐斌.用MODIS数据反演地表温度的基本参数估计方法[J].干旱区研究,2007,24(1):113-119.
    [27]孟凡影.基于MODIS数据的地表温度反演方法——以吉林省西部为例[D].吉林:东北师范大学,2007
    [28]OkeT R.Boundary Layeer Climates[M].Cambridge;Cambridge University Press,1978.
    [29]Qin Zhihao. Zhang M, Karnielki A, et al. Mono-window Algorithm for Retrieving Land Surface Temperature from Landsat TM6 data [J]. Acta Geographica Sinica, 2001,56(4)
    [30]Qin Zhihao. Zhang M, Karnielki A. SPLIT WINDOW ALGORITHMS FOR RETRIEVING LAND SURFACE TEMPERATURE FROM NOAA-AVHRR DATA[J].Remote Sensing for Land & Resources,2005,26(15)
    [31] K Mao, Z Qin, et al. A practical split-window algorithm for ret retrieving land-surface temperature from MODIS data [J] . International Journal of Remote Sensing, 2005, 26 (15)
    [32]LI Hua, ZENG Yong-nian, et al. Temporal and spatial characteristic of urban heat island in Changsha-Zhuzhou-Xiangtan area based on MODIS data.[J].Science of Surveying and Mapping, 2007,32(5)
    [33]郭广猛,扬青生.利用MODIS数据反演地表温度的研究[J].遥感技术与应用,2004,19(1):34-36
    [34]杨士宏等.广州城市气候初探.见:城市气候与城市规划[M].北京:科学出版社,1985
    [35]周淑珍等.城市气候学[M」.北京:气象出版社,1994
    [36]张景哲.北京城市气温与下垫面结构关系得时相变化[J].地理科学,1988,43(2):159-168
    [37]陈丹,范万新.城市热岛效应对城市“生态系统”的影响[J].沿海环境,2002,8:12-13
    [38]孙清廉.城市热岛效应的危害及对策[s].健康生活,2002,7:47
    [39]戴昌达,姜小光,唐伶俐.遥感图像应用处理与分析阿〕.北京:清华大学出版社,2004
    [40]赵英时等.遥感应用分析原理与方法LM〕.北京:科学出版社,2003
    [41]陈云浩,李京,李晓兵.城市空间热环境遥感分析[M].北京:科学出版社,2004
    [42]赵可新.城市热岛效应现状与对策研究[J].中国园林,1999,15(66):44-45
    [43]Vidal A.Atmospheric and emissivity correction of land surface temperature measured from satellite using ground measurements of satellite data[J].International Journal of Remote Sensing,1991,12:2449-2460.
    [44]Kerr Y H,Lagouarde J P,Imbernon J.Accurate land surface temperature retrival from AVHRR data with the use of an improved split-window algorithm[J].Remote Sensing of Environment,1992,41(2):197-209.
    [45]Francois C,Ottle C.Atmospheric corrections in the thermal infrared:Global and water vapor dependent split-window algorithm-applications to ATSR and AVHRR data[J].IEEE Transactions on Geoscience and Remote Sensing,1996,34:457-469.
    [46]柳钦火,徐希孺,陈家宜.遥测地表温度与比辐射率得迭代反演方法-理论推导与数值模拟[J].遥感学报,1998,2(1):1-9.
    [47]Sobrino J A,Raissouni N.Toward remote sensing methods for land cover dynamicmonitoring:application to Morocco[J].International Journal of Remote Sensing,2000,21:353-366.
    [48]Qin Z,Karnieli A,Berliner P.A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egyptborder region[J]. International Journal of Remote Sensing,2001,22(18):3719-3746.
    [49]Weng Q,Lu D,Schubring J.Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies[J].Remote Sensing of Environment,2004,89:467-483.
    [50]王奋勤,范闻捷,秦其明,徐希孺.矩阵表达与对象统计特性相结合得组分温度反演方法[J].遥感学报,2004,8(2):102-106.
    [51]覃志豪,高懋芳,秦晓敏,等.农业旱灾监测中的地表温度遥感反演方法---以MODIS数据为例[J].自然灾害学报,2005,14(4):64-71.
    [52]John H,Marburger III.Landsat Data Continuity Strtege[Z].Office of Science and Technology Policy,Executive Office of The President,August 2004 Revision.
    [53]Kidwell K B.NOAA Polar Orbiter Data User’s Guide[Z].NESDIS,NOAA,U S Department of Commerce,August 1997 Revision.
    [54]Goodrum G , Kidwell K B , Winston W.NOAA KLM User’s Guide with NOAA-N-N’Supplement[Z].NESDIS,NOAA,U S Department of Commerce,Sept 2000 Revision,Amended Amended April 5,2004.
    [55]刘玉洁,杨忠东.MODIS遥感信息处理与算法[M].北京:科学出版社,2001.2.
    [56]Price J C.Land surface temperature measurements from split window channels of the NOAA 7 advance very high resolution radiometer[J].Journal of Geophysics Research,1984,89:7231-7237.
    [57]覃志豪,Zhang M,Kalnieli A.用NOAA-AVHRR热通道数据演算地表温度的分裂窗算法[J].国土资源遥感,2001,48(2):33-42.
    [58]Wark D Q,Yamamoto Y,Lienesch J H.Methods of estimating infrared flux and surface temperature from meteorological satellites[J].J Atmos Sci,1962,19:369-384.
    [59]Qin Z,Karnieli A,Berliner P.A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region[J]. International Journal of RemoteSensing,2001,22(18):3719-3746.
    [60]Qin Z,Zhang M,Arnon K.Split window algorithms for retrieving land surface temperature from NOAA-AVHRR data[J].Remote Sensing for Land Resources.2001(48):33-42.
    [61]Gillespie A,Rokugawa S,Matsunaga T,et al.A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer(ASTER) images[J].IEEE Transactions on Geoscience and Remote Sensing,1998,36:1113-1125.
    [62]Delderfield J,Llewellyn-Jones D T,Bernard R,et al.The along-track scanning radiometer for ERS-1[J].In Instrumentation for Optical Remote Sensing from Space,1986,589:114-120.
    [63]Sobrino J A,Jiménez J C,Paolini L.Land surface temperature retrieval from LANDSAT TM 5[J].Remote Sensing of Environment,2004,90:434–440.
    [64]Deng W,Wan Y Q,Zhao R C.Tecting coalfires with a neural network to reduce the effect of solar radiation on Landsat Thematic Mapper thermal infrared images[J].International Journal of Remote Sensing,2001,22:933-944.
    [65]Lambin E F,Ehrlich D.The surface temperature-vegetation index space for land cover and land cover change analysis[J].International Journal of Remote Sensing,1996,17:463-487.
    [66]Sandholt I,Rasmussen K,Andersen J.A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status[J].Remote Sensing of Environment,2002,79:213-224.
    [67]Braga C Z F,Setzer A W,De Lacerda L D.Water quality assessment with simultaneous Landsat 5 TM data at Guanabara Bay,Riode Janeiro[J].Brazil Remote Sensing of Environment,1993,45:95-106.
    [68]Liu G R,Kuo T H.Improved atmospheric correction process in monitoring SST around the outfall of a nuclear power plant[J].International Journal of Remote Sensing,1994,15:2627-2636.
    [69]吕琪琦,丁鉴海,崔承禹.1998年1月10日张北6.2级地震前可能得卫星热红外异常现象[J].地震学报,2002,22(2):183-188.
    [70]Reddy C S S,Bhattacharya A,Srivastav S K.Night time TM short wavelength infrared data analysis of Barren Island volcano,South Andaman,India[J].International Journal of Remote Sensing,1993,14:783-787.
    [71]Andres R J,Rose W I.Description of thermal anomalies on two active Guatemalan volcanoes using Landsat Thematic Mapper imagery[J].Photogrammetric Engineering and Remote Sensing,1995,61:775-782.
    [72]Kaneko T.Thermal observation of the 1986 eruption of Izu Oshima Volcano(Japan)using Landsat TM data[J].Advances in Space Research,1998,21:517-520.
    [73]Oppenheimer C.Remote sensing of the color and temperature of volcanic lakes[J].International Journal of Remote Sensing,1997,18:5-37.
    [74]申广荣,田国良.基于的黄淮海平原旱灾遥感监测研究[J].农业工程学报,1999,15(1):188-191.
    [75]覃志豪,徐斌,李茂松,等.我国主要农业气象灾害机理与监测研究进展[J].自然灾害学报,2005,14(2):61-69.
    [76]盛绍学,马晓群,荀尚培,等.基于的安徽省干旱遥感监测与评估研究[J].自然灾害学报,2003,12(1):151-157.
    [77]Price J C.Land surface temperature measurements from the split window channels of the NOAA-7 AVHRR[J].Journal of Geophysics Research,1984,79:5039-5044.
    [78]柳钦火,徐希孺,陈家宜.遥测地表温度与比辐射率得迭代反演方法-理论推导与数值模拟[J].遥感学报,1998,2(1):1-9.
    [79]王奋勤,范闻捷,秦其明,徐希孺.矩阵表达与对象统计特性相结合得组分温度反演方法[J].遥感学报,2004,8(2):102-106.
    [80]Zhengming Wan,Zhao-Liang Li.A Physics-Based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data[J].IEEE Transactions on Geoscience and Remote Sensing,1997,35(4):980-996.
    [81]Prabhakara C,Dalu G,Kunde V G.Estimation of sea surface temperature from remote sensing in the 11and 13 micrometer window region[J].Journal of Geophysics Research,1974,79:5039-5044.
    [82]Price J C.Land surface temperature measurements from split window channels of the NOAA 7 advance very high resolution radiometer[J].Journal of Geophysics Research,1984,89:7231-7237.
    [83]McMillin L M.Estimation of sea surface temperature from two infrared window measurements with different absorption[J].Journal of Geophysical research,1975,20:5113-5117.
    [84]Becker F.The impact of spectral emissivity on the measurement of land surface temperature from a satellite[J].International Journal of Remote Sensing,1987,10:1509-1522.
    [85]Becker F,Li Z-L.Towards a local split window method over land surface[J].International Journal of Remote Sensing,1990,11:369-393.
    [86]Wan Z,Dozier J.A generalized split-window algorithm for retrieving land-surface temperature from space[J].IEEE Transactions on Geoscience and Remote Sensing,1996,34(4):892-905.
    [87]Sobrino J A,Coll C,Caselles V.Atmospheric corrections for land surface temperature using AVHRR channel 4 and 5[J].Remote Sensing of Environment,1991,38:19-34.
    [88]Sobrino J A,Caselles V,Coll C.Theroretical split window algorithms for determiningthe actual surface temperature[J].Il Nuovo Cimento,1993,16(3):219-236.
    [89]Qin Z,Kamieli A.Progress in the emote sensing of land surface temperature and ground em issivity using NOAA-AVHRR data[J].International Joumal of Remote Sensing,,1999,20:2367-2393.
    [90]Kerry H,Lagouarde J p,Imbemon J.Accurate land surface temperature retrieval fromAVHRR data with use of an improved splitwindow algorithm[J].Remote Sensing of Environmen,1992,41:197-209.
    [91]Sobrino J A,CollC Caselles V.Atmospheric correction for land surface temperature using NOAA-II AVHRR channels 4 and 5[J].Remote Sensing of Environmenl,1991,38:19-34.
    [92]Prata A J.Land surface temperature derived from the advanced very high resolution radiometerand the along-track scanning radiometer l.Theory[J].Journal of Geophysical Research,1993,98:16689-16702.
    [93]Frana G B,Cracknell A P.Retrieval of land and sea surface temperature using NOAA-AVHRR data in northeastern Brazil[J].International Journal of Remote Sensing,1994,15:1695-1712.
    [94]Qin Z,Li W J,Xu B,et al.Estimation of land surface emissivity for the spectral range of Landsat TM6[J].Remote Sensing for Land and Resources,2004,3:27-32.
    [95]Kerr Y H,Lagouarde J P,Imbernon J.Accurate land surface temperature retrieval from AVHRR data with use of an improved split window algorithm[J].Remote Sensing of Environment,1992,41:197-209.
    [96]Kaufman Y J,Gao B C.Remote Sensing of W ater V apor in the N ear 1R from EO S/MOD IS[J].IEEETransactions on Geoscience and Remote Sensing,1992,30(5):871-884.
    [97]Gao B C,Goetz A F H.Column atmospheric water vapor and vegetation liquid water retrieval from airborne imaging spectrometer data[J].Journal of Geophysical Research,1992,95(4):3549-3564.
    [98]高懋芳,覃志豪,刘三超.MODIS数据反演地表温度的参数敏感性分析[J].遥感信息,2005,6:3-6.
    [99]高懋芳,覃志豪,高明文,等.MODIS数据反演地表温度的传感器视角校正研究[J].遥感技术与应用,2007.
    [100]王中挺,陈良富,张莹,韩东,顾行发.利用MODIS数据监测北京地区气溶胶[J].遥感技术与应用,2008,23(3):284-288
    [101] http://www.bjepb.gov.cn/bjhb/publish/portal0/default.htm
    [102]Miao M Q. Numerical Simulation of the UHI Effects on the Pollutant Dispersion[J]. Chinese Joumal of Atmospheric Sciences,1990,14(2):207-214
    [103]王建凯,王开存,王普才.基于MODIS地表温度产品的北京城市热岛(冷岛)强度分析[J].遥感学报,2007,11(3):330-339

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700