用户名: 密码: 验证码:
转换波最佳搜索角的射线追踪技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
P-SV转换波资料处理是转换波技术的重要研究内容,由于转换波具有低频、低速、低信噪比和射线路径不对称的特点,处理难度远远大于常规纵波勘探。
     转换波转换点位置的计算直接影响到转换波资料处理中的共转换点道集的抽取、转换波叠加和转换波叠前偏移等技术的发展。本文提出了求取转换点位置的最佳角度搜索法,给出了二维均匀水平地层、倾斜地层和多层介质中转换点计算公式,并且进行了模拟计算,在炮点和检波点确定的前提下,较为精确的计算出转换点。同时进行了与迭代算法计算误差对比分析。结果表明该方法具有较高的计算效率和精度。
     P-SV转换波资料处理中转换波的共反射点叠加、转换波偏移成像等都需要转换波的走时和射线路径。本文选用最佳路径法,研究出适用于转换波的射线追踪基本流程。用最佳路径法对水平(单层、多层)地层、倾斜地层等理论模型进行了转换波射线追踪模拟计算,最佳路径法具有较高的精度和效率。利用射线追踪算法模拟了转换波的合成地震记录。
     转换波资料的处理,不能应用纵波的共中心点叠加剖面,转换波的叠加剖面应为共反射点(即共转换点)叠加。PS转换波处理的常规流程中共转换点道集抽取及叠加是很关键的处理步骤。本文对共转换点道集的动态抽取理论进行了分析。讨论了纵横波速度比和反射界面深度对转换点位置的影响。共转换点道集的检波点分布与纵横波速度比和反射界面深度的关系。针对两层均匀水平地层模型建立了观测系统,并利用射线追踪算法模拟抽取了共转换点道集。
P-SV converted wave exploration is the main body of the multi-wave multi-component seismic exploration, compared to the P-wave exploration, P-SV converted wave exploration can provide a more rich underground petrophysical information, and this play an important role on lithology inversion, extraction of fracture parameters, as well as gas detection. P-SV converted wave data processing is an important conversion wave technology research, and it is more difficulty than conventional P-wave exploration. Due to historical reasons and the hardware and software resource constraints, P-SV converted wave seismic data processing has basically adopted the P-wave seismic data processing models and ideas. However, due to the conversion wave has low frequency, low-speed, low signal to noise ratio, and the characteristics of asymmetric ray paths, for the P-wave processing is relatively mature and stable technology, but can not satisfy the basic assumptions and precision of the converted wave. At present, the main research of P-SV converted-wave processing contents include: wave field separation, conversion point’s position gathering, velocity analysis, NMO, CCP gathering, conversion wave static correction, DMO correction and migration imaging.
     In P-SV converted wave data processing, common reflection point stack and migration imaging need converted wave’s travel time and ray path.Therefore, in this paper, we chose the shortest ray path, developed ray tracing algorithm and basic process for converted wave. The the shortest ray path has higher accuracy and efficiency, and it is stable and does not have blind area,.It can trace travel time of all points, apply to any model of complex geological structure, it is a widely used method of ray tracing. Using the the shortest ray path method to model the level of homogeneous (single-layer, multi-layer) formation. This method has been tracking the converted wave P-wave ray path and the S-wave ray path is broken line, longer than than the true ray path length, the calculation of travel time longer than the theoretical value, and this makes the final ray path travel time and location of the deviation. Converted wave ray path is asymmetry. In the level of homogeneous (single-layer, multi-layer) formation, the converted-wave conversion point offset deviation from the center, near the side of the receiving point, the greater the offset,the grater distance the conversion offset point departure from the focal point.In tilted stratum, a smaller offset, the converted-wave conversion point offset deviation from the focal point shot at the near side; with greater offset, converted-wave conversion point deviation from the offset from the first point decreases and then increases ,near the side of the receiving point.
     The calculation of Converted-wave conversion point puts direct impact on technology development such as:speed analysis, common-conversion point gather, converted wave stack, converted wave prestack migration. In this paper, we propose the method by searching optimal angle to seek conversion points’position, given the computing formula of the level of two-dimensional homogeneous strata (single-layer media, multi-media), tilted strata, and through the establishment of the theoretical model to calculation, in the source point and receiver are determined, calculat the conversion points precise. Compared with the iterative algorithm, the difference of the level of single-layer uniform layer with each point calculated by the method by searching optimal angle (grid spacing of 20m) is samller than the result calculated by iterative algorithm. The biggest difference of the method by searching optimal angle is far lass than 0.01 percentage,and the biggest difference of the three times iteration is bigger than 0.01 percentage; Multi-homogeneous medium, the biggest difference of each point is samller than it calculated by iterative algorithm.The biggest difference calculated by the method by searching optimal angle is less than 0.5 percentage,and the biggest difference calculated by times iteration is bigger than 1 percentage. The method by searching optimal angle has less difference higher precision than three times iteration,and the calculating formula is sample.
     In this paper, we use ray tracing to model synthetic seismogram of the converted wave. As for the level of uniformity for the formation (single-layer, multi-layer),when time distance curve of the converted wave is not hyperbolic, the curvature of the time distance curve of second reflective layer is samller than the curvature of the time distance curve of firt reflective layer. The time distance curve of the tilted strata the converted wave is not hyperbola,and it is influence by the stratigraphic dip.
     As for Converted wave data processing, common mid-point stacked profile for P-wave can not be used. Stacked profiles of converted wave should be common reflection point stack rather than common midpoint stack. Breaking point gather and stack are important in conventional of PS converted-wave processing. This paper we discusses the P-wave and S-wave velocity ratio and the depth of the reflecting interface’s impact on breaking point,when the P-wave and S-wave velocity ratio is fixed, in the same seismic trace, the shallower the reflective interface,the greater the conversion point deviated from the receiver.To the same reflection depth, the position of the conversion point related to P-wave and S-wave velocity ratio, the bigger the velocity ratio, the greater the conversion point deviated from the center. This shows different speeds are correspond different Common conversion point gathering. When Common conversion point(CCP) gathering,P-wave and S-wave velocity ratio and the depth of the reflecting interfaces should be considered.We discuss the distribution of Common conversion point traces’demodulator probe. In this paper, we establish observing systems for the uniform two-tier level.We use ray-tracing algorithm simulate common conversion point traces, Collected common conversion point traces the first estimates P-wave and S-wave velocity ratio, and then calculating the sampling point position corresponds to the conversion, taking the conversion of the projection in the surface location at the Common Reflection Surface seismic data corresponding to these data, combination or Category may constitute a Common conversion point gather.
引文
[1]王光杰,陈东,赵爱华,等.多波多分量地震探测技术[J].地球物理学进展, 2000,15(1):54-60.
    [2]何兵寿,张会星,彭苏萍.共转换点道集的抽取与转换波时变静校正[J].海洋地质与第四纪地质,2006,26(6):139-143.
    [3]詹正彬,姚姚.多分量地震和横波勘探[M].北京:地质出版社,1993.
    [4]李国发,彭苏萍,何兵寿,等.转换波地震资料处理的关键问题与解决方法[J].中国矿业大学学报,2005,34(1):41-45.
    [5]夏凌.多分量解释技术研究及应用[D].成都理工大学,2007.
    [6] Andrey A Ortega,George A Mechan.Synthesis of multicomponent quasi-P and converted quasi-P-S seismograms for intersecting fracture systems[J]. Geophysics,2000,65(4):1261-1271
    [7]黄中玉.多分量地震勘探的机遇和挑战[J].石油物探,2001,40(2):131-137.
    [8]刘洋,魏修成.转换波地震勘探的若干问题与对策[J].勘探地球物理, 2003,26(4):247-251.
    [9] Thomsen L.Weak elastic anisotropy[J].Geophysics,1986,51:1954-1966.
    [10]徐丽萍,杨勤勇.多波多分量地震技术发展与展望[J].勘探地球物理进展, 2002,25(3):47-52.
    [11] Ogilvie J S,Purnell G W.Effects of salt-related mode conversions onsubsalt prospecting[J].Geophysics,1996,61:331-348.
    [12] Richard S Lu,Dennis E Willen,lan A Watson.Identifying,removing,and imaging P-S conversions at salt-sediment interfaces[J].Geophysics,2003,68 (3):1052-1059
    [13] Gaiser James,Moldoveanu Nick.Multicomponent technology:the Players, problems,applications,and trends[J].The Leading Edge,2001,20(9):974- 977.
    [14] Stuart Crampin.Anisotropy in exploration seismics[J].FirstBreak,1984,2(3): 19-21.
    [15]杨德义,彭苏萍.多分量地震勘探技术的现状及进展[J].中国煤田地质, 2003,15(1):51-57.
    [16]王磊,李建荣.多分量转换波地震勘探技术[J].油气地质与采收率(专题论坛-石油地球物理勘探),2002,9(6):1-4.
    [17]普兹列夫H H著,裘慰庭译.横波和转换波地震勘探[M].北京:石油工业出版社,1993.
    [18]姚姚.多波地震勘探的发展历程和趋势展望[J].勘探地球物理,2005,28 (3):169-173.
    [19]王童奎,张美根,李小凡,等.PS转换波界面二次源法射线追踪[J].地球物理学进展,2007,22(1):165-170.
    [20]邓怀群,刘雯林,赵正茂.横向各向同性介质中纵波和转换横波的快速射线追踪方法[J].石油物探,2000,39(4):1-11.
    [21]赵爱华,张中杰,彭苏萍.复杂地质模型转换波快速射线追踪方法[J].中国矿业大学学报,2003,32(5):513-516.
    [22]赵爱华,张中杰.三维复杂介质中转换波走时快速计算[J].地球物理学报, 2004,47(4):702-707.
    [23]张永刚.地震波场数值模拟方法[J].石油物探,2003,42(2):143-148.
    [24]张钋,刘洪,李幼铭.射线追踪方法的发展现状[J].地球物理学进展, 2000,15(1):36-45.
    [25] Cerveny V.著,刘福田译.地震学中的射线方法[M].北京:地质出版社, 1986.
    [26]杨文采,李幼铭,等.应用地震层析成像[M].地质出版社,1993.
    [27]梁春涛,朱介寿,曹家敏,等.球坐标系下三维射线追踪的方法和应用[J].物探化探计算技术,2001,23(3):199-205.
    [28]许琨,吴律,王妙月.改进Mose法射线追踪[J].地球物理学进展,1998, 13(4):61-66.
    [29]张建中,陈世军,余大祥.最短路径射线追踪方法及其改进[J].地球物理学进展,2000,15(1):146-150.
    [30] Moser T J.Shortest path calculation of seism ic rays[J].Geophysics,1991,56 (1):59-67.
    [31]张美根,程冰洁,李小凡,等.一种最短路径射线追的快速算法[J].地球物理学报,2006,49(5):1467-1474.
    [32] Asakawa,Fiichi,Kawanaka.Taku:Sesmic ray tracing using Linear traveltime in terpolation[J].Geophysical Prospesting,1993,41(1):99-112.
    [33] Asakawa Eiichi著,蒋录全译.用于地震射线追踪的旅行时线形插值法[J].石油物探译丛,1993,4:1-9.
    [34]赵改善,郝守玲,杨尔皓,等.基于旅行时线形插值的地震射线追踪算法[J].石油物探,1998,37(2):14-24.
    [35]涂齐催,刘怀山.利用线形旅行时插值射线追踪计算近地表模型初至波走时[J].物探与化探,2006,30(2):148-153.
    [36] Vidale J E.Finite-differencecal culation of trimes[J]. Bull.,Seis.Sos.Am., 1988,78(6):2062-2076.
    [37] Vidale J E.Finite-difference calculation of taveltimes in three dimension[J]. Geophysics,1990,55(5):521-526.
    [38]张霖斌,刘迎曦,赵振峰,等.有限差分法射线追踪[J].石油地球物理勘探, 1993,28(6):673-677,684.
    [39]朱金明,王丽燕.地震波走时的有限差分法[J].地球物理学报,1992,35(1): 86-92.
    [40]黄联捷,李幼铭,吴如山.用于图象重建的波前射线追踪[J].地球物理学报,1992,35(2):223-233.
    [41] Van Trier J,Symes W W.Upwind finite-difference calculation of travelti- mes[J].Geophysics,1991,56(6):812-821.
    [42] Sava P,Fomel S.Huygens wavefront tracing:A robust alternative to ray tracing[J].Stanford Exploration Project,1997,95:101-113.
    [43] Symes W W.A slowness matching finite difference method for traveltimes beyond transmission caustics[J]. 68 Ann. Internet . Mtg.,Soc.Expl. Geophys,1998,1945-1948.
    [44]宋林平.平方慢度射线追踪与非线形地震走时层析成像[J].成都理工学报,1994,21(1):107-113.
    [45]高亮,李幼铭等.地震辛几何算法初探[J].地球物理学报,2002,43(3):402- 410.
    [46]秦孟兆,陈景波.Moslov渐进理论与辛几何算法[J].地球物理学报,2000, 43(4):522-533.
    [47]陈景波,秦孟兆.射线追踪、辛几何算法与波场数值模拟[J].计算物理, 2001,18(6):481-487.
    [48]郭向宇,凌云,魏修成.PS转换波共转换点的几种计算方法及实际应用[J].石油物探,2002,41(2):141-143.
    [49] Tessmer G,Behle A.Common reflection point data-stacking technique for converted waves[J].Geophysical Prospecting,1988,36(7):671-688.
    [50] Taylor G G.The point of P-S mode-converted reflection : An exact determination[J].Geophysics,1989,54(8):1060-1063.
    [51] Schneider Jr WA.A simple,exact solution for the P-SV wave conversion point via prestack migration[J].Geophysics,2002, 67(5):1634-1636.
    [52]苑春方,彭苏萍,杨良梁.水平界面上P-SV转换波转换点的精确解[J].地球物理学报,2005,48(5):1179-1184.
    [53] Yuan C F,Peng S P,Li C M.An exact solution of the con-version point for the converted waves from a dipping reflector withhomogeneous(isotropic) overburden[J].Geophysics,2006,71(1):7-11.
    [54]苑春方,彭苏萍,唐俐威,等.含有旅行时的水平反射界面上P-SV转换波转换点坐标的会议解析解[J].地球物理学进展,2006,21(4):1127-1131.
    [55]张中杰.多分量地震资料各向异性处理与解释方法[M].哈尔滨:黑龙江教育出版社,2002.
    [56]赵爱华,张中杰.三维复杂介质中转换波走时快速计算[J].地球物理学报, 2002,47(4):702-707.
    [57]马在田,曹景忠,王家林,等.计算地球物理学概论[M].上海:同济大学出版社,1997.
    [58]许士勇,马在田.转换波的转换点位置和时距关系[M].见:地球物理学会年刊1999.合肥:安徽科学技术出版社,1999,27.
    [59]许士勇,马在田.快速有效的转换波共转换点叠加技术[J].地球物理学报, 2002,45(4):557-568.
    [60]傅旦丹,朱宏彰,何汉漪.一种确定转换点的算法及其应用[J].石油物探, 2002,41(1):26-30.
    [61]张耀辉.P-SV波的共转换点道集的抽取[J].石油物探,1992,31(3):87-101.
    [62]张耀辉.关于倾斜界面转换点的确定[J].石油地球物理勘探,1993,28(6): 752-760.
    [63]周竹生,王卫华.一种快速、高精度的共转换点轨迹计算方法[J].石油地球物理勘探,1993,28(1):37-45.
    [64]毕丽飞,李振春,王延光,等.转换波处理中转换点的定位[J].勘探地球物理进展,2005,28(5):353-356.
    [65] Leon Thomsen.Converted-wave reflection seismology over inho mogen- eous,anisotropic media[J].Geophysics,1999,64(3):678-690.
    [66]于光明,姚陈.倾斜CCP道集抽取方法及影响因素分析[J].煤田地质与勘探,2007,35(4):65-69.
    [67] Benshan Zhong,Xixiang Zhou,Xuecai Liu,et al.A new strategy for CCP stacking[J].Geophysics,1995,60(2):517-521.
    [68] Tessmer G.Processing of PS-reflection data applying a commonconversion- point stacking technique[J].Geophys.Prosp.,1990,38:267-286.
    [69]张耀辉.P-SV的共转换点道集的抽取[J].石油物探,1992,31(3):87-101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700