用户名: 密码: 验证码:
钠钾泵参与5-羟色胺对大鼠海马CA1区NMDA电流的调节
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
5-羟色胺(serotonin, 5-HT)是神经系统内一个非常重要的神经递质,广泛参与各种行为和生理过程,如:情感、睡眠、疼痛、食欲、学习和记忆等多种生理功能的调节。许多研究表明,与年龄有关的认知障碍(如阿尔茨海默病)均存在5-羟色胺能神经紊乱。其紊乱则可导致多种精神类疾病尤其是焦虑、抑郁和创伤后应激综合症等,而这些疾病都伴有学习和记忆的认知障碍。目前,5-羟色胺及其受体在阿尔茨海默病发病机制及治疗应用方面已成为人们关注的重点之一。另外有研究报道,Na+-K+泵除与高血压、糖尿病等多种疾病密切相关外,也参与学习与记忆的形成。有充分的实验证明,兴奋性神经递质谷氨酸激活了N-甲基-D-天门冬氨酸(N-methyl-D-aspartate, NMDA)受体的离子通道,产生长时程增强(long-term potentiation, LTP)对学习与记忆形成促进作用,以及其与NMDA受体之间的关系可能是自1970年以来神经科学的最重要的发现。5-羟色胺能神经系统和NMDA受体都参与正常和病理情况下认知与情感调节,且5-羟色胺和NMDA受体之间相互作用影响海马依赖性的长时程记忆。5-羟色胺能神经系统对NMDA受体的调节很复杂,其在无Mg2+存在的情况下可降低NMDA介导的去极化,而在有Mg2+存在的情况下则可增加NMDA介导的去极化。另外,5-羟色胺能抑制大鼠额前皮质锥体神经元NMDA的反应,但却增强运动神经元NMDA的反应。同时也有研究发现,5-HT和Na+-K+泵之间存在相互作用。其中,5-HT可激活大鼠皮层与海马胶质细胞的Na+-K+泵,也可抑制肾脏和水蛭T感觉神经元的Na+-K+泵活性。而抑制Na+-K+泵则可降低谷氨酸吸收,增加神经递质释放,进而导致谷氨酸累积,也可导致谷氨酸受体的高反应性。除此之外,抑制Na+-K+泵还可直接使NMDA受体变构而降低地佐环平(NMDA非竞争性拮抗药)的结合,增加皮层与海马NMDA受体亚基的表达、聚集和区域化。由此不难看出,Na+-K+泵、5-羟色胺和NMDA在调节学习和记忆功能方面存在着非常复杂的相互作用。本实验拟采用大鼠脑片采用全细胞膜片钳技术,以NMDA电流和Na+-K+泵电流为指标,观察5-HT和Na+-K+泵对海马CA1区神经元NMDA电流的影响和5-HT对大鼠海马CA1区神经元Na+-K+泵电流的影响,以探讨5-HT对学习与记忆功能的调节及其机制。
     第一部分5-羟色胺与钠钾泵对大鼠海马CA1区神经元NMDA电流的调节
     目的:本研究旨在观察5-羟色胺和Na+-K+泵对海马CA1区锥体神经元NMDA电流的影响,并进一步探讨相应机制。
     方法:(1)取出生2周SD大鼠快速断头取脑,置于预先氧饱和(95% O2 +5% CO2)的4℃人工脑脊液(artificial cerebrospinal fluid, ASCF)中,将其按冠状切面用氰丙烯酸盐胶粘在切片机的标本托上,用4℃ACSF浸埋(保持脑组织在低温状态下,以减小由于缺氧而引起的损伤),并持续通气(95% O2+5% CO2)。在4℃氧饱和条件下,用振动切片机切成300μm厚的切片,将切片移至孵育槽内,持续通以95% O2和5% CO2,30-32℃孵育1小时。(2)全细胞膜片钳方法记录NMDA电流:将孵育好的脑片放置于灌流槽中,持续灌流用95% O2和5% CO2饱和的ASCF,流速约为3 ml/min,使脑片浸没于液面下约3~4 mm。利用红外微分干涉相差显微镜,通过图像采集软件观察并选择合适的神经元使其成像于计算机监视器屏幕上。然后通过微电极操纵器引导电极到达记录部位,形成高阻抗(>1G?)封接,再继续施以负压吸破细胞膜,形成whole-cell记录模式,钳制电压设置为-60 mV。当细胞膜电流稳定之后,将灌流液体切换成含有NMDA(此为NMDA受体的特异性激动剂)的ACSF,可记录到膜电流的内向移动变化,此NMDA引起的膜电流内向移动的变化幅度即为NMDA电流(INM)。(3)双氢哇巴因(dihydroouabain, DHO)对INM影响的测定:实验采用自身对照的方法,即在同一细胞上先测定INM幅度作为对照,然后再测定不同浓度DHO干预时的INM幅度,并以对照电流值标化给药后的电流值求得均数。(4)5-HT对INM影响的测定:方法同(3)。
     结果:(1)若以对照INM作为100%,DHO (10-5, 10-4, 10-3 M)能剂量依赖性地增强INM,并使其分别增强至146.25±10.34%, 195.78±8.94%和154.75±14.18% (P<0.01或0.05),其中DHO 10-4 M增强INM作用最大。(2)在H89(PKA特异性抑制剂)存在的情况下,DHO增强INM的效应分别为202.28±23.28%和175.86±26%,无明显改变(P>0.05)。在十字孢碱(staurosporine, Stau, PKC特异性抑制剂)存在的情况下,DHO增强INM的效应分别为187.46±27.57%和178.32±34.3%,也无明显改变(P>0.05)。H89和Stau本身对INM无明显影响,H89为101.7±11.3%, Stau为108.92±10.77%, (P>0.05)。提示PKA和PKC信号通路不参与介导DHO增强INM的效应。(3)在PP2(Src特异性抑制剂)存在的情况下,DHO增强INM的效应由173±25.66%显著降低到106.8±5.92% (P<0.05)。在PD-98059(MAPK特异性抑制剂)存在的情况下,DHO增强INM的效应也部分被阻断,由210±28.11%降低到135.25±15.60% (P<0.05)。而PP2和PD-98059本身则对INM无明显影响,其中PP2为94.4±12.58%, PD-98059为120.25±12.09%,(P>0.05)。提示Src和MAPK信号转导通路介导DHO增强INM的效应。(4)5-羟色胺0.01,0.1和1 mM可浓度依赖性增强INM,使其分别增强至109.4±4.96% (P>0.05),146.4±13.48%和161.83±13.06% (P<0.05),但5-羟色胺0.01 mM对INM的影响无统计学意义。
     小结: DHO可通过Src和MAPK信号转导通路浓度依赖性增强大鼠海马CA1区锥体神经元NMDA电流,5-羟色胺也可浓度依赖性增强海马NMDA电流,提示Na+-K+泵和5-羟色胺都可能参与海马NMDA受体对学习记忆的调节。
     第二部分5-羟色胺对大鼠海马CA1区神经元Na+-K+泵电流的调节
     目的:研究5-羟色胺对大鼠海马CA1区神经元Na+-K+泵电流的影响,并进一步探讨可能参与这一调节过程的5-羟色胺受体途径。
     方法:(1)断头取海马脑片:同第一部分。(2)以全细胞膜片钳技术记录Na+-K+泵电流(Ip):将制备好的海马脑片放置于灌流槽中,持续灌流95% O2和5% CO2饱和的ASCF,使脑片浸没于液面下。为了消除钾离子、钙离子、钠离子对记录电流的干扰,整个实验过程中,钳制电压设定为-60 mV,在这一电压下,电压依赖性Na+和Ca2+通道都处于失活状态下。另外,在电极内液中加入了TEACL,以阻断K+电流;在细胞外液中加入了BaCl2、CdCl2、TTX,来分别阻断K+电流、Ca2+电流和Na+电流,从而排除了其它通道电流的影响。在红外微分干涉相差显微镜下,移动电极至细胞上方负压吸引形成封接,再以负压吸破细胞膜,测定该细胞的电容,然后至少稳定5 min使电极内液与细胞内液充分交换,并将细胞钳制在-60 mV,当膜电流稳定时,换为含0.5 mM毒毛旋花子甙(strophanthin, Str)的灌流液,以全细胞膜片钳方式记录海马神经元的Ip (EPC-10,Heka Instruments),并以电流/电容求得该细胞Ip的电流密度。(3)5-羟色胺对Ip的影响:破膜后至少稳定5 min使得电极内液和细胞内液充分交换,首先灌流不同浓度的5-羟色胺(0.01-1 mM)3-4 min,待5-羟色胺引起的膜电流移动不再变化时(表示5-羟色胺作用已经稳定),再用含有相应浓度5-羟色胺和0.5 mM毒毛旋花子甙的ASCF灌流细胞,测定5-羟色胺干预后的Ip,并以电流/电容求得该细胞Ip的电流密度。(4)影响Ip的5-羟色胺受体鉴别:在特异性5-HT1AR与5-HT3R拮抗剂(WAY100635和ondasetron)存在的情况下,分别重复上述(2)和(3)的实验程序,以鉴别可能参与这一调节作用的5-羟色胺受体亚型。
     结果:(1)对照组Ip的电流密度为0.64±0.04 pA/pF,5-羟色胺0.1和1 mM可显著抑制Ip,使其电流密度分别降低至0.39±0.05和0.35±0.04 pA/pF (P<0.01);(2)在有无WAY100635(5-HT1AR拮抗剂,10μM)存在的情况下,5-羟色胺介导的Ip密度分别为0.38±0.07 pA/pF和0.39±0.05 pA/pF,无明显改变(P>0.05);(3)5-HT3R拮抗剂ondasetron 10μM可使5-羟色胺介导的Ip密度由0.39±0.05 pA/pF显著升高至0.59±0.05 pA/pF (P<0.05)。而WAY100635和ondasetron本身对Ip均无明显影响(P>0.05)。提示5-羟色胺介导的Ip抑制可被ondasetron阻断,而不能被WAY100635阻断;(4)同样,1-(3-Chlorophenyl) biguanide hydrochloride (m-CPBG,5-HT3R激动剂, 0.1 mM)能模拟5-羟色胺(0.1 mM)对Ip的抑制,使其电流密度由0.64±0.04 pA/pF显著降低至0.41±0.05 pA/pF (P<0.01)。这些结果均表明5-羟色胺介导的Ip抑制可能由5-HT3R介导,而与5-HT1AR无关。
     小结:5-羟色胺可通过激活5-HT3R浓度依赖性抑制大鼠海马CA1区神经元的Na+-K+泵电流,提示Na+-K+泵可能参与5-羟色胺对海马NMDA受体的调节,从而可能参与对学习记忆的调节。
     结论
     1 DHO可通过Src和MAPK信号转导通路浓度依赖性增强大鼠海马CA1区锥体神经元NMDA电流,5-羟色胺也可浓度依赖性增强海马NMDA电流,提示Na+-K+泵和5-羟色胺都可能参与海马NMDA受体对学习记忆的调节。
     2 5-羟色胺可通过激活5-HT3R浓度依赖性抑制大鼠海马CA1区神经元的Na+-K+泵电流,提示Na+-K+泵可能参与5-羟色胺对海马NMDA受体的调节,从而可能参与对学习记忆的调节。
5-HT, as a neurotransmitter or neuromodulator in the central nervous system, involves in multiple physiological processes and behaviors. The modulation disorder of the serotonergic system can result in depression, anxiety, posttraumatic stress disorder, et al., which are companied by cognitive disorder of learning and memory. The modulation of the serotonergic system affects LTP and long-term depression (LTD), the likely neurophysiologic derivates of learning and memory formation, which has been involved in the treatment of Alzheimer's disease. The Na+-K+ pump (also known as sodium pump or Na+, K+-ATPase) is a member of P-ATPase family and present in all animal cells. Na+-K+ pump is a membrane protein responsible for the active transport of sodium and potassium ions in the nervous system necessary to maintain the ionic gradient for neuronal excitability. Changes in Na+-K+ pump activity have been associated with several abnormalities, including epilepsy, hypertension and diabetes. Additionally, Na+-K+ pump might play a relevant role in activity-dependent synaptic plasticity, such as LTP. Evidence also suggests that LTP in the hippocampus is one important phenomenon for memory processing. Na+-K+ pump inhibition impaired learning and memory in Morris water maze and step-through passive avoidance tasks, showing the main role of this enzyme on learning and memory. The sufficient studies have demonstrated that the molecular mechanism of learning and memory in hippocampus is that the activation of NMDA receptor promotes the generation of LTP, synaptogenesis, synaptic plasticity, and neurogenesis, improving the formation of learning and memory. LTP and its relationship with NMDA receptors may be the most important discovery in neuroscience since the early 1970s. Furthermore, 5-HT and NMDA receptor both involve in the regulation of cognition and emotion, and the interaction is complicated. In the absence of Mg2+, 5-HT reduces NMDA-mediated depolarization; whereas in the presence of Mg2+, 5-HT increases NMDA-mediated depolarization. 5-HT inhibits NMDA receptor- mediated response in pyramidal cells of the rat medial prefrontal cortex, while facilitates the effects of excitatory amino acids and enhances NMDA receptor-mediated response on several motoneurone pools. Additionally, 5-HT and NMDA receptors also appeared to interact, which was particularly critical for the expression or retrieval of hippocampal-dependent long-term spatial memory. The serotonin system and NMDA receptors are both critically involved in the regulation of cognition and emotion under normal and pathological conditions. The Na+-K+ pump inhibition leads to hyperstimulation of Glu receptors, Glu accumulation, due to the decrease of the glutamate uptake and the increase of neurotransmitter release, as well as allosterically decreases [3H] dizocilpine, a non-competitive antagonist of the NMDA receptor, binding to NMDA receptor, and increases the expression of NMDA receptor subunits, localization and clustering in cerebral cortex and hippocampus. The Na+-K+ pump inhibition modulates NMDA receptor not only under normal conditions but also in the short-term period that follows the ischemic status. Moreover, 5-HT activates glial Na+/K+ pump activity in rat cerebral cortex and hippocampus, and inhibits it in kidney and T sensory neurons of the leech. Therefore, the interactive modulation of cognitive learning and memory mediated by Na+-K+ pump, 5-HT and NMDA is complicated. Furthermore, more and more attention was paid to the serotonin system involved in the regulation of cognitive function. However, the mechanisms await to be further explored. In the present study, we used the whole-cell patch-clamp technique to address the following questions: (1) whether Na+-K+ pump and 5-HT can modulate NMDA current in hippocampal CA1 pyramidal neurons; (2) whether there lies a possible modulatory effect of 5-HT on Na+-K+ pump current in hippocampal CA1 pyramidal neurons.
     Part 1 The regulation of Na+/K+ pump and 5-HT on NMDA current in hippocampal CA1 pyramidal neurons
     Objective: To observe the modulation of NMDA response by Na+/K+ pump and 5-HT in hippocampal CA1 pyramidal neurons and explore the underlying mechanisms.
     Methods:Transverse hippocampal slices (300μm thick) were obtained by cutting with a vibroslice MA752 in ice-cold ACSF well-saturated with 95% O2 and 5% CO2, and transferred to oxygenated ACSF at 30-32℃for 1-h incubation. Individual slice was transferred to a perfusion chamber and continuously superfused with oxygenated ACSF at a rate of 3 ml min-1 at room temperature (22-25℃). NMDA current was induced by NMDA (30μM), which was applied consecutively 3 times for 1.5 min each, being separated by superfusion periods of 10-15 min with drug-free ACSF. In the present experimental conditions, 30μM NMDA can evoke reproducible inward currents, which were stable, with no evidence of receptor desensitization. The 3-4 min application of DHO (10-7-10-3 M) respectively, finally we applied DHO accompanied by NMDA (30μM) for 1.5 min. The amplitude of the current induced by the superfusion application of NMDA in control was standardized (100%).
     Results: (1) DHO (10-5, 10-4, 10-3 M) significantly potentiated INM, which were respectively increased to 146.25±10.34%, 195.78±8.94%, and 154.75±14.18% contrast to the control INM as 100% (P<0.01 and 0.05). (2) Pretreatment of hippocampal CA1 pyromidal neurons with H89, a specific inhibitor of PKA, did not antagonize DHO-induced potentiation of INM, which was changed from 202.28±23.28% to 175.86±26% (P>0.05). Pretreatment of hippocampal CA1 pyromidal neurons with Stau, a specific inhibitor of PKC, did not antagonize DHO-induced potentiation of INM, which was changed from 187.46±27.57% to 178.32±34.3% (P>0.05). Extracellular H89 and Stau alone did not significantly affect the control INM (H89 101.7±11.3%, Stau 108.92±10.77%, P>0.05). (3) In the presence of extracellular PP2, a specific inhibitor of Src, DHO-induded potentiation of INM was significantly reduced from 173±25.66% to 106.8±5.92% (P<0.05). Pretreatment of hippocampal CA1 neurons with PD-98059, a specific inhibitor of MAPK, also partly antagonized DHO-induced potentiation of INM from 210±28.11% to 135.25±15.60% (P<0.05). Extracellular PP2 and PD-98059 alone did not significantly affect the control INM (PP2 94.4±12.58%, PD-98059 120.25±12.09%, P>0.05). (4) 5-HT (0.01, 0.1, 1 mM)-mediated INM is 109.4±4.96% (P>0.05), 146.4±13.48% and 161.83±13.06% (P<0.05) contrast to 100% of the first NMDA response of the control. These data showed that 5-HT (0.1, 1 mM) significantly potentiated the INM.
     Conclusion: DHO potentiates hippocampal NMDA response primarily via tyrosine kinase Src and MAPK, while 5-HT also potentiates hippocampal NMDA response, which discloses novel mechanisms for the function of Na+/K+ pump and 5-HT in learning and memory.
     Part 2 The regulation of 5-HT on the Na+/K+ pump current in rat hippocampal CA1 neurons
     Objective: 5-HT modulates learning and memory, and inhibition of Na+/K+ pump activity in rat hippocampal CA1 cells causes impairment of learning and memory and amnesia. The aim of this study was to investigate whether 5-HT can modulate hippocampal CA1 neurons Na+/K+ pump and then possibly involve in the modulation of learning and memory.
     Methods: Transverse 300-μm-thick hippocampal slices containing CA1 neurons were obtained by cutting with a vibroslice MA752 in ice-cold ACSF well-saturated with 95% O2 and 5% CO2 (PH 7.3-7.4), then they were pre-incubated in oxygenated ACSF at room temperature (30-32℃) for 1h. The hippocampal slice containing CA1 neurons was transferred to a submerged recording chamber and continuously superfused with oxygenated ACSF at a rate of 2 ml min-1 at room temperature (22-25℃). Whole-cell patch-clamp technique was performed to record the Na+-K+ pump current (Ip): the Na+-K+ pump exchanges 3 intracellular Na+ for 2 external K+ across the cell membrane during each active transport process. This excess positive charge movement generates a net outward current (Ip). With selected external and pipette solutions, membrane currents through K+ channel, Ca2+ channel, and Na+-Ca2+ exchanger were minimized. Under the experimental conditions, Ip was measured as the 0.5×10-3 M strophanthin (Str)-blocked current.
     Results: (1) The density of the control Ip was 0.64±0.04 pA/pF. 5-HT 0.1 and 1 mM could significantly inhibit Ip, which densities were 0.39±0.05 and 0.35±0.04 pA/pF respectively (P<0.01), demonstrating a dose-dependent inhibition of Ip in hippocampal CA1 neurons. (2) In the presence of WAY100635 (10μM), an antagonist of 5-HT1AR, 5-HT-induced inhibition of Ip did not change, which densities were 0.39±0.05 pA/pF and 0.38±0.07 pA/pF (P>0.05). (3) In the presence of ondasetron (10μM), an antagonist of 5-HT3R, 5-HT-induced inhibition of Ip was significantly recovered from 0.39±0.05 pA/pF to 0.59±0.05 pA/pF (P<0.05). These data showed that 5-HT-induced inhibition of Ip was antagonized by ondasetron not by WAY100635. (4) 1-(3-Chlorophenyl) biguanide hydrochloride (m-CPBG) (0.1 mM), a 5-HT3R specific agonist, mimicked the effect of 5-HT (0.1 mM) on Ip, which was decreased from 0.64±0.04 pA/pF to 0.41±0.05 pA/pF (P<0.01), suggesting that 5-HT-induced inhibition of Ip was mediated by 5-HT3R.
     Conclusion: 5-HT inhibits neuronal Na+/K+ pump activity via 5-HT3R in hippocampal CA1 neurons, which suggests that Na+/K+ pump may involve in 5-HT-mediated modulation of NMDA current, then modulating learning and memory performance.
     SUMMARY
     1 DHO potentiates hippocampal NMDA response primarily via tyrosine kinase Src and MAPK, while 5-HT also potentiates hippocampal NMDA response, which discloses novel mechanisms for the function of Na+/K+ pump and 5-HT in learning and memory.
     2 5-HT inhibits neuronal Na+/K+ pump activity via 5-HT3R in hippocampal CA1 neurons, which suggests that Na+/K+ pump may involve in 5-HT-mediated modulation of NMDA current, then modulating learning and memory performance.
引文
1 Collingridge GL, Kehl SJ, McLennan H. Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J Physiol, 1983, 334(33-46
    2 D'Souza SW, McConnell SE, Slater P, et al. Glycine site of the excitatory amino acid N-methyl-D-aspartate receptor in neonatal and adult brain. Arch Dis Child, 1993, 69(2): 212-215
    3 Nacher J, McEwen BS. The role of N-methyl-D-asparate receptors in neurogenesis. Hippocampus, 2006, 16(3): 267-270
    4 Tsai SJ. Central N-acetyl aspartylglutamate deficit: a possible pathogenesis of schizophrenia. Med Sci Monit, 2005, 11(9): HY39-45
    5 Lindsley CW, Shipe WD, Wolkenberg SE, et al. Progress towards validating the NMDA receptor hypofunction hypothesis of schizophrenia. Curr Top Med Chem, 2006, 6(8): 771-785
    6 Cotman CW, Geddes JW, Bridges RJ, et al. N-methyl-D-aspartate receptors and Alzheimer's disease. Neurobiol Aging, 1989, 10(5): 603-605; discussion 618-620
    7 Greenamyre JT, Penney JB, D'Amato CJ, et al. Dementia of the Alzheimer's type: changes in hippocampal L-[3H]glutamate binding. J Neurochem, 1987, 48(2): 543-551
    8 Meldrum B, Garthwaite J. Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol Sci, 1990, 11(9): 379-387
    9 Greenamyre JT. Glutamate-dopamine interactions in the basal ganglia: relationship to Parkinson's disease. J Neural Transm Gen Sect, 1993, 91(2-3): 255-269
    10 Beal MF. Mechanisms of excitotoxicity in neurologic diseases. Faseb J, 1992, 6(15): 3338-3344
    11 Nakamichi N, Oikawa H, Kambe Y, et al. Relevant modulation by ferrous ions of N-methyl-D-aspartate receptors in ischemic brain injuries. Curr Neurovasc Res, 2004, 1(5): 429-440
    12 Collingridge GL, Bliss TV. Memories of NMDA receptors and LTP. Trends Neurosci, 1995, 18(2): 54-56
    13 Morris RG, Anderson E, Lynch GS, et al. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D- aspartate receptor antagonist, AP5. Nature, 1986, 319(6056): 774-776
    14 Sakimura K, Kutsuwada T, Ito I, et al. Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor epsilon 1 subunit. Nature, 1995, 373(6510): 151-155
    15 Tsien JZ, Huerta PT, Tonegawa S. The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell, 1996, 87(7): 1327-1338
    16 Zhang XL, Sullivan JA, Moskal JR, et al. A NMDA receptor glycine site partial agonist, GLYX-13, simultaneously enhances LTP and reduces LTD at Schaffer collateral-CA1 synapses in hippocampus. Neuropharmacology, 2008, 55(7): 1238-1250
    17 Carroll RC, Beattie EC, von Zastrow M, et al. Role of AMPA receptor endocytosis in synaptic plasticity. Nat Rev Neurosci, 2001, 2(5): 315-324
    18 Mobasheri A, Avila J, Cozar-Castellano I, et al. Na+, K+-ATPase isozyme diversity; comparative biochemistry and physiological implications of novel functional interactions. Biosci Rep, 2000, 20(2): 51-91
    19 Brunelli M, Garcia-Gil M, Mozzachiodi R, et al. Neurobiological principles of learning and memory. Arch Ital Biol, 1997, 135(1): 15-36
    20 Wyse AT, Bavaresco CS, Reis EA, et al. Training in inhibitory avoidance causes a reduction of Na+,K+-ATPase activity in rat hippocampus. Physiol Behav, 2004, 80(4): 475-479
    21 Glushchenko TS, Izvarina NL. Na+,K(+)-ATPase activity in neurons and glial cells of the olfactory cortex of the rat brain during the development of long-term potentiation. Neurosci Behav Physiol, 1997, 27(1): 49-52
    22 Hattori N, Kitagawa K, Higashida T, et al. CI-ATPase and Na+/K(+)-ATPase activities in Alzheimer's disease brains. Neurosci Lett, 1998, 254(3): 141-144
    23 Moseley AE, Williams MT, Schaefer TL, et al. Deficiency in Na,K-ATPase alpha isoform genes alters spatial learning, motor activity, and anxiety in mice. J Neurosci, 2007, 27(3): 616-626
    24 Sato T, Tanaka K, Ohnishi Y, et al. Effects of steroid hormones on (Na+, K+)-ATPase activity inhibition-induced amnesia on the step-through passive avoidance task in gonadectomized mice. Pharmacol Res, 2004, 49(2): 151-159
    25 Zhan H, Tada T, Nakazato F, et al. Spatial learning transiently disturbed by intraventricular administration of ouabain. Neurol Res, 2004, 26(1): 35-40
    26 Rogers LJ, Oettinger R, Szer J, et al. Separate chemical inhibitors of long-term and short-term memory: contrasting effects of cycloheximide, ouabain and ethacrynic acid on various learning tasks in chickens. Proc R Soc Lond B Biol Sci, 1977, 196(1123): 171-195
    27 Bell GA, Gibbs ME. Unilateral storage of monocular engram in day-old chick. Brain Res, 1977, 124(2): 263-270
    28 Lees GJ, Leong W. The sodium-potassium ATPase inhibitor ouabain is neurotoxic in the rat substantia nigra and striatum. Neurosci Lett, 1995, 188(2): 113-116
    29 Cousin MA, Nicholls DG, Pocock JM. Modulation of ion gradients and glutamate release in cultured cerebellar granule cells by ouabain. J Neurochem, 1995, 64(5): 2097-2104
    30 Stelmashook EV, Weih M, Zorov D, et al. Short-term block of Na+/K+-ATPase in neuro-glial cell cultures of cerebellum induces glutamate dependent damage of granule cells. FEBS Lett, 1999, 456(1): 41-44
    31 Volterra A, Trotti D, Tromba C, et al. Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocytes. J Neurosci, 1994, 14(5 Pt 1): 2924-2932
    32 Bersier MG, Miksztowicz V, Pena C, et al. Modulation of aspartate release by ascorbic acid and endobain E, an endogenous Na+, K+ -ATPaseinhibitor. Neurochem Res, 2005, 30(4): 479-486
    33 Bersier MG, Pena CRodriguez de Lores Arnaiz G. The expression of NMDA receptor subunits in cerebral cortex and hippocampus is differentially increased by administration of endobain E, a Na+, K+-ATPase inhibitor. Neurochem Res, 2008, 33(1): 66-72
    34 Reines A, Pena CRodriguez de Lores Arnaiz G. [3H]dizocilpine binding to N-methyl-D-aspartate (NMDA) receptor is modulated by an endogenous Na+, K+-ATPase inhibitor. Comparison with ouabain. Neurochem Int, 2001, 39(4): 301-310
    35 Reines A, Pena CRodriguez de Lores Arnaiz G. Allosteric modulation of [3H]dizocilpine binding to N-methyl-D-aspartate receptor by an endogenous Na+, K+-ATPase inhibitor: dependence on receptor activation. Brain Res, 2004, 996(1): 117-125
    36 Reines A, Zarate S, Carmona C, et al. Endobain E, a brain endogenous factor, is present and modulates NMDA receptor in ischemic conditions. Life Sci, 2005, 78(3): 245-252
    37 Holohean AM, Hackman JC. Mechanisms intrinsic to 5-HT2B receptor-induced potentiation of NMDA receptor responses in frog motoneurones. Br J Pharmacol, 2004, 143(3): 351-360
    38 Yuen EY, Jiang Q, Chen P, et al. Serotonin 5-HT1A receptors regulate NMDA receptor channels through a microtubule-dependent mechanism. J Neurosci, 2005, 25(23): 5488-5501
    39 Liang X, Arvanov VL, Wang RY. Inhibition of NMDA-receptor mediated response in the rat medial prefrontal cortical pyramidal cells by the 5-HT3 receptor agonist SR 57227A and 5-HT: intracellular studies. Synapse, 1998, 29(3): 257-268
    40 McCall RB, Aghajanian GK. Serotonergic facilitation of facial motoneuron excitation. Brain Res, 1979, 169(1): 11-27
    41 White SR, Neuman RS. Facilitation of spinal motoneurone excitability by 5-hydroxytryptamine and noradrenaline. Brain Res, 1980, 188(1): 119-127
    42 Madden CJ, Morrison SF. Serotonin potentiates sympathetic responses evoked by spinal NMDA. J Physiol, 2006, 577(Pt 2): 525-537
    43 Li HF, Mochly-Rosen D, Kendig JJ. Protein kinase Cgamma mediates ethanol withdrawal hyper-responsiveness of NMDA receptor currents in spinal cord motor neurons. Br J Pharmacol, 2005, 144(3): 301-307
    44 Wirkner K, Koles L, Thummler S, et al. Interaction between P2Y and NMDA receptors in layer V pyramidal neurons of the rat prefrontal cortex. Neuropharmacology, 2002, 42(4): 476-488
    45 Wang XQ, Yu SP. Novel regulation of Na, K-ATPase by Src tyrosine kinases in cortical neurons. J Neurochem, 2005, 93(6): 1515-1523
    46 Wirkner K, Gunther A, Weber M, et al. Modulation of NMDA receptor current in layer V pyramidal neurons of the rat prefrontal cortex by P2Y receptor activation. Cereb Cortex, 2007, 17(3): 621-631
    47 Lichtstein D, Minc D, Bourrit A, et al. Evidence for the presence of 'ouabain like' compound in human cerebrospinal fluid. Brain Res, 1985, 325(1-2): 13-19
    48 Blank T, Nijholt I, Teichert U, et al. The phosphoprotein DARPP-32 mediates cAMP-dependent potentiation of striatal N-methyl-D-aspartate responses. Proc Natl Acad Sci U S A, 1997, 94(26): 14859-14864
    49 Lu WY, Xiong ZG, Lei S, et al. G-protein-coupled receptors act via protein kinase C and Src to regulate NMDA receptors. Nat Neurosci, 1999, 2(4): 331-338
    50 Xiong ZG, Pelkey KA, Lu WY, et al. Src potentiation of NMDA receptors in hippocampal and spinal neurons is not mediated by reducing zinc inhibition. J Neurosci, 1999, 19(21): RC37
    51 Lei G, Xue S, Chery N, et al. Gain control of N-methyl-D-aspartate receptor activity by receptor-like protein tyrosine phosphatase alpha. Embo J, 2002, 21(12): 2977-2989
    52 Kim HW, Roh DH, Yoon SY, et al. Activation of the spinal sigma-1 receptor enhances NMDA-induced pain via PKC- and PKA-dependent phosphorylation of the NR1 subunit in mice. Br J Pharmacol, 2008,154(5): 1125-1134
    53 Lieberman DN, Mody I. Regulation of NMDA channel function by endogenous Ca(2+)-dependent phosphatase. Nature, 1994, 369(6477): 235-239
    54 Rycroft BK, Gibb AJ. Inhibitory interactions of calcineurin (phosphatase
    2B) and calmodulin on rat hippocampal NMDA receptors. Neuropharmacology, 2004, 47(4): 505-514
    55 Fong DK, Rao A, Crump FT, et al. Rapid synaptic remodeling by protein kinase C: reciprocal translocation of NMDA receptors and calcium/ calmodulin-dependent kinase II. J Neurosci, 2002, 22(6): 2153-2164
    56 Frey U, Huang YY, Kandel ER. Effects of cAMP simulate a late stage of LTP in hippocampal CA1 neurons. Science, 1993, 260(5114): 1661-1664
    57 Lu YM, Roder JC, Davidow J, et al. Src activation in the induction of long-term potentiation in CA1 hippocampal neurons. Science, 1998, 279(5355): 1363-1367
    58 Tian J, Gong X, Xie Z. Signal-transducing function of Na+-K+-ATPase is essential for ouabain's effect on [Ca2+]i in rat cardiac myocytes. Am J Physiol Heart Circ Physiol, 2001, 281(5): H1899-1907
    59 Haas M, Askari AXie Z. Involvement of Src and epidermal growth factor receptor in the signal-transducing function of Na+/K+-ATPase. J Biol Chem, 2000, 275(36): 27832-27837
    60 Hallett PJ, Spoelgen R, Hyman BT, et al. Dopamine D1 activation potentiates striatal NMDA receptors by tyrosine phosphorylation- dependent subunit trafficking. J Neurosci, 2006, 26(17): 4690-4700
    61 Boldyrev A, Bulygina E, Gerassimova O, et al. Functional relationship between Na/K-ATPase and NMDA-receptors in rat cerebellum granule cells. Biochemistry (Mosc), 2004, 69(4): 429-434
    62 Chauhan NB, Lee JM, Siegel GJ. Na,K-ATPase mRNA levels and plaque load in Alzheimer's disease. J Mol Neurosci, 1997, 9(3): 151-166
    63 Rose AM, Mellett BJ, Valdes R, Jr., et al. Alpha 2 isoform of the Na,K-adenosine triphosphatase is reduced in temporal cortex of bipolarindividuals. Biol Psychiatry, 1998, 44(9): 892-897
    64 Manzerra P, Behrens MM, Canzoniero LM, et al. Zinc induces a Src family kinase-mediated up-regulation of NMDA receptor activity and excitotoxicity. Proc Natl Acad Sci U S A, 2001, 98(20): 11055-11061
    65 Cerne R, Rusin KI, Randic M. Enhancement of the N-methyl-D-aspartate response in spinal dorsal horn neurons by cAMP-dependent protein kinase. Neurosci Lett, 1993, 161(2): 124-128
    66 Raman IM, Tong G, Jahr CE. Beta-adrenergic regulation of synaptic NMDA receptors by cAMP-dependent protein kinase. Neuron, 1996, 16(2): 415-421
    67 Snyder GL, Fienberg AA, Huganir RL, et al. A dopamine/D1 receptor/protein kinase A/dopamine- and cAMP-regulated phosphoprotein (Mr 32 kDa)/protein phosphatase-1 pathway regulates dephosphorylation of the NMDA receptor. J Neurosci, 1998, 18(24): 10297-10303
    68 Skeberdis VA, Chevaleyre V, Lau CG, et al. Protein kinase A regulates calcium permeability of NMDA receptors. Nat Neurosci, 2006, 9(4): 501-510
    69 Tang B, Ji Y, Traub RJ. Estrogen alters spinal NMDA receptor activity via a PKA signaling pathway in a visceral pain model in the rat. Pain, 2008, 137(3): 540-549
    70 Abel T, Nguyen PV, Barad M, et al. Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory. Cell, 1997, 88(5): 615-626
    71 Nguyen PV, Woo NH. Regulation of hippocampal synaptic plasticity by cyclic AMP-dependent protein kinases. Prog Neurobiol, 2003, 71(6): 401-437
    72 Gelinas JN, Tenorio G, Lemon N, et al. Beta-adrenergic receptor activation during distinct patterns of stimulation critically modulates the PKA-dependence of LTP in the mouse hippocampus. Learn Mem, 2008, 15(5): 281-289
    73 Wallenstein GV, Vago DR, Walberer AM. Time-dependent involvement of PKA/PKC in contextual memory consolidation. Behav Brain Res, 2002, 133(2): 159-164
    74 Otmakhova NA, Otmakhov N, Mortenson LH, et al. Inhibition of the cAMP pathway decreases early long-term potentiation at CA1 hippocampal synapses. J Neurosci, 2000, 20(12): 4446-4451
    75 Huang YY, Kandel ER. Recruitment of long-lasting and protein kinase A-dependent long-term potentiation in the CA1 region of hippocampus requires repeated tetanization. Learn Mem, 1994, 1(1): 74-82
    76 Qi M, Zhuo M, Skalhegg BS, et al. Impaired hippocampal plasticity in mice lacking the Cbeta1 catalytic subunit of cAMP-dependent protein kinase. Proc Natl Acad Sci U S A, 1996, 93(4): 1571-1576
    77 Kajimura S, Seale AP, Hirano T, et al. Physiological concentrations of ouabain rapidly inhibit prolactin release from the tilapia pituitary. Gen Comp Endocrinol, 2005, 143(3): 240-250
    78 Zheng X, Zhang L, Wang AP, et al. Protein kinase C potentiation of N-methyl-D-aspartate receptor activity is not mediated by phosphorylation of N-methyl-D-aspartate receptor subunits. Proc Natl Acad Sci U S A, 1999, 96(26): 15262-15267
    79 Lan JY, Skeberdis VA, Jover T, et al. Protein kinase C modulates NMDA receptor trafficking and gating. Nat Neurosci, 2001, 4(4): 382-390
    80 Szabo ST, Machado-Vieira R, Yuan P, et al. Glutamate receptors as targets of protein kinase C in the pathophysiology and treatment of animal models of mania. Neuropharmacology, 2009, 56(1): 47-55
    81 Tyszkiewicz JP, Gu Z, Wang X, et al. Group II metabotropic glutamate receptors enhance NMDA receptor currents via a protein kinase C-dependent mechanism in pyramidal neurones of rat prefrontal cortex. J Physiol, 2004, 554(Pt 3): 765-777
    82 Wang JH, Feng DP. Postsynaptic protein kinase C essential to induction and maintenance of long-term potentiation in the hippocampal CA1 region. Proc Natl Acad Sci U S A, 1992, 89(7): 2576-2580
    83 Leahy JC, Luo Y, Kent CS, et al. Demonstration of presynaptic protein kinase C activation following long-term potentiation in rat hippocampal slices. Neuroscience, 1993, 52(3): 563-574
    84 Klann E, Chen SJ, Sweatt JD. Persistent protein kinase activation in the maintenance phase of long-term potentiation. J Biol Chem, 1991, 266(36): 24253-24256
    85 Sacktor TC, Osten P, Valsamis H, et al. Persistent activation of the zeta isoform of protein kinase C in the maintenance of long-term potentiation. Proc Natl Acad Sci U S A, 1993, 90(18): 8342-8346
    86 Alkon DL, Epstein H, Kuzirian A, et al. Protein synthesis required for long-term memory is induced by PKC activation on days before associative learning. Proc Natl Acad Sci U S A, 2005, 102(45): 16432-16437
    87 Crary JF, Shao CY, Mirra SS, et al. Atypical protein kinase C in neurodegenerative disease I: PKMzeta aggregates with limbic neurofibrillary tangles and AMPA receptors in Alzheimer disease. J Neuropathol Exp Neurol, 2006, 65(4): 319-326
    88 Mathis C, Lehmann J, Ungerer A. The selective protein kinase C inhibitor, NPC 15437, induces specific deficits in memory retention in mice. Eur J Pharmacol, 1992, 220(1): 107-110
    89 Serrano PA, Beniston DS, Oxonian MG, et al. Differential effects of protein kinase inhibitors and activators on memory formation in the 2-day-old chick. Behav Neural Biol, 1994, 61(1): 60-72
    90 Zhao WQ, Sedman GL, Gibbs ME, et al. Effect of PKC inhibitors and activators on memory. Behav Brain Res, 1994, 60(2): 151-160
    91 Paylor R, Rudy JW, Wehner JM. Acute phorbol ester treatment improves spatial learning performance in rats. Behav Brain Res, 1991, 45(2): 189-193
    92 Yang HC, Lee EH. Protein kinase C activation facilitates memory retention in rats. Chin J Physiol, 1993, 36(2): 115-123
    93 Aydemir-Koksoy A, Abramowitz J, Allen JC. Ouabain-induced signalingand vascular smooth muscle cell proliferation. J Biol Chem, 2001, 276(49): 46605-46611
    94 Haas M, Wang H, Tian J, et al. Src-mediated inter-receptor cross-talk between the Na+/K+-ATPase and the epidermal growth factor receptor relays the signal from ouabain to mitogen-activated protein kinases. J Biol Chem, 2002, 277(21): 18694-18702
    95 Liu L, Mohammadi K, Aynafshar B, et al. Role of caveolae in signal-transducing function of cardiac Na+/K+-ATPase. Am J Physiol Cell Physiol, 2003, 284(6): C1550-1560
    96 Liu J, Tian J, Haas M, et al. Ouabain interaction with cardiac Na+/K+-ATPase initiates signal cascades independent of changes in intracellular Na+ and Ca2+ concentrations. J Biol Chem, 2000, 275(36): 27838-27844
    97 Ali DW, Salter MW. NMDA receptor regulation by Src kinase signalling in excitatory synaptic transmission and plasticity. Curr Opin Neurobiol, 2001, 11(3): 336-342
    98 Kohr G, Seeburg PH. Subtype-specific regulation of recombinant NMDA receptor-channels by protein tyrosine kinases of the src family. J Physiol, 1996, 492 ( Pt 2)(445-452
    99 Zheng F, Gingrich MB, Traynelis SF, et al. Tyrosine kinase potentiates NMDA receptor currents by reducing tonic zinc inhibition. Nat Neurosci, 1998, 1(3): 185-191
    100 Kim TY, Hwang JJ, Yun SH, et al. Augmentation by zinc of NMDA receptor-mediated synaptic responses in CA1 of rat hippocampal slices: mediation by Src family tyrosine kinases. Synapse, 2002, 46(2): 49-56
    101 Rostas JA, Brent VA, Voss K, et al. Enhanced tyrosine phosphorylation of the 2B subunit of the N-methyl-D-aspartate receptor in long-term potentiation. Proc Natl Acad Sci U S A, 1996, 93(19): 10452-10456
    102 Menegoz M, Lau LF, Herve D, et al. Tyrosine phosphorylation of NMDA receptor in rat striatum: effects of 6-OH-dopamine lesions. Neuroreport, 1995, 7(1): 125-128
    103 Oh JD, Russell DS, Vaughan CL, et al. Enhanced tyrosine phosphorylation of striatal NMDA receptor subunits: effect of dopaminergic denervation and L-DOPA administration. Brain Res, 1998, 813(1): 150-159
    104 English JD, Sweatt JD. Activation of p42 mitogen-activated protein kinase in hippocampal long term potentiation. J Biol Chem, 1996, 271(40): 24329-24332
    105 Coogan AN, O'Leary DM, O'Connor JJ. P42/44 MAP kinase inhibitor PD98059 attenuates multiple forms of synaptic plasticity in rat dentate gyrus in vitro. J Neurophysiol, 1999, 81(1): 103-110
    106 Winder DG, Martin KC, Muzzio IA, et al. ERK plays a regulatory role in induction of LTP by theta frequency stimulation and its modulation by beta-adrenergic receptors. Neuron, 1999, 24(3): 715-726
    107 Morozov A, Muzzio IA, Bourtchouladze R, et al. Rap1 couples cAMP signaling to a distinct pool of p42/44MAPK regulating excitability, synaptic plasticity, learning, and memory. Neuron, 2003, 39(2): 309-325
    108 Eckel-Mahan KL, Phan T, Han S, et al. Circadian oscillation of hippocampal MAPK activity and cAmp: implications for memory persistence. Nat Neurosci, 2008, 11(9): 1074-1082
    109 Rosenkranz JA, Frick A, Johnston D. Kinase-dependent modification of dendritic excitability after long-term potentiation. J Physiol, 2009, 587(Pt 1): 115-125
    110 Atkins CM, Selcher JC, Petraitis JJ, et al. The MAPK cascade is required for mammalian associative learning. Nat Neurosci, 1998, 1(7): 602-609
    111 Blum S, Moore AN, Adams F, et al. A mitogen-activated protein kinase cascade in the CA1/CA2 subfield of the dorsal hippocampus is essential for long-term spatial memory. J Neurosci, 1999, 19(9): 3535-3544
    112 Shanley LJ, Irving AJ, Harvey J. Leptin enhances NMDA receptor function and modulates hippocampal synaptic plasticity. J Neurosci, 2001, 21(24): RC186
    113 Irving AJ, Wallace L, Durakoglugil D, et al. Leptin enhancesNR2B-mediated N-methyl-D-aspartate responses via a mitogen-activated protein kinase-dependent process in cerebellar granule cells. Neuroscience, 2006, 138(4): 1137-1148
    114 McKhann G, Drachman D, Folstein M, et al. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology, 1984, 34(7): 939-944
    1 Villalon CM, Centurion D, Bravo G, et al. Further pharmacological analysis of the orphan 5-HT receptors mediating feline vasodepressor responses: close resemblance to the 5-HT7, receptor. Naunyn Schmiedebergs Arch Pharmacol, 2000, 361(6): 665-671
    2 Rausch JL, Johnson ME, Corley KM, et al. Depressed patients have higher body temperature: 5-HT transporter long promoter region effects. Neuropsychobiology, 2003, 47(3): 120-127
    3 Morrow JD, Vikraman S, Imeri L, et al. Effects of serotonergic activation by 5-hydroxytryptophan on sleep and body temperature of C57BL/6J and interleukin-6-deficient mice are dose and time related. Sleep, 2008, 31(1): 21-33
    4 Bagdy G, Kecskemeti V, Riba P, et al. Serotonin and epilepsy. J Neurochem, 2007, 100(4): 857-873
    5 Mansilla-Olivares A. [Signal transduction, pillar of the neurobiological integration of memory. An alternative view to the cholinergic hypothesis]. Gac Med Mex, 2005, 141(6): 513-526
    6 Huang YY, Kandel ER. 5-Hydroxytryptamine induces a protein kinase A/mitogen-activated protein kinase-mediated and macromolecular synthesis-dependent late phase of long-term potentiation in the amygdala. J Neurosci, 2007, 27(12): 3111-3119
    7 Inaba M, Maruyama T, Yoshimura Y, et al. Facilitation of low-frequency stimulation-induced long-term potentiation by endogenous noradrenaline and serotonin in developing rat visual cortex. Neurosci Res, 2009, 64(2): 191-198
    8 Nitsche MA, Kuo MF, Karrasch R, et al. Serotonin affects transcranial direct current-induced neuroplasticity in humans. Biol Psychiatry, 2009, 66(5): 503-508
    9 Bliss TV, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature, 1993, 361(6407): 31-39
    10 Sarnyai Z, Sibille EL, Pavlides C, et al. Impaired hippocampal-dependent learning and functional abnormalities in the hippocampus in mice lacking serotonin(1A) receptors. Proc Natl Acad Sci U S A, 2000, 97(26): 14731-14736
    11 Sanberg CD, Jones FL, Do VH, et al. 5-HT1a receptor antagonists block perforant path-dentate LTP induced in novel, but not familiar, environments. Learn Mem, 2006, 13(1): 52-62
    12 Carli M, Balducci C, Samanin R. Low doses of 8-OH-DPAT prevent the impairment of spatial learning caused by intrahippocampal scopolamine through 5-HT(1A) receptors in the dorsal raphe. Br J Pharmacol, 2000, 131(2): 375-381
    13 Meeter M, Talamini L, Schmitt JA, et al. Effects of 5-HT on memory and the hippocampus: model and data. Neuropsychopharmacology, 2006, 31(4): 712-720
    14 Staubli U, Xu FB. Effects of 5-HT3 receptor antagonism on hippocampal theta rhythm, memory, and LTP induction in the freely moving rat. J Neurosci, 1995, 15(3 Pt 2): 2445-2452
    15 Meneses A. A pharmacological analysis of an associative learning task: 5-HT(1) to 5-HT(7) receptor subtypes function on a pavlovian/instrumental autoshaped memory. Learn Mem, 2003, 10(5): 363-372
    16 Zhan H, Tada T, Nakazato F, et al. Spatial learning transiently disturbed by intraventricular administration of ouabain. Neurol Res, 2004, 26(1): 35-40
    17 Levkovitz Y, Arnest G, Mendlovic S, et al. The effect of Ondansetron on memory in schizophrenic patients. Brain Res Bull, 2005, 65(4): 291-295
    18 Dysken M, Kuskowski M, Love S. Ondansetron in the treatment of cognitive decline in Alzheimer dementia. Am J Geriatr Psychiatry, 2002, 10(2): 212-215
    19 Moseley AE, Williams MT, Schaefer TL, et al. Deficiency in Na,K-ATPase alpha isoform genes alters spatial learning, motor activity, and anxiety in mice. J Neurosci, 2007, 27(3): 616-626
    20 Sato T, Tanaka K, Ohnishi Y, et al. Effects of steroid hormones on (Na+, K+)-ATPase activity inhibition-induced amnesia on the step-through passive avoidance task in gonadectomized mice. Pharmacol Res, 2004, 49(2): 151-159
    21 Rogers LJ, Oettinger R, Szer J, et al. Separate chemical inhibitors of long-term and short-term memory: contrasting effects of cycloheximide, ouabain and ethacrynic acid on various learning tasks in chickens. Proc R Soc Lond B Biol Sci, 1977, 196(1123): 171-195
    22 Bell GA, Gibbs ME. Unilateral storage of monocular engram in day-old chick. Brain Res, 1977, 124(2): 263-270
    23 Pena-Rangel MT, Mercado R, Hernandez-Rodriguez J. Regulation of glial Na+/K+-ATPase by serotonin: identification of participating receptors. Neurochem Res, 1999, 24(5): 643-649
    24 Mercado R, Hernandez J. Regulatory role of a neurotransmitter (5-HT) on glial Na+/K(+)-ATPase in the rat brain. Neurochem Int, 1992, 21(1): 119-127
    25 Wang XQ, Yu SP. Novel regulation of Na, K-ATPase by Src tyrosine kinases in cortical neurons. J Neurochem, 2005, 93(6): 1515-1523
    26 Shen KZ, Johnson SW. Sodium pump evokes high density pump currents in rat midbrain dopamine neurons. J Physiol, 1998, 512 ( Pt 2)(449-457
    27 Catarsi S, Brunelli M. Serotonin depresses the after- hyperpolarization through the inhibition of the Na+/K+ electrogenic pump in T sensory neurones of the leech. J Exp Biol, 1991, 155(261-273
    28 Stepp LR, Novakoski MA. Effect of 5-hydroxytryptamine on sodium- and potassium-dependent adenosine triphosphatase and its reactivity toward ouabain. Arch Biochem Biophys, 1997, 337(1): 43-53
    29 Burnet PWJ, Eastwood SL, Lacey K, et al. The distribution of 5-HT1A and 5-HT2A receptor mRNA in human brain. Brain Research, 1995,676(157-168
    30 Parker RM, Barnes JM, Ge J, et al. Autoradiographic distribution of [3H]-(S)-zacopride-labelled 5-HT3 receptors in human brain. Journal of the Neurological Sciences, 1996, 144(199-127
    31 Tecott LH, Maricq AV, Julius D. Nervous system distribution of the serotonin 5-HT3 receptor mRNA. Proc Natl Acad Sci U S A, 1993, 90(4): 1430-1434
    32 Novitskaia NA, Aksentsev SL, Lyskova TI, et al. [Sites responsible for stimulation of brain Na,K-ATPase by serotonin]. Biokhimiia, 1981, 46(11): 1981-1983
    33 Normann C, Clark K. Selective modulation of Ca(2+) influx pathways by 5-HT regulates synaptic long-term plasticity in the hippocampus. Brain Res, 2005, 1037(1-2): 187-193
    34 Corradetti R, Ballerini L, Pugliese AM, et al. Serotonin blocks the long-term potentiation induced by primed burst stimulation in the CA1 region of rat hippocampal slices. Neuroscience, 1992, 46(3): 511-518
    35 Meltzer CC, Smith G, DeKosky ST, et al. Serotonin in aging, late-life depression, and Alzheimer's disease: the emerging role of functional imaging. Neuropsychopharmacology, 1998, 18(6): 407-430
    36 Luna-Munguia H, Manuel-Apolinar L, Rocha L, et al. 5-HT1A receptor expression during memory formation. Psychopharmacology (Berl), 2005, 181(2): 309-318
    37 Edagawa Y, Saito H, Abe K. 5-HT1A receptor-mediated inhibition of long-term potentiation in rat visual cortex. Eur J Pharmacol, 1998, 349(2-3): 221-224
    38 Kojima T, Matsumoto M, Togashi H, et al. Fluvoxamine suppresses the long-term potentiation in the hippocampal CA1 field of anesthetized rats: an effect mediated via 5-HT1A receptors. Brain Res, 2003, 959(1): 165-168
    39 Brunelli M, Garcia-Gil M, Mozzachiodi R, et al. Neurobiological principles of learning and memory. Arch Ital Biol, 1997, 135(1): 15-36
    40 Wyse AT, Bavaresco CS, Reis EA, et al. Training in inhibitory avoidance causes a reduction of Na+,K+-ATPase activity in rat hippocampus. Physiol Behav, 2004, 80(4): 475-479
    41 Glushchenko TS, Izvarina NL. Na+,K(+)-ATPase activity in neurons and glial cells of the olfactory cortex of the rat brain during the development of long-term potentiation. Neurosci Behav Physiol, 1997, 27(1): 49-52
    42 Hattori N, Kitagawa K, Higashida T, et al. CI-ATPase and Na+/K+-ATPase activities in Alzheimer's disease brains. Neurosci Lett, 1998, 254(3): 141-144
    43 Ohashi S, Matsumoto M, Togashi H, et al. The serotonergic modulation of synaptic plasticity in the rat hippocampo-medial prefrontal cortex pathway. Neuroscience Letters, 2003, 342(179-182
    44 Reich CG, Mason SE, Alger BE. Novel form of LTD induced by transient, partial inhibition of the Na, K-pump in rat hippocampal CA1 cells. J Neurophysiol, 2004, 91(1): 239-247
    1 1 Skou JC. The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim. Biophys. Acta, 1957, 23: 394–401 Blaustein MP. Physiological effects of endogenous ouabain: control of intracellular Ca2+ stores and cell responsiveness. Am J Physiol Cell Physiol, 1993, 264: C1367–C1387
    2 Noble D. Mechanism of action of therapeutic levels of cardiac glycosides. Cardiovasc Res, 1980, 14: 495–514
    3 Wang Y, Wymore R, Gao J, et al.αandβadrenergic are coupled to different Na+/K+ pump isoforms in guinea pig ventricular myocytes. Biophys J, 1998, 74: A161
    4 Yin JX, Wang YL, Li Q, et al. Stimulative effect of low concentration dihydroouabain on Na+/K+ pump current in guinea pig ventricular myocytes. Chin Heart J, 2003, 15(4): 300–302
    5 Haas M, Askari A, and Xie Z. Involvement of Src and epidermal growth factor (EGF) receptor in the signal-transducing function of Na+/K+-ATPase. J. Biol. Chem, 2000, 275: 27832–27837
    6 Haas M, Wang H, Tian J, et al. Src-mediated inter-receptor cross-talk between the Na+/K+-ATPase and the EGF receptor relays the signal from ouabain to mitogen-activated protein kinases. J Biol Chem, 2002, 277: 18694–18702
    7 Yuan ZK, Cai T, Tian J, et al. Na+/K+-ATPase tethers phospholipase C and IP3 receptor into a calcium-regulatory complex, MBC, 2005, 16 (9): 4034– 4045
    8 Liu J, Tian J, Haas M, et al. Ouabain interaction with cardiac Na+/K+- ATPase initiates signal cascades independent of changes in intracellular Na+ and Ca2+. J Biol Chem, 2000, 275: 27838–27844
    9 Xie Z, Kometiani P, Liu J, et al. Intracellular reactive oxygen species mediate the linkage of Na+/K+-ATPase to hypertrophy and its marker genes in cardiac myocytes. J Biol Chem, 1999, 274: 19323–19328
    10 Liu LJ, Mohammadi K, Aynafshar B, et al. Role of caveolae in signal- transducing function of cardiac Na+/K+-ATPase. Am J Physiol Cell Physiol, 2003, 284: C1550–C1560
    11 Brown MT, and Cooper JA. Regulation, substrates and functions of src. Biochim Biophys Acta, 1996, 1287: 121–149
    12 Abram CL, and Courtneidge SA. Src family tyrosine kinases and growth factor signaling. Exp Cell Res, 2000, 254: 1–13
    13 Wang H, Haas M, Liang M, et al. Ouabain assembles signaling cascades through the caveolar Na+/K+-ATPase. J Biol Chem, 2004, 279: 17250– 17259
    14 Tian J, Cai T, Yuan ZK, et al. Binding of Src to Na+/K+-ATPase forms a functional signaling complex. Mol Biol Cell, 2006, 17(1): 317–326
    15 Aydemir-Koksoy A, Abramowitz J, and Allen JC. Ouabain-induced signaling and vascular smooth muscle cell proliferation. J Biol Chem. 2001, 276: 46605–46611
    16 Mohammadi K, Kometiani P, Xie Z, et al. Role of protein kinase C in the signal pathways that link Na+/K+-ATPase to ERK1/2. J Biol Chem, 2001, 276: 42050–42056
    17 Khundmiri SJ, Amin V, Henson J, et al. Ouabain stimulates protein kinase B (Akt) phosphorylation in opossum kidney proximal tubule cells through an ERK-dependent pathway. Am J Physiol Cell Physiol, 2007, 293: C1171–C1180
    18 Schoner W and Scheiner-Bobis G. Endogenous and exogenous cardiac glycosides: their roles in hypertension, salt metabolism, and cell growth. Am J Physiol Cell Physiol, 2007, 293 (2): C509–C536
    19 Kajikawa M, Fujimoto S, Tsuura Y, et al. Ouabain suppresses glucoseinduced mitochondrial ATP production and insulin release by generating reactive oxygen species in pancreatic islets. Diabetes, 2002, 51: 2522–2529
    20 Puceat M. and Vassort G. Signalling by protein kinase C isoforms in the heart. Mol Cell Biochem, 1996, 157: 65–72
    21 Ward CA and Moffat MP. Positive and negative inotropic effects of phorbol 12-myristate 13-acetate: relationship to PKC-dependence and Ca2+i. J Mol Cell, Cardiol, 1992, 24: 937–948
    22 Nicolás JM, Renard-Rooney DC, and Thomas AP. Tonic regulation of excitation-contraction coupling by basal protein kinase C activity in isolated cardiac myocytes. J Mol Cell Cardiol, 1998, 30: 2591–2604
    23 Neer EJ. Heterotrimeric G Proteins: organizers of transmembrane signals. Cell (Cambridge, Mass.) 1995, 80: 249–257
    24 Aizman O, Uhlen P, Lal M, et al. Ouabain, a steroid hormone that signals with slow calcium oscillations. Proc Natl Acad Sci USA, 2001, 98; 13420– 13424
    25 Pierre SV, Yang CJ, Yuan ZK, et al. Ouabain triggers preconditioning through activation of the Na+/K+-ATPase signaling cascade in rat hearts. Cardiovascular Research, 2007, 73: 488–496
    26 Zhou X, Jiang G, Zhao A, et al. Inhibition of Na+/K+-ATPase activates PI3 kinase and inhibits apoptosis in LLC-PK1 cells. Biochem Biophys Res Commun, 2001, 285: 46–51
    27 Liu J, Kesiry R, Periyasamy SM, et al. Ouabain induces endocytosis of plasmalemmal Na+/K+-ATPase in LLC-PK1 cells by a clathrin-dependent mechanism. Kidney Int, 2004, 66: 227–241
    28 Chibalin AV, Zierath JR, Katz AI, et al. Phosphatidylinositol 3-Kinase- mediated endocytosis of renal Na+/K+-ATPase alpha subunit in response to dopamine. Mol Biol Cell, 1998, 9: 1209–1220
    29 Decamilli P, Emr SD, Mcpherson PS, et al. Phosphoinositides as regulators in membrane traffic. Science, 1996, 271: 1533–1539
    30 Liu LJ, Zhao XC, Pierre SV, et al. Association of PI3K-Akt signaling pathway with digitalis-induced hypertrophy of cardiac myocytes. Am J Physiol Cell Physiol, 2007, 293 (5): C1489–C1497
    31 Kelly RA and Smith TW. Digoxin in heart failure: implications of recent trials. J Am Coll Cardiol, 1993, 22: 107A–112A
    32 Tian J, Gong X, and Xie Z. Signal-transducing function of Na+/K+- ATPaseis essential for ouabain's effect on Ca2+i in rat cardiac myocytes. Am J Physiol, 2001, 281: H1899–H1907
    33 Saunders R, Scheiner-Bobis G. Ouabain stimulates endothelin release and expression in human endothelial cells without inhibiting the sodium pump. Eur J Biochem, 2004, 271 (5): P1054–1062
    34 Yin JX, Wang YL, Li Q, et al. Effects of low concentration of dihydroouabain on intracellular calcium in guinea pig ventricular myocytes. Acta Physiologica Sinica Oct. 2002, 54 (5): 385–389
    35 Kajimura S, Seale AP, Hirano T, et al. Physiological concentrations of ouabain rapidly inhibit prolactin release from the tilapia pituitary. General and Comparative Endocrinology. 2005, 143: 240–250
    36 Al Khalili L, Kotova O, Tsuchida H, et al. ERK1/2 mediates insulin stimulation of Na(+),K(+)-ATPase by phosphorylation of the alpha-subunit in human skeletal muscle cells, J Biol Chem, 2004, 11 (279): 25211– 25218
    37 Leppik JA, Aughey RJ, Medved I, et al. Prolonged exercise to fatigue in humans impairs skeletal muscle Na+-K+-ATPase activity, sarcoplasmic reticulum Ca2+ release, and Ca2+ uptake, J Appl Physiol, 2004, 97: 1414– 1423
    38 Murphy KT, Snow RJ, Petersen AC, et al. Intense exercise up-regulates Na+, K+-ATPase isoform mRNA, but not protein expression in human skeletal muscle, J Physiol, 2004, 556: 507–519
    39 Burns WR, Cohen KD, Jackson WF. K+-induced dilation of hamster cremasteric arterioles involves both the Na+/K+-ATPase and inward- rectifier K+ channels, Microcirculation, 2004, 11: 279–293
    40 Bertorello A, and Aperia A. Pertussis toxin modulates dopamine inhibition of Na+-K+-ATPase activity in rat proximal convoluted tubule segments. New York: Liss. 1988, p353–356
    41 Desilets M and Baumgarten CM. Isoproterenol directly stimulates the Na+-K+ pump in isolated cardiac myocytes. Am J Physiol, 1986, 251 (Heart Circ. Physiol. 20): H218–H225
    42 Marver D, Lear S, Marver LT, et al. Cyclic AMP-dependent stimulation of Na+/K+-ATPase in shark rectal gland. J Membr Biol, 1986, 94: 205–215
    43 Suzuki S, Zuege D, and Berthiaume Y. Sodium-independent modulation of Na+-K+-ATPase activity byβ-adrenergic agonist in alveolar type II cells. Am J Physiol, 1995, 268 (Lung Cell. Mol. Physiol. 12): L983– L990
    44 Meister B, Fryckstedt J, Aperia A, et al. Dopamine- and cAMP-Regulated Phosphoprotein (DARPP-32) and Dopamine DA1 Agonist-Sensitive Na+,K+-ATPase in Renal Tubule Cells. Proc Natl Acad Sci USA, 1989, 86: 8068–8072
    45 Bertorello AM, Aperia A, Walaas SI, et al. Phosphorylation of the Catalytic Subunit of Na+,K+-ATPase Inhibits the Activity of the Enzyme. Proc Natl Acad Sci, 1991, 88: 11359–11362
    46 Carranza ML, Rousselot M, Chibalin AV, et al. Protein kinase A induces recruitment of active Na+,K+-ATPase units to the plasma membrane of rat proximal convoluted tubule cells. The Journal of Physiology, 1998, 511(1): 235–243
    47 Berthiaume Y, Staub NC, and Matthay MA. Beta-adrenergic agonists increase lung liquid clearance in anesthetized sheep. J Clin Invest, 1987, 79: 335–343
    48 Bertorello AM, Ridge KM, Chibalin AV, et al. Isoproterenol increases Na+-K+-ATPase activity by membrane insertion ofα-subunits in lung alveolar cells. Am J Physiol Lung Cell Mol Physiol, 1999, 276: L20–L27
    49 Structural Basis for Species-specific Differences in the Phosphorylation of Na+/K+-ATPase by Protein Kinase C. The American Society for Biochemistry and Molecular Biology. 1995, 270 (23): 14072–14077
    50 Borghini I, Geering K, Gjinovci A, et al. In vivo phosphorylation of the Na+/K+-ATPase alpha subunit in sciatic nerves of control and diabetic rats: effects of protein kinase modulators. Proc Natl Acad Sci U S A. 1994, 91 (13): 6211–6215
    51 Ridge KM, Dada L, Lecuona E, et al. Dopamine-induced Exocytosis of Na+/K+-ATPase Is Dependent on Activation of Protein Kinase C-εand–δ.Molecular Biology of the Cell Vol, 2002, 13: 1381–1389
    52 Khundmiri SJ, Bertorello AM, Delamere N, et al. Clathrin-mediated endocytosis of Na+/K+-ATPase in response to PTH requires ERK- dependent phosphorylation of Ser-11 within theα1-subunit. J Biol Chem, 2004, 279: 17418–17427
    53 Dada LA, Chandel NS, Ridge KM, et al. Hypoxia-induced endocytosis of Na+/K+-ATPase in alveolar epithelial cells is mediated by mitochondrial reactive oxygen species and PKC-ζ. J Clin Invest. 2003, 111: 1057–1064
    54 Chibalin AV, Pedemonte CH, Katz AI, et al. Phosphorylation of the catalyticα-subunit constitutes a triggering signal for Na+/K+-ATPase endocytosis. J Biol Chem, 1998, 273: 8814–8819
    55 Chibalin AV, Ogimoto G, Pedemonte CH, et al. Dopamine-induced endocytosis of Na+/K+- ATPase is initiated by phosphorylation of Ser-18 in the ratαsubunit and is responsible for the decreased activity in epithelial cells. J Biol Chem. 1999, 274: 1920–1927
    56 McKee M, Scavone C and Nathanson JA. Nitric oxide, cGMP, and hormone regulation of active sodium transport. Proc Natl Acad Sci USA, 1994, 91: 12056– 12060
    57 Scavone C, Scanlon C, McKee M, et al. Atrial natriuretic peptide modulates sodium and potassium-activated adenosine triphosphatase through a mechanism involving cyclic GMP and cyclic GMP-dependent protein kinase. J Pharmacol Exp Ther, 1995, 272: 1036– 1043
    58 Nathanson JA, Scavone C, Scanl on C, et al. The cellular Na+ pump as a site of action for carbon monoxide and glutamate: a mechanism for long- term modulation of cellular activity. Neuron, 1995, 14: 781–794
    59 Nathanson MH, Burgstahler AD, Mennone A, et al. Ca2+ waves are organized among the hepatocytes in the intact organ. Am J Physiol, 1995, 269: G167–G171
    60 Hudmon A, and Schulman H. Structure-function of the multifunctional Ca2+/calmodulin-dependent protein kinase II. Biochem J, 2002, 364: 593–611
    61 Netticadan T, Kato K, Tappia P, et al. Phosphorylation of Cardiac Na+/K+ -ATPase by Ca2+/Calmodulin Dependent Protein Kinase. Biochem Biophys Res Commun, 1997, 238: 544–548
    62 Xie Z, Wang Y, Askari A, et al. Studies on the specificity of the oxygen free radical effects on cardiac sodium pump. J Mol Cell Cardiol, 1990, 22: 911–920
    63 Huang W, Wang Y, Askari A, et al. Different sensitivities of the Na+/K+-ATPase isoforms to oxidants. Biochim Biophys Acta, 1994, 1190: 108–114
    64 Dada LA, Sznajder JI. Mechanisms of pulmonary edema clearance during acute hypoxemic respiratory failure: role of the Na+/K+-ATPase. Crit Care Med, 2003, 31: S248–S252
    65 Ogimoto G, Yudowski GA, Barker CJ, et al. G protein-coupled receptors regulate Na+/K+-ATPase activity and endocytosis by modulating the recruitment of adaptor protein 2 and clathrin. 2000, 97(7): 3242–3247
    66 Chen ZP, Krmar RT, Dada L, et al. Phosphorylation of Adaptor Protein-2μ2 Is Essential for Na+,K+-ATPase Endocytosis in Response to Either G Protein-Coupled Receptor or Reactive Oxygen Species. American Journal of Respiratory Cell and Molecular Biology, 2006, 35: 127- 132
    1 1 Guyton AC. Blood pressure control-special role of the kidneys and body fluids. Science, 1991, 252: 1813-1816
    2 Kuchel OG, Kuchel GA. Peripheral dopamine in the pathophysiology of hypertension. Interaction with aging and lifestyle. Hypertension, 1991, 18: 709-721
    3 Ibarra F, Aperia A, Svensson LB, et al. Bidirectional regulation of Na, K-ATPase activity by dopamine and a-adrenergic agonist. Proc. Nail. Acad. Sci, 1993, 90: 21-24
    4 Harris PF, Thomas D, and Morgan T0. Atrial natriuretic peptide inhibits angiotensin-stimulated proximal tubular sodium and water reabsorption. Nature, 1987, 326: 697-698
    5 Correa AH, Choi MR, Gironacci M, et al. Signaling pathways involved in atrial natriuretic factor and dopamine regulation of renal Na, K-ATPase activity. Regul Pept, 2007, 138 (1): 26-31
    6 Correa AH, Choi MR, Gironacci M, Aprile F, Fernández BE. Atrial natriuretic factor decreases renal dopamine turnover and catabolism without modifying its release. Regul Pept, 2008, 146 (1-3): 238-242
    7 Stepp LR, Novakoski MA. Effect of 5-hydroxytryptamine on sodium- and potassium-dependent adenosine triphosphatase and its reactivity toward ouabain. Arch Biochem Biophys, 1997, 337 (1): 43-53
    8 Budu CE, Efendiev R, Bertorello AM, et al. Hormonal-dependent recruitment of Na+, K+-ATPase to the plasmalemma is mediated by PKC beta and modulated by Nai. Br J Pharmacol, 2002, 137: 1380–1386
    9 Efendiev R, Bertorello AM, Zandomeni R, et al. Agonist-dependent regulation of renal Na+, K+-ATPase activity is modulated by intracellular sodium concentration. J Biol Chem, 2002, 277: 11489–11496
    10 Efendiev R, Budu CE, Cinelli AR, et al. Intracellular Na regulates dopamine- and angiotensin II-receptors availability at the plasma membrane and their cellular responses in renal epithelia. J Biol Chem, 2003, 278: 28719–28726
    11 Aperia A, Hotback U, Syren ML, et al. Activation/deactivation of renal Na+, K+-ATPase: a final common pathway for regulation of natriuresis. FASEB J, 1994, 8: 436–439
    12 Gesek FA, and Schoolwerth AC. Hormonal interactions with the proximal Na+-H+ exchanger. Am. J. Physiol, 1990, 258: F514-521
    13 Felder CC, Campbell T, Albrecht FE, et al. Dopamine inhibits Na+/H+ exchanger activity in renal BBMV by stimulation of adenylate cyclase. Am J Physiol, 1990, 259: F297–303
    14 Yingst DR, Massey KJ, Rossi NF, et al. Angiotensin II directly stimulates activity and alters the phosphorylation of Na-K-ATPase in rat proximal tubule with a rapid time course. Am J Physiol Renal Physiol, 2004, 287: F713–F721
    15 Aperia A, Bertorello A, Seri I. DA causes inhibition of Na+, K+-ATPase activity in rat proximal convoluted tubule segments. Am J Physiol Renal Fluid Electrolyte Physiol, 1987, 252 (1 Pt 2): F39–45
    16 Harris PJ, Hiranyachattada S, Antoine AM, et al. Regulation of renal tubular sodium transport by angiotensin II and atrial natriuretic factor. Clin Exp Pharmacol Physiol, 1996, 3: S112–S118
    17 Triggle DJ. Angiotensin II receptor antagonism: losartan–sites and mechanisms of action. Clin Ther, 1995, 17: 1005–1030
    18 JoséPA, Eisner GM, Felder RA. Renal dopamine receptors in health and hypertension. Pharmacol Ther, 1998, 80 (2): 149–182
    19 Banday AA, Lokhandwala MF. Inhibition of natriuretic factors increases blood pressure in rats. Am J Physiol Renal Physiol, 2009, 297(2): F397- 402
    20 Holtb?ck U, Kruse MS, Brismar H, et al. Intrarenal dopamine coordinates the effect of antinatriuretic and natriuretic factors. Acta Physiol Scand,2000, 168 (1): 215-218
    21 Pedemonte CH, Efendiev R, Bertorello AM. Inhibition of Na, K-ATPase by dopamine in proximal tubule epithelial cells. Semin Nephrol, 2005, 25: 322–327
    22 Efendiev R, Bertorello AM, Pedemonte CH. PKC-beta and PKC-zeta mediate opposing effects on proximal tubule Na+, K+-ATPase activity. FEBS Lett, 1999, 456: 45–48
    23 Efendiev R, Bertorello AM, Pressley TA, et al. Simultaneous phosphorylation of Ser-11 and Ser-18 in the alpha-subunit promotes the recruitment of Na+, K+-ATPase molecules to the plasma membrane. Biochemistry, 2000, 39: 9884–9892
    24 DonéSC, Leibiger IB, Efendiev R, et al. Tyrosine 537 within the Na+, K+-ATPaseαsubunit is essential for AP-2 binding and clathrin-dependent endocytosis. J Biol Chem, 2002, 277: 17108-17111
    25 Chibalin AV, Ogimoto G, Pedemonte CH, et al. Dopamine-induced endocytosis of Na+, K+-ATPase is initiated by phosphorylation of Ser-18 in the rat alpha subunit and is responsible for the decreased activity in epithelial cells. J Biol Chem, 1999, 274: 1920–1927
    26 Chibalin AV, Pedemonte CH, Katz AI, et al. Phosphorylation of the Catalyicα-Subunit Constitutes a Triggering Signal for Na+, K+-ATPase Endocytosis. J Biol Chem, 1998, 273 (15): 8814–8819
    27 Asghar M, Hussain T, Lokhandwala MF. Activation of dopamine D1-like receptor causes phosphorylation ofα1-subunit of Na+, K+-ATPase in rat renal proximal tubules. Eur J Pharmacol, 2001, 411 (1-2): 61-66
    28 Efendiev R and Pedemonte CH. Contrary to rat-type, human-type Na, K- ATPase is phosphorylated at the same amino acid by hormones that produce opposite effects on enzyme activity. J Am Soc Nephrol, 2006, 17 (1): 31-38
    29 Chen Z, Leibiger I, Katz AI, et al. Pals-associated tight junction protein functionally links dopamine and angiotensin II to the regulation of sodium transport in renal epithelial cells. Br J Pharmacol, 2009, 158 (2): 486-493
    30 Yingst DR, Araghi A, Doci TM, et al. Decreased renal perfusion rapidly increases plasma membrane Na, K-ATPase in rat cortex by an angiotensin II-dependent mechanism. Am J Physiol Renal Physiol, 2009, 297 (5): F1324-1329
    31 Zhang C, Mayeux PR. NO/cGMP signaling modulates regulation of Na+-K+-ATPase activity by angiotensin II in rat proximal tubules. Am J Physiol Renal Physiol, 2001, 280: F474-479
    32 Bharatula M, Hussain T, Lokhandwala MF. Angiotensin II AT1 receptor/ signaling mechanisms in the biphasic effect of the peptide on proximal tubular Na+, K+-ATPase. Clin Exp Hypertens, 1998, 20 (4): 465-480
    33 Inagami T. Molecular biology and signaling of angiotensin receptors: an overview. J Am Soc Nephrol, 1999, 10: S2–S7
    34 Efendiev R, Budu CE, Bertorello AM, et al. GPCR-mediated traffic of Na, K-ATPase to the plasma membrane requires the binding of adaptor protein-1 to a Tyr-255 based sequence in the alpha-subunit. J Biol Chem, 2008, 283: 17561-17567
    35 Hakam AC and Hussain T. Angiotensin II AT2 receptors inhibit proximal tubular Na+-K+-ATPase activity via a NO/cGMP-dependent pathway. Am J Physiol Renal Physiol, 2006, 290: F1430-F1436
    36 Hakam AC and Hussain T. Angiotensin II type 2 receptor agonist directly inhibits proximal tubule sodium pump activity in obese but not in lean Zucker rats. Hypertension, 2006, 47:1117–1124
    37 Hussain T and Siddiqui AH. Angiotensin II AT1 and AT2 receptors are differentially dysfunctional to regulate Na-K-ATPase Activity in the Proximal Tubules of Spontaneously Hypertensive (SHR) rats. The FASEB Journal, 2008, 22: lb167
    38 Shah S, Hussain T. Enhanced angiotensin II-induced activation of Na+, K+-ATPase in the proximal tubules of obese Zucker rats. Clin Exp Hypertens, 2006, 28: 29–40
    39 Gomes P, Soares-Da-Silva P. D2-like receptor-mediated inhibition of Na+-K+-ATPase activity is dependent on the opening of K+ channels. Am JPhysiol Renal Physiol, 2002, 283: F114-123
    40 Lokhandwala MF, Hussain T. Defective renal dopamine D1-like receptor signal transduction in obese hypertensive rats. Acta Physiol Scand, 2000, 168 (1): 251-255
    41 Aperia AC. Intrarenal Dopamine: A Key Signal in the Interactive Regulation of Sodium Metabolism. Annu Rev Physiol, 2000, 62: 621-647
    42 Chibalin AV, Zierath JR, Katz AI, et al. Phosphatidylinositol 3-Kinase-mediated Endocytosis of Renal Na+, K+-ATPase alpha subunit in Response to Dopamine. Mol. Biol. Cell, 1998, 9(5): 1209-1220
    43 Chibalin AV, Katz AI, Berggren PO, et al. Receptor-mediated inhibition of renal Na, K-ATPase is associated with endocytosis of itsαandβsubunits. Am. J. Physiol, 1997, 273: C1458– 1465
    44 Satoh T, Cohen HT, Katz AI. Different mechanisms of renal Na/K- ATPase regulation by protein kinases in proximal and distal nephron. Am J Physiol, 1993, 34: F399-405
    45 Yudowski GA, Efendiev R, Pedemonte CH, et al. Phosphoinositide-3 kinase binds to a proline-rich motif in the Na+, K+-ATPase subunit and regulates its trafficking. Proc Natl Acad Sci, 2000, 97: 6556-6561
    46 Chen Z, Krmar RT, Dada L, et al. GPCR- as well as ROS-dependent phosphorylation of AP2μ2 is essential for Na+, K+-ATPase endocytosis. Am. J. Respir. Cell Mol. Biol, 2006, 35: 127-132
    47 Ogimoto G, Yudowski GA, Barker CJ, et al. G protein-coupled receptors regulate Na+/K+-ATPase activity and endocytosis by modulating the recruitment of adaptor protein 2 and clathrin. Proc Natl Acad Sci, 2000, 97 (7): 3242–3247
    48 Yao LP, Li XX, Yu PY, et al. Dopamine D1 receptor and protein kinase C isoforms in spontaneously hypertensive rats. Hypertension, 1998, 32 (6): 1049-1053
    49 Karim Z, Defontaine N, Paillard M, et al. Protein kinase C isoforms in rat kidney proximal tubule: acute effect of angiotensin II. Am J Physiol, 1995, 269: C134–C140
    50 Boesch DM, Garvin JL. Age-dependent activation of PKC isoforms by angiotensin II in the proximal nephron. Am J Physiol Regul Integr Comp Physiol, 2001, 281: R861-R867
    51 Pinto-do-O PC, Chibalin AV, Katz AI, et al. Short-term vs. sustained inhibition of proximal tubule Na,K-ATPase activity by dopamine: cellular mechanisms. Clin Exp Hypertens, 1997, 19 (1-2): 73-86
    52 Asghar M, Banday AA, Fardoun RZ, et al. Hydrogen peroxide causes uncoupling of dopamine D1-like receptors from G proteins via a mechanism involving protein kinase C and G-protein-coupled receptor kinase 2. Free Radic Biol Med, 2006, 40: 13-20
    53 Trivedi M, Narkar VA, Hussain T, et al. Dopamine recruits D1A receptors to Na-K-ATPase-rich caveolar plasma membranes in rat renal proximal tubules. Am J Physiol Renal Physiol, 2004, 287 (5): F921-931
    54 Khan F, SpicarováZ, Zelenin S, et al. Negative reciprocity between angiotensin II type 1 and dopamine D1 receptors in rat renal proximal tubule cells. Am J Physiol Renal Physiol, 2008, 295(4): F1110 - F1116
    55 Hussain T, Abdul-Wahab R, Kotak DK, et al. Bromocriptine regulates angiotensin II response on sodium pump in proximal tubules. Hypertension, 1998, 32 (6): 1054-1059
    56 Zeng C, Wang Z, Hopfer U, et al. Rat strain effects of AT1 receptor activation on D1 dopamine receptors in immortalized renal proximal tubule cells. Hypertension, 2005, 46 (4): 799-805
    57 57 Choi MR, Medici C, Gironacci MM, et al. Angiotensin II regulation of renal dopamine uptake and Na+, K+-ATPase activity. Nephron Physiol, 2009, 111 (4): 53-58

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700