用户名: 密码: 验证码:
超早期针刺对急性脑缺血大鼠能量代谢的影响及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     脑血管病已成为危害我国中老年人身体健康和生命的主要疾病,急性缺血性脑血管疾病占脑血管疾病的43%-65%,病死率为15%-25%,其高发病率,高死亡率和高致残率给国家及患者带来了沉重的经济和社会负担。临床中许多缺血性脑血管病发病后超早期急救不及时,脑细胞在短期缺血、缺氧后形成了不可逆的损伤,最终造成死亡或恢复期遗留严重后遗症。在发病后最短时间内,使用安全有效、简便易行的急救措施对脑组织进行有效的保护,将对患者的预后产生积极影响。药物疗法仍是目前治疗缺血性脑血管病的有效手段之一,但药物疗法均有一定的毒、副作用,而针刺疗法已广泛应用脑血管病恢复期治疗,并且已被越来越普遍地应用于缺血性中风急性期治疗,在缺血后立即给予针刺治疗则能使局部脑血流显著增加,使缺血组织局部维持有效的血供,对抗缺血引起的损伤;缺血后再灌注期针刺增加局部脑血供,使脑梗死面积显著减小,神经功能得到有效的保护。因此,针刺超早期介入的意义值得重视。本研究在前期采用microPET观察到超早期针刺对脑缺血葡萄糖代谢改善的基础上,进一步探讨超早期针刺抗脑缺血损伤的作用机理,为临床针刺治疗缺血性中风提供一定的实验依据。
     方法:
     SPF级雌性SD大鼠140只,3月龄,体重200~250g,随机分为7组,正常组、穴位2h组、非穴位2h组、模型2h组、穴位24h组、非穴位24h组、模型24h组,每组各20只,其中10只用来灌注取脑,10只取新鲜脑组织。采用开颅法电凝大脑中动脉造模,制作右侧大鼠大脑中动脉急性脑缺血模型。穴位组取“百会”、“水沟”针刺,以120次/分左右进行捻转1min,共留针30min,期间每5min捻转行针1次,每次1min。非穴位组分别在百会、水沟左侧旁开约5mm处进针,避开穴位,手法同穴位针刺。穴位24h组及非穴位24h组在造模后24小时候再针刺1次。采用高效液相检测各组缺血脑组织ATP、ADP、AMP含量,比色法检测Na+-K+-ATP酶、Ca2+-ATP酶含量,real-time PCR检测HIF-1αmRNA及EPOmRNA表达,采用免疫组化检测缺血脑组织GLUT1、GLUT3阳性细胞表达,对上述结果进行综合统计分析。
     结果:
     1.脑组织ATP、ADP含量在大鼠脑缺血后2h后即明显下降,与正常组比较,有显著性差异(P<0.01);模型24h组ATP、ADP含量降低更显著,与模型2h组比较,有显著性差异(P<0.01)。穴位2h组大鼠ATP、ADP含量较模型2h组升高,经统计学处理,有显著性差异(P<0.01);与非穴位2h组比较,有显著性差异(P<0.01)。非穴位2h组与模型2h组比较,无显著性差异(P>0.05)。穴位24h组ATP、ADP含量较模型24h组及非穴位24h组明显升高,经统计学处理,有显著性差异(P<0.01),但非穴位24h组与模型24h组比较,无显著性差异(P>0.05)。脑组织AMP含量在大鼠脑缺血后2h后即明显升高,与正常组比较,有显著性差异(P<0.01);模型24h组AMP含量升高更显著,与模型2h组比较,有显著性差异(P<0.01)。穴位2h组大鼠AMP含量较模型2h组降低,经统计学处理,有显著性差异(P<0.01),与非穴位2h组比较,有显著性差异(P<0.01)。非穴位2h组与模型2h组比较,无显著性差异(P>0.05)。穴位24h组AMP含量显著低于较模型24h组及非穴位24h组,经统计学处理,有显著性差异(P<0.01),但非穴位24h组与模型24h组比较,无显著性差异(P>0.05)。
     2.脑组织TAN在大鼠脑缺血后2h后即明显下降,与正常组比较,有显著性差异(P<0.01);模型24h组TAN降低更显著,与模型2h组比较,有显著性差异(P<0.01)。穴位2h组大鼠TAN较模型2h组升高,经统计学处理,有显著性差异(P<0.01),与非穴位2h组比较,有显著性差异(P<0.01)。非穴位2h组与模型2h组比较,无显著性差异(P>0.05)。穴位24h组TAN较模型24h组明显升高,经统计学处理,有显著性差异(P<0.01);穴位24h组TAN较非穴位24h组升高,经统计学处理,有显著性差异(P<0.05)。但非穴位24h组与模型24h组比较,无显著性差异(P>0.05)。
     3.脑组织EC在大鼠脑缺血后2h后即明显下降,与正常组比较,有显著性差异(P<0.01);模型24h组EC降低更显著,与模型2h组比较,有显著性差异(P<0.01)。穴位2h组大鼠EC较模型2h组升高,经统计学处理,有显著性差异(P<0.01);与非穴位2h组比较,有显著性差异(P<0.01)。非穴位2h组与模型2h组比较,无显著性差异(P>0.05)。穴位24h组EC较模型24h组及非穴位24h组明显升高,经统计学处理,有显著性差异(P<0.01);但非穴位24h组与模型24h组比较,无显著性差异(P>0.05)。
     4.脑组织Na+-K+-ATP酶含量在大鼠脑缺血后2h后即明显下降,与正常组比较,有显著性差异(P<0.01);模型24h组Na+-K+-ATP酶降低更显著,与模型2h组比较,有显著性差异(P<0.01)。穴位2h组及非穴位2h组大鼠Na+-K+-ATP酶含量较模型2h组升高,但穴位2h组上升更显著,与模型2h组比较,有显著性差异(P<0.01),与非穴位2h组比较,有显著性差异(P<0.05)。非穴位2h组与模型2h组比较,有显著性差异(P<0.05)。穴位24h组Na+-K+-ATP酶含量较模型24h组及非穴位24h组明显升高,经统计学处理,有显著性差异(P<0.01);非穴位24h组与模型24h组比较,无显著性差异。
     5.脑组织Ca2+-ATP酶含量在大鼠脑缺血后2h后即明显下降,与正常组比较,有显著性差异(P<0.01);模型24h组降低更显著,与模型2h组比较,有显著性差异(P<0.01)。穴位2h组大鼠Ca2+-ATP酶含量较模型2h组升高,经统计学处理,有显著性差异(P<0.01),与非穴位2h组比较,有显著性差异(P<0.01)。非穴位2h组与模型2h组比较,无显著性差异(P>0.05)。穴位24h组Ca2+-ATP酶含量较模型24h组及非穴位24h组明显升高,经统计学处理,有显著性差异(P<0.01);非穴位24h组与模型24h组比较,无显著性差异(P>0.05)。
     6.各组大鼠缺血侧皮质区域GLUT1免疫阳性物MOD值明显高于正常组(P<0.05~0.01)。穴位2h组较模型2h组比较,阳性表达明显增加,经统计学处理,有显著性差异(P<0.05);穴位2h组GLUT1阳性表达较非穴位2h组明显增加(P<0.05),而非穴位2h组与模型2h组比较无显著性差异。模型24h组与模型2h组比较,阳性表达明显增加,经统计学处理,有显著性差异(P<0.01);穴位24h组阳性表达要明显多于模型24h组和非穴位24h,经统计学处理,有显著性差异(P<0.01)。上述结果表明,在缺血后2h~24h之间,GLUT1阳性表达增加;穴位针刺可以明显增强大脑皮质GLUT1阳性表达,而非穴位组表达略有增加,但无显著性差异(P>0.05)。
     7.各组大鼠缺血侧皮质区域GLUT3免疫阳性物MOD值明显高于正常组(P<0.05)。穴位2h组较模型2h组比较,阳性表达明显增加,经统计学处理,有显著性差异(P<0.01);穴位2h组GLUT3阳性表达较非穴位2h组明显增加(P<0.05);非穴位2h组与模型2h组比较无显著性差异(P>0.05)。模型24h组与模型2h组比较,阳性表达明显增加,经统计学处理,有显著性差异(P<0.01);穴位24h组阳性表达要明显多于模型组和非穴位24h,经统计学处理,有显著性差异(P<0.05)。上述结果表明,在缺血后2h~24h之间,GLUT3阳性表达增加;穴位针刺可以明显增强大脑皮质GLUT3阳性表达,而非穴位组表达略有增加,但无统计学意义。
     8.各组大鼠缺血侧皮质HIF-1αmRNA表达明显高于正常组(P<0.01)。穴位2h组较模型2h组比较,基因表达明显增加,经统计学处理,有显著性差异(P<0.01);穴位2h组基因表达较非穴位2h组明显增加(P<0.05);非穴位2h组与模型2h组比较无显著性差异(P>0.05)。模型24h组与模型2h组比较,基因表达明显增加,经统计学处理,有显著性差异(P<0.01),穴位24h组基因表达要明显多于模型组和非穴位24h,经统计学处理,有显著性差异(P<0.05)。上述结果表明,在缺血后2h~24h之间,HIF-1αmRNA表达增加;穴位针刺可以明显增强大脑皮质HIF-1αmRNA表达,而非穴位组表达略有增加,但无统计学意义(P>0.05)。
     9.各组大鼠缺血侧皮质EPOmRNA表达明显高于正常组(P<0.01)。穴位2h组较模型2h组比较,基因表达明显增加,经统计学处理,有显著性差异(P<0.01);穴位2h组基因表达较非穴位2h组明显增加(P<0.05);非穴位2h组与模型2h组比较无显著性差异(P>0.05)。模型24h组与模型2h组比较,基因表达明显增加,经统计学处理,有显著性差异(P<0.01);穴位24h组基因表达要明显多于模型组和非穴位24h,经统计学处理,有显著性差异(P<0.05)。上述结果表明,在缺血后2h~24h之间,EPOmRNA表达增加;穴位针刺组可以明显增强大脑皮质EPOmRNA表达,而非穴位组表达略有增加,但无统计学意义(P>0.05)。
     结论:
     1.急性脑缺血后大鼠脑组织ATP生产及利用均减少,TAN及EC均降低,表明脑缺血后能量代谢障碍,而穴位针刺可以显著改善脑缺血大鼠脑组织能量代谢,发挥抗脑缺血损伤的作用。
     2.穴位针刺可以通过改善缺血脑组织的能量代谢,从而恢复Na+-K+-ATP与Ca2+-ATP酶的活性,从而可能通过减少胞内Na+负荷,减轻Ca2+超载,维持了细胞内外Na+、Ca2+稳态,减轻细胞内水肿,影响突触兴奋、传导和递质释放,抑制兴奋性氨基酸等毒性物质的释放,达到脑保护作用。
     3.穴位针刺可以上调脑内GLUT1和GLUT3的蛋白表达,增加葡萄糖通过血脑屏障转运入脑,以提高葡萄糖脑转运效率,延续缺氧缺血情况下脑的能量供应,延缓能量耗竭,对抗缺氧缺血的正向反应,减轻缺血缺氧造成的脑损害。
     4.穴位针刺能诱导缺血区HIF-1αmRNA表达增加,从而增强EPOmRNA、GLUT1等靶基因的表达,发挥抗缺血损伤的作用。
     5.超早期针刺可通过对HIF-1α、GLUT1、GLUT3、EPO等的调节,有效的改善脑缺血后能量代谢,发挥抗脑缺血损伤的作用。
     6.穴位针刺对脑缺血大鼠能量代谢及影响脑能量代谢的相关指标的调节作用明显优于非穴位针刺。
Objective:
     Cerebrovascular disease has become one of the major diseases that may harm the health and life of Chinese middle-aged and aged people. Acute ischemic cerebral vascular disease takes up 43%~65% of cerebrovascular diseases, with a fatality rate of 15%~5%. Its high incidence, high mortality and high morbidity brings our country and patients heavy economic and social burdens. Due to the first aid is not timely during disease ultra-early phase, many of the clinical patients with cerebral ischemia have their brain cells suffer irreversible damagein after short-term ischemia and hypoxia, ultimately resulting in death or serious sequelae. There will be a positive impact on patients' prognosis, if safe, effective and simple first aid measures are used to effectively protect brain tissue during shortest possible time after the onset. Drug therapy is currently one of the effective means for ischemic brain injury but with a certain toxic and side effects, while acupuncture therapy has been widely used for cerebral vascular disease recovery treatment, and has been become increasingly common treatment to the acute stage of ischemic stroke. An immediate acupuncture treatment given after ischemia gives ischemic cerebral blood flow significant increase and maintain effective local blood supply against ischemia-induced damage, so that makes it possible for re-function after reperfusion; If acupuncture therapy is given during reperfusion period, ischemic cerebral blood supply can also increase and infarct size will significantly reduced so that neurological function was effectively protected. In this study, on the basis of pre-microPET observation that ultra-early acupuncture improves ischemic cerebral glucose metabolism, we are conducting further exploration on the mechanism of ultra-early acupuncture therapy against cerebral ischemia injury.
     Methods:
     140 female Sprague-Dawley (SD) rats (specific-pathogen free (SPF) grade) of 3 months old, weighing 200-250g, were randomly divided into 7 groups (20 rats in each group):normal group, acupoint 2h group, non-acupoint 2h group, model 2h group, acupoint 24h group, non-acupoint 24h group, model 24h group.10 rats brains in each group were removed after perfusion, with the other 10 were sampled for fresh brain tissue. Acute right middle cerebral artery ischemia was produced in rats with craniotomy and eletrocoagulation on middle cerebral artery. Acupoint groups were treated by acupuncture at "Baihui"and"Shuigou", using reducing method, with 120 twisting per minute, one time every 5 minutes, one minute every time, retaining the needles for 30 minutes. Non-acupoint groups were respectively treated by acupuncture at 5mm away on the left side of "Baihui"and"Shuigou". Acupoint 24h group and non-acupoint 24h group were treated by acupuncture once again after 24 hours.10 rats in each group were examined ATP, ADP, AMP contents in ischemic brain tissue with high-performance liquid chromatography (HPLC), and colorimetry on Na+-K+-ATP enzyme, Ca2+-ATP enzyme levels, and real-time PCR on HIF-1αmRNA, EPOmRNA gene expression, and immunohistochemical to GLUT1, GLUT3 expression of the other 10 rats of each group. Then we conducted a comprehensive statistical analysis of these results.
     Results:
     1. Compared with normal group, ATP, ADP contents in rats'brain tissue after cerebral ischemia for 2h decreased significantly (P<0.01), and the model 24h group's ATP and ADP content decreased significantly. And compared with model 2h group, acupoint 2h group's ATP, ADP content increased significantly (P<0.01), and compared with non-acupoint 2h group, there was a extremely significant difference (P<0.01). But no significant difference was observed between non-acupoint 2h group and model 2h group (P>0.05). Compared with model 24h group and non-acupoint 24h group, acupoint 24h group's ATP, ADP content significantly higher (P<0.01), but no significant difference was observed between non-acupoint 24h group and model 24h group(P>0.05). Compared with normal group, AMP concent in rats' brain tissue after cerebral ischemia for 2h significantly increased significantly (P<0.01), and the model 24h group's AMP content increased more significantly. And compared with model 2h group, acupoint 2h group's AMP content decreased significantly (P<0.01), and compared with non-acupoint 2h group, there was a significant difference (P<0.01). But no significant difference was observed between non-acupoint 2h group and model 2h group (P>0.05). Acupoint 24h group's AMP content was significantly lower than that in model 24h group and non-acupoint 24h group (P<0.01), but no significant difference was observed between non-acupoint 24h group and model 24h group(P>0.05).
     2. Compared with normal group, TAN concent in rats' brain tissue after cerebral ischemia for 2h significantly decreased significantly (P<0.01). and the model 24h group's TAN content decreased significantly. And compared with model 2h group, acupoint 2h group's TAN content increased significantly (P<0.01), and compared with non-acupoint 2h group, there was a significant difference (P<0.01). But no significant difference was observed between non-acupoint 2h group and model 2h group (P>0.05).Compared with model 24h group and non-acupoint 24h group separately, acupoint 24h group's TAN content significantly highered (P<0.01 and P<0.05), but no significant difference was observed between non-acupoint 24h group and model 24h group(P>0.05).
     3. Compared with normal group, EC concent in rats' brain tissue after cerebral ischemia for 2h significantly decreased significantly (P<0.01). and the model 24h group's EC content decreased significantly. And compared with model 2h group, acupoint 2h group's EC content increased significantly (P<0.01), and compared with non-acupoint 2h group, there was a significant difference (P<0.01). But there was no significant difference between non-acupoint 2h group and model 2h group (P>0.05). Compared with model 24h group and non-acupoint 24h group separately, acupoint 24h group's EC content significantly highered (P<0.05 and P<0.01), but no significant difference was observed between non-acupoint 24h group and model 24h group(P>0.05).
     4. Compared with normal group, Na+-K+-ATP enzyme concent in rats' brain tissue after cerebral ischemia for 2h significantly decreased significantly (P<0.01). and the model 24h group's Na+-K+-ATP enzyme content decreased significantly. And compared with model 2h group, acupoint 2h group's Na+-K+-ATP enzyme content increased significantly (P<0.01), and compared with non-acupoint 2h group, there was a significant difference (P<0.05). And there was significant difference between non-acupoint 2h group and model 2h group (P<0.05). Acupoint 24h group's Na+-K+-ATP enzyme content was significantly higher than model 24h group and non-acupoint 24h group (P<0.01), but no significant difference was observed between non-acupoint 24h group and model 24h group(P>0.05).
     5. Compared with normal group, Ca2+-ATP enzyme concent in rats' brain tissue after cerebral ischemia for 2h significantly decreased significantly (P<0.01). and the model 24h group's Ca2+-ATP enzyme content decreased significantly. And compared with model 2h group, acupoint 2h group's Ca2+-ATP enzyme content increased significantly (P<0.01), and compared with non-acupoint 2h group, there was a significant difference (P<0.01). But there was no significant difference between non-acupoint 2h group and model 2h group (P>0.05). Acupoint 24h group's Ca2+-ATP enzyme content was significantly higher than model 24h group and non-acupoint 24h group (P<0.01), but no significant difference was observed between non-acupoint 24h group and model 24h group(P>0.05).
     6. GLUT1 immunoreactive material MOD value of each group's ischemic cortex regionalin significantly higher than that in the normal group (P<0.05).And compared with model 2h group, acupoint 2h group's positive expression increased significantly (P<0.05), and compared with non-acupoint 2h group, there was a significant difference (P<0.05). But there was no significant difference between non-acupoint 2h group and model 2h group (P>0.05). And model 24h groupgroup's positive expression was higher than that of model 2h group (P<0.01). And acupoint 24h group's positive expression significantly higher than model groups and non-acupoint 24h group (P<0.01). These results indicate that GLUT1 expression increased gradually after cerebral ischemia for 2h~24h; Acupoint groups can significantly enhance positive expression of GLUT1 in cerebral cortex, rather than a slight increase in expression of that of non-acupoint groups, but there was no significant difference between them.
     7. GLUT3 immunoreactive material MOD value of each group's ischemic cortex regionalin significantly higher than the normal group (P<0.05). And compared with model 2h group, acupoint 2h group's positive expression increased significantly (P<0.01), and compared with non-acupoint 2h group, there was a significant difference (P<0.05). But no significant difference was observed between non-acupoint 2h group and model 2h group (P>0.05).And model 24h groupgroup's positive expression higher than that in model 2h group (P<0.01). And acupoint 24h group's positive expression was significantly higher than that in model groups and non-acupoint 24h group (P<0.05). These results indicate that GLUT3 expression increased gradually after cerebral ischemia for 2h~24h; Acupoint groups can significantly enhance positive expression of GLUT3 in cerebral cortex, rather than a slight increase in expression of non-acupoint groups, but there was no significant difference between them.
     8. HIF-1αmRNA gene expression of each group's ischemic cortex region was significantly higher than the normal group (P<0.01).And compared with model 2h group, acupoint 2h group's gene expression increased significantly (P<0.01), and compared with non-acupoint 2h group, there was significant difference (P<0.05). But there was no significant difference between non-acupoint 2h group and model 2h group (P>0.05).And model 24h group's gene expression higher than model 2h group (P<0.01). And acupoint 24h group's gene expression was significantly higher than model groups and non-acupoint 24h group (P<0.05). These results indicate that HIF-1αmRNA gene expression increased gradually after cerebral ischemia for 2h~24h; Acupoint acupuncture can significantly enhance expression of HIF-1αmRNA gene expression in cerebral cortex, rather than a slight increased in expression of non-acupoint groups, but there was no significant difference between them.
     9. EPOmRNA gene expression of each group's ischemic cortex region was significantly higher than the normal group (P<0.01).And compared with model 2h group, acupoint 2h group's gene expression increased significantly (P<0.01), and compared with non-acupoint 2h group, there was a significant difference(P<0.05). But there was no significant difference between non-acupoint 2h group and model 2h group (P>0.05).And model 24h group's gene expression higher than model 2h group (P<0.01). And acupoint 24h group's gene expression significantly higher than model groups and non-acupoint 24h group (P<0.05). These results indicate that EPOmRNA gene expression increased gradually after cerebral ischemia for 2h~24h; Acupoint acupuncture significantly enhanced expression of EPOmRNA gene expression in cerebral cortex, rather than a slight increase in expression of non-acupoint groups, but there was no significant difference between them.
     Conclusion:
     1. ATP production and utilization in rats' brain tissue were reduced after acute cerebral ischemia, and TAN and EC decreased, indicating an energy metabolism dysfunction, however, situration can be significantly improved by acupoint acupuncture, which plays the role against cerebral ischemia injury.
     2. Acupuncture can improve the energy metabolism of ischemic brain tissue, thus restore the Na+-K+-ATP and Ca2+-ATP enzyme activity, and help to reduce the intracellular Na+ load, reduce Ca2+ overload, maintaining Na+, Ca2+ inside and outside cells homeostatic state, which could protect the brain by reducing intracellular edema, affecting synaptic excitement, conduction and transmitter release, inhibiting the release of toxic substances, such as excitatory amino acids, etc.
     3. Acupuncture can up-regulate brain GLUT1 and GLUT3 protein expression, increase glucose transport into the brain through the blood-brain barrier, improve the efficiency of glucose transporter in the brain, continue the brain energy supply under hypoxic-ischemic, slow down the energy depletion against hypoxic-ischemic positive response to reduce brain damage caused by ischemia and hypoxia.
     4. Acupuncture further induced HIF-1αmRNA gene expression in ischemic area, thereby enhanced expression of target genes such as EPO, GLUT1, etc, so as to play the role against cerebral ischemia injury.
     5. Acupoint acupuncture can adjust the content of HIF-1α、GLUT1、GLUT3 and EPO in ischemic area, so as to improve the energy metabolism and play the role against cerebral ischemia at Super Early Stage.
     6. Acupoint acupuncture regulation of energy metabolism of ischemic brain tissue and the relevant indicators was better than non-acupoint acupuncture.
引文
[1]汤清平,蒋冬梅,杨期东,等.国际合作举办脑卒中患者康复护理培训[J].中华护理杂志,2001,36(9):718.
    [2]饶明俐.中国脑血管病防治指南[M].卫生部疾病控制司、中华医学会神经病学分会,2005:1.
    [3]北京神经病学学术沙龙.2359例青年脑卒中患者危险因素研究[J].中华流行病学杂志,2003,24(2):106-108.
    [4]陈可冀.急性缺血性脑血管病的治疗[J].中西医结合杂志,1990,10(6):327.
    [5]董伟为.神经保护的基础与临床[M].北京:科学出版社,2002.
    [6]殷汉贤,黄皖生,饶磊,等.早期针刺、推拿配合运动疗法治疗中风偏瘫临床疗效分析[J].中国中西医结合急救杂志,2000,7(5):302-304.
    [7]陈明明,成泽东.论小胶质细胞在针灸治疗缺血性脑病研究中的新思路[J].中医药学刊,2005,23(9):1629-1630.
    [8]宋秀媛,高焕民.脑卒中的早期巨刺法针灸治疗[J].齐鲁医学杂志,2004,19(6):560-561.
    [9]Gao HM, Guo JC, Zhao PJ, et al. The neuroprotective effects of electroacupuncture on focal transient cerebral ischemia in monkey[J]. Acupuncture & Elect rot herapeutics Res,2002,27(1):45.
    [10]高焕民,程介士.侧脑室注射孤啡肽对针刺抗脑缺血作用的影响[J].针刺研究,2002,27(1):20.
    [11]陈坚,陈汉平,程介士,等.缺血性脑损伤与针药超早期治疗[J].中国针灸,2001,21(1):37-39.
    [12]朱冬胜,麻志恒,祝均金,等.不同治则方药对大鼠局部脑缺血再灌注模型脑组织能量代谢的影响[J].中国中西医结合急救杂志,2003,10(6):366-368.
    [13]刘志红.葡萄糖转运蛋白[J].肾脏病与透析肾移植杂志,2000,9(2):153-157.
    [14]Vannucci SJ, Seaman LB, Vannucci RC. Effects of hypoxia-ischemia on GLUT1 and GLUT3 glucose transporters in immature rat brain[J]. J Cereb Blood Flow Metab,1996,16:77-81.
    [15]Royer C, Lachuer J, Crouzoulon G. et al. Effects of gestational hypoxia on mRNA leves of Glut3 and Glut4 transporters. hypoxia_inducible factor-1 and thyroid hormone receptors developing rat brain[J]. Brain Res,2000,856:119-128.
    [16]Sharp FR, Lu A, Tang Y, et al. Multiple molecular penumbras after focal cerebral ischemia[J]. J Cereb Blood Flow Metab,2000,20(7):1011-1032.
    [17]Pullicino E, Coward A, Ella M. Total energy expenditure in intra-venously fed fed patients measured by the doubly labeled water technique[J]. Metabolign,1993,42(1):58.
    [18]http://bioinformatics.ust.hk/Acupuncture/
    [1]Benchoua A, Guegan C, Couryaud C, et al. Specific caspase pathways are activated in the two stages of cerebral infarction[J]. J Neurosci,2001, 21(18):7127-7134.
    [2]Bederson JB, Pitts LH, Tsuji M, et al. Rat middle cerebral artery occlusion:evaluation of the model and development of a neurologic examination[J]. Stroke,1986,17(3),472-476.
    [3]XUE Jing, GAO Pei-yi, AN Yi-hua, et al. A Model of Focal Cortical Infarction in Rat:Minimally Invasive Craniotomy[J]. Chinese Journal of Rehabilitation Theory and Practice,2006,12(1):11-13.
    [4]李忠仁.实验针灸学[M].北京:中国中医药出版社,2003年.
    [5]Seidl R, Stockler-Ipsiroglu S, Rolinski B, et al. Energy metabolism in graded perinatal asphyxia of the rat[J]. Life Sci,2000,67(4):421-35.
    [6]常芸,林福美,陈小同,等.运动心脏结构可复性的研究[J].中国运动医学杂志,1999,18(3):202-207.
    [7]Buttgereit F, Brand MD. A hierarchy of ATP consuming process in mammalian cells[J]. Biochem J,1995,312(Pt1):163-167.
    [8]Placchke K, Yun SW, Martin E, et al. Interration between cerebral energy metabolism and behaviour in a rat model of permanent brain vessel occlusion[J]. Brain Res,1999,830(2):320-329.
    [9]蒋玉凤,潘彦舒,黄启福,等.9602方对脑缺血再灌小鼠脑能量代谢的影响[J].中国病理生理杂志,2000,16(11):1167-1170.
    [10]孙明,赵育梅,徐超.牛磺酸降低局灶性脑缺血引起的能量代谢紊乱和氧化损伤[J].中风与神经疾病杂志,2008,25(5):577-579.
    [11]Jiang YF, Pan YS, Huang QF, et al. The effect of herbs on cerebral energy metabolism in cerebral ischemia-reperfusion mice[J]. Chin Med J, 2001,114(8):881-883.
    [12]姚笠,赵霞霞,于立君,等.头部贴敷式亚低温对新生鼠缺氧缺血性脑损伤脑组织中线粒体能量代谢的影响[J].中国优生与遗传杂志,2007,15(10):43-45.
    [13]Folbergrova J, Zhao Q, Katsura K, et al. N-tert-butyl-a-phenylnitrone improves recovery of brain energy state in rats following transient focal ischemia[J]. Proc NatlAcad SciUSA,1995,92(11):5057-5061.
    [14]Homola A, Zoremba N, Slais K, et al. Changes in diffusion parameters, energy-related metabolites and glutamate in the rat cortex after transient hypoxia ischemia [J]. Neurosci Lett,2006,404(1-2):137-142.
    [15]孟智宏,杜元灏,石学敏,等.脑梗死大鼠脑、肺组织及血液中能量代谢指标变化及针刺的干预作用[J].中国临床康复,2005,12(9):96-98.
    [1]Bederson JB, Pitts LH, Tsuji M, et al. Rat middle cerebral artery occlusion:evaluation of the model and development of a neurologic examination[J]. Stroke,1986,17(3),472-476.
    [2]XUE Jing, GAO Pei-yi, AN Yi-hua, et al. A Model of Focal Cortical Infarction in Rat:Minimally Invasive Craniotomy[J]. Chinese Journal of Rehabilitation Theory and Practice,2006,12(1):11-13.
    [3]Stojanovic T, Mrsulja BB. Alterations in synaptosomal membrane Na+-K+-ATPase of the gerbil cortex and hippocampus following reversible brain ischemia[J]. Metab Brain Dis,1988,3(4):265-272.
    [4]杨恬.细胞生物学[M].北京:人民卫生出版社,2005:8.
    [5]郭芳,齐亚娟,王永利,等.大鼠缺血性全脑损伤Na+-K+-ATP酶活性及其α亚基表达的变化[J].中国药理学通报,2006,22(2):234-237.
    [6]Fresu L, Dehpour A, Genazzani A A, et al. Plasma membrane calcium ATPase isoforms in astrocytes[J]. Glia,1999,28(2):150-155.
    [7]陈传义,彭仁璓,李元涛,等.七氟醚麻醉对大鼠脑ATP酶的动态影响[J].中华实验外科杂志,2004,21(8):972-974.
    [8]陈凌梅,李炜如.地塞米松及葡萄糖对缺血缺氧性脑损伤新生大鼠血糖和脑ATP生成率及ATP酶分解活性的影响[J].中华妇幼临床医学杂志,2007,3(3):145-148.
    [9]Ginsberg M. Adventures in the pathophysiology of brain ischemia: penumbra, gene expression, neuroprotection:the 2002 Thomas Willis Lecture[J]. Stroke,2003,34(1):214-223.
    [10]徐运,张博生.缺血-再灌注鼠脑Ca2+-ATP酶活性和脑含水量的变化及中药的影响[J].临床神经病学杂志,1997,10(4):198.
    [11]Kanako H, Hiroshi M, Mitsuru S, et al. Properties of the Na+/K+pump in small neurons from adult rat dorsal root ganglia[J]. Br J Phamacol,2003, 138(8):1517-1527.
    [12]Schwartz JP, Mrsulja BB, Mrsulja BJ, et al. Alterations of cyclic nucleotide-related enzymes and atpase during unilateral ischemia and recirculation in gerbil cerebral cortex [J]. Journal of Neurochemistry, 1976,27(1):101-107.
    [13]冯仰柏,花放,耿德勤,等.CGRP对大鼠全脑缺血再灌注ATP酶活性的影响[J].中西医结合心脑血管病杂志,2004,2(10):585-586.
    [14]苏会璇.糖尿病神经病变发病机制和临床的若干特点[J].医学综述,2003,9(3):3-4.
    [15]Mrsulja BB, Stanimirovi D, Mii DV, et al. Excitatory amino acid receptors, oxido-reductive processes and brain oedema following transient ischaemia in gerbils[J]. Acta Neurochir Suppl(Wien),1990,51: 180-182.
    [16]李石,郭芳,董惠,等.Na+-K+-ATP酶参与缺氧所致大鼠皮质神经元内钙升高[J].第二军医大学学报,2007,28(1):44-47.
    [17]Yang GY, Chen SF, Kinouchi H, et al. Edema, cation content, and ATPase activity after middle cerebral artery occlusion in rats[J]. Stroke,1992, 23(9):1331-1336.
    [18]刘亚敏,张赐安,徐秋英,等.全脑缺血再灌注大鼠脑组织水通道蛋白-4mRNA的表达及药物对其影响[J].中国中医急症,2002,11(6):474-476.
    [19]张三妹,李光来.阿米洛利对大鼠脑缺血再灌注损伤后ATP酶的影响[J].中西医结合心脑血管病杂志,2008,6(2):186-188.
    [20]张秋霞,赵晖.侯氏黑散对大鼠大脑中动脉闭塞模型缺血脑组织Na+-K+-ATP酶及一氧化氮合酶活性的影响[J].中国实验方剂学杂志,2008,14(7):31-33.
    [1]Wood IS, Trayhurn P. Glucose transporters (GLUT and SGLT):expanded families of sugar transport proteins [J]. Br J Nutr,2003,89(1):3-9.
    [2]Bederson JB, Pitts LH, Tsuji M, et al. Rat middle cerebral artery occlusion:evaluation of the model and development of a neurologic examination[J]. Stroke,1986,17(3):472-476.
    [3]XUE Jing, GAO Pei-yi, AN Yi-hua, et al. A Model of Focal Cortical Infarction in Rat:Minimally Invasive Craniotomy[J]. Chinese Journal of Rehabilitation Theory and Practice,2006,12(1):11-13.
    [4]George Paxinos, Charles Watson.大鼠脑立体定位图谱[M].北京:人民卫生出版社,2005年.
    [5]刘志红.葡萄糖转运蛋白[J].肾脏病与透析肾移植杂志,2000,9(2):153-157.
    [6]Joost HG, Bell GI, Best JD, et al. Nomenclature of the GLUT/SLC2A family of sugar/polyol transport facilitators[J]. Am J Physiol Endocrinol Metab,2002,282(4):E974-976.
    [7]Wood IS, Trayhurn P. Glucose transporters (GLUT and SGLT):expanded families of sugar transport proteins[J]. Br J Nutr,2003,89:3-9.
    [8]Gould GW, Holman GD. The glucose transporter family:structure, function and tissue-specific expression[J]. Biochem J,1993,295(Pt2): 329-341.
    [9]Joost HG, Thorens B. The extended GLUT-family of sugar/polyol transporter facilitators:nomenclature, sequence, charcteristic, and potential function of its novel members creviens[J]. Mol Member Biol, 2001,18(4):247-256.
    [10]Zierler K. Whole body glucose metabolism[J]. Am J Physiol Endocrinol Metab,1999,276(3):E409-E426.
    [11]Cater HL, Chandratheva A, Benham CD, et al. Lactate and glucose as energy substrates during,and after, oxygen deprivation in rat hippocampal acute and cultured slices[J]. J Neurochem,2003,87:1381-1390.
    [12]Vannucci SJ, Simpson IA. Developmental switch in brain nutrient transport expression in the rat[J]. Am J Physiol Endo-crinol Metab,2003, 285(5):E1127-E1134.
    [13]Sharp FR, Bergeron M, Bernaudin M. Hypoxia-inducible factor in brain[J]. Adv Exp Med Biol,2001,502(3):273-291.
    [14]韩华,李东亮.孕酮对新生鼠缺氧缺血脑皮层葡萄糖转运蛋白1表达的影响[J].中风与神经疾病杂志,2006,23(6):739-740.
    [15]Pessin JE, Bell GI. Mammalian Facilitative Glucose Transporter Family: Structure and Molecular Regulation[J]. Annu Rev Physiol,1992,54: 911-930.
    [16]Lawrence MS, Sun GH, Kunis DM, et al. Overexpression of the glucose transporter gene with a herpes simplex viral vector protects striatal neurons against stroke[J]. Cereb Blood Flow Metab,1996,16(2): 181-185.
    [17]McGowan JE, Haynes-Laing AG, Mishra OP, et al. The effect of hypoglycemia on the cerebral NMDA receptor in newborn piglets.[J]. Brain Res,1995,670(2):283-288.
    [18]Horn EM, Waldrop FG Oxygen-sensing neurons in the caudal hypothalamus and their role in cardiorespiratory control [J]. Respir Physiol,1997,110(2-3):219-228.
    [19]孟晓云,陈跃.葡萄糖转运蛋白的调控与疾病[J].医学综述,2008,14(14):2097-2100.
    [20]张筱岚,李德渊,赵凤艳,等.新生大鼠缺氧缺血脑损伤时脑组织GLUT1表达及神经元凋亡研究[J].四川大学学报(医学版),2009,40(5):829-833.
    [21]Lee WH, Bondy CA. Ischemic injury induce brain glucose transporter gene expression[J]. Endocrinology,1993,133(6):2540-2544.
    [22]杨友,陈惠金,钱龙华,等.脑缺氧缺血对GLUT1和GLUT3合成的影响[J].中国神经科学杂志,2004,20(1):51-55.
    [23]李相元,李宪章,张爱梅,等.大鼠局灶性脑缺血后血脑屏障葡萄糖转运蛋白1表达的变化.山东医药,2005,45(17):10-11.
    [24]McCall AL, Van Bueren AM, Nipper V, et al. Forebrain ischemia increases Glutl protein in brain microvessels and parenchyma[J]. J Cereb Blood Flow Metab,1996,16(1):69-76.
    [25]LeeWH, BondyCA. Ischemic injury induces brain glucose transporter gene expression[J]. Endocrinology,1993,133(6):2540-2544.
    [26]Lin Z, Weinberg JM, Malhotra R, et al. GLUT1 reduces hypoxia-induced apoptosis and JNK pathway action[J]. Am J Physiol Endocrinol Metab,2002,278(5):E958-966.
    [1]王万银,李敏.促红细胞生成素的神经保护作用[J].国际病理科学与临床杂志,2006,27(2):149-151.
    [2]Bederson JB, Pitts LH, Tsuji M, et al. Rat middle cerebral artery occlusion:evaluation of the model and development of a neurologic examination[J]. Stroke,1986,17(3),472-476.
    [3]XUE Jing, GAO Pei-yi, AN Yi-hua, et al. A Model of Focal Cortical Infarction in Rat:Minimally Invasive Craniotomy[J]. Chinese Journal of Rehabilitation Theory and Practice,2006,12(1):11-13.
    [4]Semenza GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation[J]. Mol Cell Boil,1992,12(12): 5447-5451.
    [5]Semenza G L. Hydroxylation of HIF-1:oxygen sensing at the molecular level[J]. Physiology,2004,19(4):176-182.
    [6]吴海琴,张蓓,展淑琴,等.大鼠前脑缺血诱导HIF-1α、EPO表达的研究[J].卒中与神经疾病,2006,13(1):34-36.
    [7]Digicaylioglu M, Lipton SA. Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-B signalling cascades[J]. Nature,2001,412(6847):641-647.
    [8]Semenza GL. HIF-1:mediator of physiological and pathophysiological responses to hypoxia[J]. J Appl Physiol,2000,88(4):1474-1480.
    [9]Kaur B, Khwaja FW, Severson EA, et al. Hypoxia and the hypoxia-inducible-factor pathway in glioma growth andangiogenesis[J]. Neuro-Oncology,2005,7(2):134-153.
    [10]Wang V, Davis DA, Haque M, et al. Differential gene up-regulation by hypoxia-inducible factor-1alpha and hypoxia-inducible factor-2alpha in HEK293T cellss[J]. Cancer Res,2005,65(8):3299-306.
    [11]Kietzmann T, Knabe W, Schmidt-Kastner R Hypoxia and hypoxia-inducible factor modulated gene expression in brain:involvement in neuroprotection and cell death[J]. Eur Arch Psychiatry Clin Neurosci,2001,251(4): 170-178.
    [12]Wenger RH. Cellular adaptation to hypoxia:O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression[J]. FASEB J,2002,16(10):1151-1162.
    [13]Sharp FR, Lu A, TangY, et al. Multiplemolecular penumbras after focal cerebral ischemia[J]. J Cereb Blood Flow Metab,2000,20(7): 1011-1032.
    [14]Sharp FR, Bergeron M, Bernaudin M. Hypoxia-inducible factor in brain [J]. Adv Exp Med Biol,2001,502:273-291.
    [15]Bergeron M, Gidday JM, Yu A Y, et al. Role of hypoxia-inducible factor-1 in hypoxia-induced ischemic tolerance in neonatal rat brain[J]. Ann Neurol,2000,48(3):285-296.
    [16]Bergeron M, Yu A Y, Solway KE, et al. Induction of hypoxia-inducible factor-1(HIF-1) and its target genes following focal ischemia inratbrain[J]. Eur J Neurosci,1999,11(12):4159-4170.
    [17]罗开俭,陶陶,邓进,等.局灶性脑缺血再灌注后大鼠脑组织HIF-1α表达的观察[J].第三军医大学学报,2008,30(18):1733-1735.
    [18]Matsuda T, Abe T, Wu J L, et al. Hypoxia-inducible factor-1alpha DNA induced angiogenesis in a ratcerebral ischemiamodel[J]. Neurol Res, 2005,27(5):503-508.
    [19]Fedele A O, Whitelaw M L, Peet D J. Regulation of gene expression by the hypoxia-inducible factors[J]. Mol Interv,2002,2(12):229-243.
    [20]Jones NM, Bergeron M. Hypoxic preconditioning inducts changes in HIF-1 target genes in neonatal rat brain[J]. J Cereb Blood Flow Metab, 2001,21(9):1105-1114.
    [21]Marti HJ, Bernaudat M, Bellail A, et al. Hypoxia-induced vascular endothelial growth factor expression precedes neovascularizatton after cerebral ischemia[J]. Am I Pathol,2000,156(3):965-976.
    [22]万赛英,黎杏群,梁清华,等.脑溢安对缺氧大鼠脑微血管内皮细胞VEGF蛋白表达的影响[J].中南大学学报:医学版,2005,30(2):153-156.
    [23]WAN Saiying, LI Xingqun, LIANG Qinhua, et al. Effects of naoyian serum on VEGF protein expression in cultured rat cerebral microvascular endothelial cell with hypoxia[J]. J Cent South Univ. Med Sci,2005,30 (2):153-156.
    [24]Solaroglui I, Solaroglui A, Kaptanoglu E, et al. Erythropoietin prevents ischemia reperfusion from inducing oxidative damage in fetal rat brain[J]. Childs Nervous System,2003,19(1):19-22.
    [25]Villa P, Bigini P, Mennini T, et al. Faydnopoietin selectively at-tenuates cytokine production and inflarsunation in cerebral ischemia by targeting neuronal apoptosis[J]. J Exp Med,2003,198(6):971-975.
    [26]Morishita E, Masuda S, Nagao M, et al. Erythropoietin receptor is expressed in rat hippocampal and cerebral cortical neurons, and erythropoietin prevents in vitro glutamate-induced neuronal death[J]. Neuroscience,1997,76(1):105-116.
    [27]Siren A, Fratelli M, Brines M, et al. Erythropoietin prevents neuronal apoptosis after cerebral ische mia and metabolic stress [J]. Proc Natl Acad Sci,2001,98(7):4044-4049.
    [28]Weber A, Maier RF, Hoffmann U, et al. Erythopoietin improves synaptic transmission during and following ischemia in rat hippocampal slice cultures[J]. Brain Research,2002,958(2):305-311.
    [29]Lee SM, Nguyen TH, Park MH, et al. EPO receptor-mediated ERE kinase and NF-kappa B activation in erythropoietin-promoted differentiation of astrocytea[J]. Biochem Biophys Res Commun,2004, 320(4):1087-1095.
    [30]Oda A, Sawada K, Druker BJ, et al. Erythropoietin Induces Tyrosine Phosphorylation of Jak2, STAT5A, and STAT5B in Primary Cultured Human Erythroid Precursors[J]. Blood,1998,92(2):443-451.
    [31]王岩松,姚猛,董大明,等.促红细胞生成素(EPO)的神经保护作用[J].中华神经外科杂志,2005,21(7):445-448.
    [32]Juul SE, Anderson DK, Li Y, et al. Erythropoietin and erythropoietin receptor in the developing human centralnervous system[J]. Pediatr Res, 1998,43(1):40-49.
    [33]吴其夏,余应年,卢建.新编病理生理学[M].北京:中国协和医科大学出版社,1999:263-283.
    [34]Schumacker PT. Hypoxia inducible factor-1(HIF-1)[J]. Crit Care Med, 2005,33(12 supply):S423-S425.
    [35]孙忠玲,赵仁亮.脑缺血耐受大鼠EPOmRNA和HIF-1mRNA表达的实验研究[J].中国老年学杂志,2007,6(27):1151-1154.
    [36]Bellomo M, Marini H, Adamo EB, et al. Vascular endothelial growth factor induces brain erythropoietin expression?[J]. Funct Neurol,2007, 21(2):119-120.
    [37]Buemi M, Cavallaro E, Floccariet F, et al. The pleiotropic effects of erythropoietin in the central nervous system[J]. J Neuropathol Exp Neurol,2003,62(3):228-236.
    [38]Digicaylioglu M, Lipton S A. Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-kappa B signalling cascades[J]. Nature,2001,412(6847):641-647.
    [1]常青.实用中风防治手册[M].北京:中国中医药出版社,1993:1.
    [2]袁园,过伟峰.浅谈中医论治中风病的源流[J].辽宁中医药大学学报,2009,11(8):15-16.
    [3]陈可冀.中医内科学[M].北京:中国协和医科大学出版社,2002:441.
    [4]沈雪勇.“目系”释析[J].中国中医眼科杂志,1996,6(3):169-170.
    [5]何兴伟.中风病从督脉论治探讨[J].中国中医基础医学杂志,2006,12(8):561-562.
    [6]李庆云,李庆玲,杨宗强,等.调理髓海配穴法的临床应用[J].现代中西医结合杂志,2009,18(35):4397-4398.
    [7]赵宁侠,任秦有,郭瑞林,等.艾灸健康人百会穴对右侧大脑中、后动脉血流动力学影响的研究[J].针刺研究,2004,29(1):59-62.
    [8]庄礼兴,朱福平.以压灸百会穴为主治疗对椎动脉型颈椎病患者血栓素A2和前列环素的影响[J].中国临床康复,2004,8(30):6672-6673.
    [9]骆仲达.电针督脉对缺血性脑损伤大鼠神经细胞凋亡的影响[J].安徽中医学院学报,2002,21(6):27-30.
    [10]纪中.电针百会穴对大鼠缺血区脑组织神经生长因子影响的研究[J].浙江中医学院学报,2005,29(3):67.
    [11]段小东,余茜,胥方元.电针“百会”,“大椎”穴对脑缺血大鼠学习记忆能力的影响[J].泸州医学院学报,2009,32(5):497-499.
    [12]王舒,钱宇斐,樊小农,等.“水沟”穴对脑缺血模型大鼠脑神经细胞坏死的影响[J].中国针灸,2009,29(9):733-738
    [13]严文广,谢雪姣,黄政德,等.针药结合干预大鼠局灶性脑缺血组织ATP酶活性及能量代谢的研究[J].湖南中医药大学学报,2007,27(3):59-62.
    [14]黄晓琳,韩肖华,郭铁成,等.电针联合经颅磁刺激对急性脑缺血大 鼠VEGF及其受体Flk-1表达的影响[J].中华物理医学与康复杂志,2004,26(10):581-584.
    [15]王来栓,于立君,邵肖梅.亚低温减轻新生大鼠缺氧缺血脑细胞凋亡的作用及机制研究[J].中国当代儿科杂志,2007,9(1):37.
    [16]张新江.血液稀释疗法稀释液的研究进展[J].国外医学脑血管病分册,1995,3(4):190.
    [17]Veizovic T, Beech JS, Stroemer RP, et al. Resolution of stroke deficits follwing contralateral grafts of conditionally immortal neuroepithelial sterm cells[J]. Stroke,2001,32(4):2012-2019.
    [18]张成英,苗华,陈前芬,等.大鼠大脑中动脉的解剖学观察及其在脑缺血模型中的应用[J].解剖学杂志,1998,21(3):211.
    [19]张成英,陈前芬,田鹤村,等.用大鼠制作脑缺血模型血管阻断部位的选择[J].四川解剖学杂志,2002,10(1):12-15.
    [20]Tamara A, Graham DI, McCulloch J, et al. Focal cerebral ischemia in the rat:1. Description of technique and early neuropathological consequences following middle cerebral artery occlusion[J]. J Cerb Blood Flow Metab,1981,1(1):53-60.
    [21]Tamura.A, Graham DI, McCulloch J, et al. Focal cerebral ischaemia in the rat:2 Regional cerebral blood flow determined by [14C]iodoantipyrine autoradiography following middle cerebral artery occlusion[J]. J Cereb Blood Flow Metab,1981,1(1):61-69.
    [22]Bederson JB, Pitts LH, Tsuji M, et al. Rat middle cerebral artery occlusion:Evaluation of the model and development of a neurologic examination[J]. Stroke,1986,17(3):472-475.
    [23]Wang LC, Futrell N, Wang DZ, et al. A reproducible model of middle cerebral infarcts,compatible with long-term survival, in aged rats[J]. Stroke,1995,26(11):2087-2090.
    [24]杨任民.脑血栓的中西医结合治疗[J].中国中西医结合杂志,1997, 17(1):8.
    [25]张苏明,张文.国外脑缺血急诊研究现状[J].中国实用内科杂志,1996,16(5):302.
    [26]谢瑞满.急性缺血性脑血管病治疗进展[J].中国临床医学杂志,1998,3(5):1.
    [27]齐宇,何春慧,周丹,等.针灸治疗超早期缺血性中风16例近期疗效观察[J].中国冶金工业医学杂志,2004,21(3)191-192.
    [28]廉全荣.针刺治疗中风早期临床观察[J].针灸临床杂志,2003,19(2):15-16.
    [29]刘孔江.针刺在中风ICU中的早期干预和思路[J].中国针灸,2003,23(10):615-617.
    [30]金明月,李政,刘松雨,等.早期针刺康复治疗中风病425例疗效观察[J].针灸临床杂志,2003,19(11):10-11.
    [31]宋京英,翟素萍,申玮红.早期应用通腑针刺法治疗脑卒中疗效观察[J].中国针灸,2002,22(6):369-370.
    [32]李莹莹.早期针刺治疗中风50例疗效观察[J].实用中医内科杂志,2007,21(3):110.
    [33]熊杰,温景荣,路明,等.醒脑开窍针刺法治疗急性脑梗死超早期38例[J].中医杂志,2005,46(9):684-685.
    [34]角建瓴,赖新生,张家维,等.电针对局脑缺血大鼠再灌流后四种氨基酸含量的影响[J].针刺研究,2003,28(3):170-173.
    [35]李昌植,葛林宝.超早期电针干预对脑缺血再灌注模型大鼠单胺类神经递质和一氧化氮的影响[J].吉林中医药,2005,25(1):51-52.
    [36]李筱媛,李军.“醒脑开窍”针刺法对照非经穴点的设立[J].天津中医药,2009,26(5):388-390.
    [37]Gaw AC, Chang LW, ShawLC. Efficacy of acupuncture on osteoarthritic pain. A controlled, double-blind study[J]. N Engl J Med,1975,293(8): 375-378.
    [38]Godfrey CM, Morgan P. A controlled trial of the theory of acupuncture in musculoskeletal pain[J]. J Rheumatol,1978,5(2):121.
    [39]李筱媛,李军.“醒脑开窍”针刺法对照非经穴点的设立[J].天津中医药,2009,26(5):388-390.
    [40]王钟秀,杨林花.HIF-1、VEGF与缺血性脑血管病[J].血栓与止血学,2007,13(4):189-192.
    [1]Calabrese V, Scapagnini G, Giuffrida Stella AM, et al. Mitochondrial involvement in brain function and dysfunction:relevance to aging, neurodegenerative disorders and longevity[J]. Neurochem Res,2001, 26(6):739-764.
    [2]De Cristobal J, Cardenas A, Lizasoain I, et al. Inhibition of glutamate release via recovery of ATP levels accounts for a neuroprotective effect of aspirin in rat cortical neurons exposed to oxygen-glucose deprivation [J]. Stroke,2002,33(1):261-267.
    [3]Sims NR, Anderson MF. Mitochondrial contributions to tissue damage in stroke[J]. Neurochem Int,2002,40(6):511-526.
    [4]刘艳,罗祖明,高励,等.大鼠脑缺血再灌注后三磷酸腺苷含量和细胞凋亡的变化及药物的影响[J].中国实用神经疾病杂志,2006,9(4):1-3.
    [5]蒋崇慧,杨光田,汤彦,等.左旋四氢帕马汀在大鼠急性全脑缺血再灌注时对能量代谢内皮素-1及一氧化氮的影响[J].中国急救医学,2001,21(6):317-318.
    [6]邱丽颖,杜斌,范红斌,等.阿司匹林对脑缺血-再灌注大鼠脑能量代谢的影响[J].中国脑血管病杂志,2008,5(9):403-407.
    [7]沈晓燕,赵立波.米诺环素对脑缺血-再灌注大鼠认知功能障碍与能量代谢的影响[J].医药导报,2009,28(9):1124-1127.
    [8]周泽芳,谢鹏,牟君,等.高压氧对大鼠局灶性脑缺血/再灌注脑线粒体能量代谢的影响[J].重庆医科大学学报,2004,29(2):138-140.
    [9]陈健,谢运兰,胡长林.内给氧改善缺血再灌注后脑组织能量代谢的实验研究[J].中国临床康复,2004,8(25):5286-5287.
    [10]姚炜,库宝善.L-盐酸赖氨酸对小鼠全脑缺血后能量代谢的影响[J].现代康复,2001,5(8)50-51.
    [11]彭康,孙忠·补阳还五汤对中风后遗症“气虚血淤”大鼠脑组织三磷酸腺苷及二磷酸腺苷和单胺类神经递质的影响[J]·中国临床康复,2004,8(10):1908.
    [12]王建国,陈群,曾因明.灯盏花素注射液对沙土鼠脑缺血再灌注后能量代谢及脑水肿的影响[J].中国中西医结合急救杂志,2004,11(1):25-27.
    [13]赵玲,徐秋萍,李林.早老龄小鼠脑缺血再灌后能量代谢障碍及聪圣胶囊对其影响[J].北京中医药大学学报,2002,25(5):14-16.
    [14]詹春,杨静,詹莉.RP-HPLC法测定异甘草素对脑缺血再灌注小鼠脑能量代谢的影响[J].药物分析杂志,2005,25(6)639-642.
    [15]颜学军,陈群,曾因明.亚低温复合黄芩素甙对脑缺血后沙土鼠海马组织能量代谢的影响[J].中国中西医结合急救杂志,2001,8(4):216-218.
    [16]陈文,顾红卫,马维平,等.针刺足三里、悬钟对缺血性中风患者脑血管功能的影响:多中心随机对照研究[J].中国针灸,2006,26(12):851-853.
    [17]王玲.针刺治疗短暂性脑缺血发作及对血液动力学的影响[J].针灸临床杂志,2007,23(6):3-4.
    [18]杜元灏,翟娜.针刺对急性脑梗塞鼠微血管壁ATP酶的影响[J].中国针灸,2000,20(10):621-22.
    [19]孟智宏,杜元灏,石学敏.脑梗死大鼠脑、肺组织及血液中能量代谢指标变化及针刺的干预作用[J].中国临床康复,2005,9(45):96-98.
    [20]Abi-Saab WM, Maggs DG, JonesT, et al. Striking differences in glucose and lactate levels between brain extracellular fluid and plasma in conscious human subjects:effects of hyperglycemia and hypoglycemia [J]. J Cereb Blood Flow Metab,2002,22(3):271-279.
    [21]石现,左芳,田嘉禾.针刺头穴对中风患者大脑运动功能区糖代谢的影响[J].针刺研究,2005,30(3):167-170.
    [22]毛捷,陈劲草,黄军,等.GM1对大鼠脑缺血再灌注损伤的谷氨酸、天门冬氨酸、乳酸及葡萄糖含量的影响[J].国际神经病学神经外科学杂志,2009,36(3):193-196.
    [23]陈红,钱坤,李承晏.亚低温对鼠脑梗塞灶周边葡萄糖利用率的影响[J].武汉大学学报(医学版),2004,25(2):126-128.
    [24]何洁,张人玲,翟勇,等.短暂性脑缺血发作患者脑血流灌注和葡萄糖代谢显像的影像分析[J].医学影像学杂志,2007,17(9):895-898.
    [25]Devaskar SU, Rajakumar PA, Mink RB, et al. Effect of development and hypoxic-ischemia upon rabbit brain transporter expression[J]. Brain Res,1999,823(1-2):113.
    [26]陈健,胡长林.葡萄糖载体蛋白与脑缺血[J].国外医学神经病学神经外科学分册,2002,29(2):109-112.
    [27]李相元,李宪章,张爱梅.大鼠局灶性脑缺血后血脑屏障葡萄糖转运蛋白1表达的变化[J].山东医药,2005,45(17):10-11.
    [28]李方成,陶宗玉,刘安民,等.大鼠脑缺血/再灌注过程中葡萄糖转运体1在缺血半影区的表达[J].中国病理生理杂志,2004,20(10):1878-1881.
    [29]叶西就,李方成,曹德雄.异丙酚预先给药对脑缺血再灌注损伤大鼠脑组织葡萄糖转运体-3表达的影响[J].中华麻醉学杂志,2006,26(7)659-662.
    [30]陈元新,林祥通,符荣.大鼠局灶性脑缺血半暗带葡萄糖转运子3mRNA的表达[J].临床神经病学杂志,2002,15(1):9-11.
    [31]杨友,陈惠金,钱龙华,等.脑缺氧缺血对GLUT1和GLUT3合成的影响[J].中国神经科学杂志,2004,20(1):51-55.
    [32]Phillis JW, Song D, Guyot LL, et al. Lactate reduces amino acid release and fuels recovery of function in the is chemic brain[J]. Neuroscience Letters,1999,272(3):195-198.
    [33]Schurr A, Payne RS, Miller JJ, et al. Brain lactate, not glucose, fuels the recovery of synaptic function from hypoxia upon reoxygenation:an in vitro study[J]. Brain Res,1997,744(1):105-111.
    [34]陈星荣,沈天真.脑梗死的影像学[J].中国计算机成像杂志,2000,6(1):2-36.
    [35]张梅奎,刘买利,尹岭,等.益脑通络胶囊对缺血再灌注大鼠弥散加权像及能量代谢的影响[J].中国康复理论与实践,2005,11(7):507-508.
    [36]赵育梅,杨晶晶,寿艳红,等.局灶性脑缺血时吡拉西坦对缺血半球 能量代谢的影响[J].中风与神经疾病杂志,2003,20(2)126-128.
    [37]Rastogi L, Godbole MM, Ray M, et al. Reduction in oxidative stress and cell death explains hypothyroidism induced neuroprotection subsequent to ischemia/reperfusion insult[J]. Exp Neurol,2006,200(2):290-300.
    [38]Zhan C, Yang J. Protective effects of isoliquiritigenin in transient middle cerebral artery occlusion-induced focal cerebral ischemia in rats[J]. Pharmacological Res,2006,53(3):303-309.
    [39]穆艳云,李忠仁,牛文民,等.电针对局灶性脑缺血再灌注大鼠纹状体线粒体ATP酶与总体抗氧化能力的影响[J].上海针灸杂志,2007,26(1):42-44.
    [40]徐放明,郭义,陈爽白.针刺关冲对急性缺氧小鼠能量代谢的影响[J].高原医学杂志,2005,15(2):23-24.
    [41]王秋华,蒋玉凤,汪芸,等.丹酚酸B对低血压小鼠脑缺血能量代谢的影响[J].北京中医药大学学报,2006,29(12):820-822.
    [42]刘志龙,宋含平,邓常青,等.补阳还五汤对沙土鼠脑缺血损伤能量代谢的影响[J].中国中西医结合急救杂志,2001,8(1):36.
    [43]朱冬胜,麻志恒,祝均金,等.不同治则方药对大鼠局部脑缺血再灌注模型脑组织能量代谢的影响[J].中国中西医结合急救杂志,2003,10(6):366-368.
    [44]孙蓉,吕丽莉,刘国卿.芍药苷对沙土鼠不全性脑缺血后能量代谢、NO和NOS的影响[J].中国中药杂志,2006,31(10):832-835.
    [45]高维娟,钱涛,丛斌,等.高脂血症小鼠脑缺血再灌注后脑组织线粒体功能降低[J].基础医学与临床,2006,26(2):203-204.
    [46]张均田.脑缺血、葡萄糖/能量代谢障碍与神经退行性疾病[J].中国药理学通报,2000,16(3):241-246.
    [1]郭宗君,王鲁民.电针刺激神经干对脑缺血再灌注后不同时期皮层神经营养因子nRNA表达的影响[J].中国神经免疫学和神经病学杂志,2004;2(28)):98-103.
    [2]张小珊,崔瑾.针刺抗脑缺血再灌注损伤的实验研究进展[J].针灸临床杂志,2005,21(12):44-46.
    [3]Li Y, ChoPP M, Jiang M, et al. Induction of DNA fragmentation after 20 to 120 minutes of focal cerebral ishemia in rats[J]. Stroke,1995,26(7): 1252.
    [4]张力.针刺预处理对全脑缺血大鼠脑组织细胞凋亡及BCL-2蛋白表达影响的实验研究[D].黑龙江中医药大学硕士学位论文,2004.
    [5]田代实,邓医字,王光海,等.针刺预处理对大鼠局灶性脑缺血的抗细胞凋亡作用[J].第四军医大学学报,2004,25(1):27.
    [6]孙忠人,张力,唐伟,等.针刺预处理对全脑缺血大鼠脑组织细胞凋亡的影响[J].中国临床康复,2006,10(15):144-145.
    [7]余晓慧,孙国杰.针刺对局灶性脑缺血大鼠脑细胞凋亡及Bcl-2蛋白表达的影响[J].针刺研究,2004,29(1):15-17.
    [8]苏庆杰,黄如训.脑缺血再灌注损伤的炎症免疫机制研究[J].国外医 学·内科学分册,2001,28(8):352-354.
    [9]郭佳,王磊,张莉,等.艾灸预防大鼠脑缺血再灌注过程中炎症反应的实验研究[J].中国针灸,2003,6(23):358.
    [10]李家康,何伟,刘又香,等.电针对局灶性脑缺血大鼠脑组织TNF-a和NO含量的影响[J].中医药学刊,2004,22(2):203-204.
    [11]De groot RP, Auwerx J, Karperien M. Activation jun of jun B by PKC and PKA signal transduction through a novel cis-acting element[J]. Nucleic Acids Res,1991,19:775-779.
    [12]吴江,刘亢丁,苏志强,等.TNF-α在实验性脑缺血中的表达[J].中风与神经疾病杂志,2000,17(2):77.
    [13]张风,张桂云,杨晓华.针刺透穴配合康复训练治疗中风偏瘫的疗效观察[J].中国中医药信息杂志,2002,9(7):58.
    [14]Adelson PD, Dixon CE, Kochanek PM. Long-term dysfimction following diffuse traumalic brain injury in the inmmture rat[J]. J Neurotrauma,2000,17(4):273.
    [15]柏志全,蒋建伟,周丽丽,等.电针穴位对脑缺血-再灌注大鼠海马内MDA含量及SOD、GSH-PX活性的影响[J].暨南大学学报(医学版),2003,24(4):38.
    [16]华金双,李丽萍,朱现民.艾灸预处理对全脑缺血大鼠SOD、MDA的影响[J].中国针灸,2006,26(8):595-596.
    [17]任玉录,孙德俊.电针对局灶性脑缺血急性期大鼠脑组织中自由基水平影响和神经功能相关性的实验研究[J].中西医结合心脑血管病杂志,2008,6(6):679-681.
    [18]韩济生,关新民.医用神经生物学[M].武汉出版社,1996:126.
    [19]许能贵,易玮,马勤耘,等.电针对大鼠局灶性脑缺血后神经元损伤保护作用的研究[J].中国针灸,2000(4):237-240.
    [20]许能贵,易玮,赖新生,等.电针对局灶性脑缺血大鼠NO、NOS和ET-1的影响[J].广州中医药大学学报,2002,19(1):63-64.
    [21]马岩藩,郭义,张艳军,等.手十二井穴刺络放血对实验性脑缺血大鼠缺血组织K+、Na+浓度影响的动态观察[J].中国针灸,1997,(9):562.
    [22]李威,范军铭,贾士奇,等.电针对大鼠全脑缺血再灌流损伤的保护作用[J].中国针灸,1996,(11):21.
    [23]徐佳,葛林宝,陈汉平.远近部位穴位对脑缺血大鼠脑组织Ca2+、Na+、K+含量影响的比较[J].上海针灸杂志,2001,20(5):36-37.
    [24]路志红,熊利泽,田磊,等.重复电针预处理对脑缺血再灌注大鼠脑皮层热休克蛋白70表达的影响[J].中华麻醉学杂志,2004,24(6):453.
    [25]王舒,温景荣,赵晓峰,等.“醒脑开窍”针刺后局灶性脑缺血模型大鼠脑基底核组织在蛋白质水平上的变化[J].中国临床康复,2006,10(31):87-89
    [26]易玮,许能贵,靳瑞.针刺对局灶性脑缺血大鼠脑血流量的影响[J].新中医,2001,33(10):75-76.
    [27]李澎.针刺治疗缺血性脑血管病研究中存在的问题[J].中国针灸,2007,27(2):150-154.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700