用户名: 密码: 验证码:
新型溶解氧检测仪探头的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在本论文中,我们研制了一种新型溶解氧检测仪的探头部分,在实现快速灵敏检测的基础上,具有简单的结构和相对较小的外观尺寸。我们对其中涉及到的工作电极的制备及修饰方法进行研发,并对探头的装配进行了优化及实际测试,具体包括以下几个部分:
     1.基于实验室条件,开发了机器辅助制备微阵列电极的方法,成功的制备了微阵列电极,可以实现规模化生产。我们从简单入手,首先开发了手工制备微阵列电极的方法和质量检测手段;在此基础上,针对手工方法的诸多缺点进行了改进,进而实现了机器辅助的方法;
     2.基于上述电极制备方法,优化了探头装配方法,制备出用于检测溶解氧的探头,并对其性能进行了比较全面的测试和评价,与合作厂家共同研发出了溶解氧检测仪样机;
     3.建立了一种无模板无表面活性剂的简单方法,用于制备树枝状金纳米结构,进行了详细的表征,推断了其形成机理及实验条件对形貌的影响,将其用于溶解氧的催化,获得了良好的效果;
     4.建立了一种快速简便的方法,实现对金微盘阵列电极的多孔化和钯纳米粒子的修饰同步完成,并将修饰电极用于溶解氧的检测,获得了良好的效果。
In this dissertation, we have manufactured the probe unit of a new type dissolved oxygen (DO) detector. Beside sensing fast and readily of the DO detector, it has concise structure and relatively small dimension. We have developed the preparation and modification methods of the working electrode involved, and optimized the assembling of the probe unit. Then, we gave detail valuation of its performance. The dissertation covered following aspects:
     1. We have developed a method to prepare microelectrode array electrode with the aid of certain kind of equipment based on the laboratory environment. We started the preparation simply using operation by hand-working, and also established the criterion to evaluate the success of the preparation. Further, we improved the preparation approach utilized the modified machine to assist the work;
     2. We optimized the assembling of the probe unit, and evaluated its electrochemical performance. We have fabricated prototype of a new DO detector in cooperation with our partner.
     3. We have developed a templeteless, surfacantless, simple electrochemical route to prepare dendritic gold nanostructure. The formation mechanism related to experimental conditions was discussed. The as-prepared modified electrode has excellent catalytic activity to oxygen reduction in neutral KCl solution.
     4. We have developed a one-step facile route to fabricate Pd modified porous Au films. The as-prepared Pd modified electrode was used to the detection of oxygen and showed a good sensitivity.
引文
1. Griffiths, V.S. and M.I. Jackman, The winkler method for dissolved oxygen determination. Analytica Chimica Acta, 1957. 17: p. 603-605.
    2. Lakin, M.B., Chemical catalyst interference in the winkler titration determination of dissolved oxygen--a method for correction. Water Research, 1976. 10(11): p. 961-966.
    3. Wong, G.T.F. and K.-Y. Li, Winkler's method overestimates dissolved oxygen in seawater: Iodate interference and its oceanographic implications. Marine Chemistry, 2009. 115(1-2): p. 86-91.
    4.中华人民共和国国家标准, GB 7489-87水质溶解氧的测定碘量法. 1987.
    5. Karlsson, R. and L.-G. Torstensson, Coulometric determination of dissolved oxygen in water. Talanta, 1974. 21(9): p. 957-959.
    6.于军晖,, et al.,电导滴定法测定水中溶解氧的研究.中国卫生检验杂志, 2004. 14(1): p. 24.
    7. Gas chromatographie determination of dissolved oxygen in lubricating oil : Paul G. Elsey. Analytical chemistry, v. 31, May 1959, p. 869-870. Wear. 3(2): p. 160-160.
    8. Wanko, A., et al., Using fluorescence for a full spectral analysis of dissolved and gaseous oxygen within a sand bed. Water Pollution Viii: Modelling, Monitoring and Management, 2006. 95: p. 369-378
    9. Chakravorty, K. and J.A. Poole, The Effect of Dissolved Molecular-Oxygen on the Fluorescence of 9,10-Dimethylanthracene and 9,10-Diphenylanthracene. Journal of Photochemistry, 1984. 26(1): p. 25-31.
    10. Li, S., et al., Design and research about the optical sensor of dissolved oxygen in water based on fluorescence quenching - art. no. 67233N. 3rd International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment, Parts 1-3, 2007. 6723: p. N7233-N7233
    11. Xiong, X.L., D. Xiao, and M.M.F. Choi, Dissolved oxygen sensor based on fluorescence quenching of oxygen-sensitive ruthenium complex immobilized on silica-Ni-P composite coating. Sensors and Actuators B-Chemical, 2006. 117(1): p. 172-176.
    12. Chu, F.H., et al., A dissolved oxygen sensor based on ruthenium fluorescence and U-shaped plastic optical fiber - art. no. 678108. Passive Components andFiber-Based Devices Iv, Pts 1 and 2, 2007. 6781: p. 78108-78108
    13. Xiong, Y., et al., Fiber-optic fluorescence sensor for dissolved oxygen detection based on fluorinated xerogel immobilized with ruthenium (II) complex. Journal of Sol-Gel Science and Technology, 2010. 53(2): p. 441-447.
    14. Chu, F.H., et al., Dissolved oxygen sensor by using Ru-fluorescence indicator and a U-shaped plastic optical fiber. Chinese Optics Letters, 2008. 6(6): p. 401-404.
    15. McEvoy, A.K., C.M. McDonagh, and B.D. MacCraith, Dissolved oxygen sensor based on fluorescence quenching of oxygen-sensitive ruthenium complexes immobilized in sol-gel-derived porous silica coatings. Analyst, 1996. 121(6): p. 785-788.
    16. Saied, A., et al., Design of a test system for fast time response fibre optic oxygen sensors. Physiological Measurement, 2010. 31(4): p. N25-N33.
    17. Thompson, M., et al., Remote determination of oxygen and water at millimetre wave frequencies using a fibre optic communications network. Analytica Chimica Acta, 2003. 476(1): p. 25-32.
    18. Uttamchandani, D. and S. McCulloch, Fibre optic micro-optrodes for dissolved oxygen measurements. Optical and Fiber Optic Sensor Systems, 1998. 3555: p. 106-112
    19. Gouin, J.F., et al., A fibre-optic oxygen sensor for oceanography. Sensors and Actuators B-Chemical, 1997. 39(1-3): p. 401-406.
    20. VanderDonckt, E., et al., Fibre-optic oxygen sensor based on luminescence quenching of a Pt(II) complex embedded in polymer matrices. Sensors and Actuators B-Chemical, 1996. 32(2): p. 121-127.
    21. Krihak, M.K. and M.R. Shahriari, Highly sensitive, all solid state fibre optic oxygen sensor based on the sol-gel coating technique. Electronics Letters, 1996. 32(3): p. 240-242.
    22. Lippitsch, M.E., et al., Fibre-Optic Oxygen Sensor with the Fluorescence Decay Time as the Information Carrier. Analytica Chimica Acta, 1988. 205(1-2): p. 1-6.
    23. McCurley, M.F., G.J. Bayer, and S.A. Glazier, A fluorescence assay for dissolved oxygen using sol-gel encapsulated myoglobin and an analogy to the inner filter effect. Sensors and Actuators B-Chemical, 1996. 36(1-3): p. 491-496.
    24. Krasnovsky, A.A. and V.S. Stremedlovskaya, Singlet-oxygen-sensitized delayed fluorescence of phthalocyanines caused by photosensitized and direct excitation of dissolved oxygen by laser radiation. Journal of Porphyrins and Phthalocyanines, 2008. 12(11): p. 1194-1200.
    25. Gord, J.R., S.W. Buckner, and W.L. Weaver, Dissolved oxygen quantitation fuel through measurements of dynamically quenched fluorescence lifetimes. Iciasf '95 Record - International Congress on Instrumentation in Aerospace Simulation Facilities, 1995: p. 343-348
    26. Pai, S.-C., G.-C. Gong, and K.-K. Liu, Determination of dissolved oxygen in seawater by direct spectrophotometry of total iodine. Marine Chemistry, 1993. 41(4): p. 343-351.
    27. Sanz-Martínez, A., A. Ríos, and M. Valcárcel, Determination of dissolved oxygen by use of a spectrophotometric flow-through sensor. Analytica Chimica Acta, 1993. 284(1): p. 189-193.
    28. Labasque, T., et al., Spectrophotometric Winkler determination of dissolved oxygen: re-examination of critical factors and reliability. Marine Chemistry, 2004. 88(1-2): p. 53-60.
    29. GB, GB11913-89水质溶解氧的测定电化学探头法.
    30. Bard, A.J.,电化学方法-原理和应用(第二版).
    31. Wightman, R.M., Microvoltammetric Electrodes. Analytical Chemistry, 1981. 53(9): p. 1125-&.
    32. Wightman, R.M. and D.O. Wipf, Voltammetry at Ultramicroelectrodes. Electroanalytical Chemistry, 1989. 15: p. 267-353.
    33. Amatore, C., L. Thouin, and J.S. Warkocz, Artificial neurons with logical properties based on paired-band microelectrode assemblies. Chemistry-a European Journal, 1999. 5(2): p. 456-465.
    34. Amatore, C., et al., Mimicking neuronal synaptic behavior: Processing of information with 'AND' or 'OR' Boolean logic via paired-band microelectrode assemblies. Comptes Rendus De L Academie Des Sciences Serie Ii Fascicule C-Chimie, 1998. 1(8): p. 509-515.
    35. Pastore, P., et al., Digital-Simulation Via the Hopscotch Algorithm of aMicroelectrode-Based Channel Flow-through Amperometric Detector. Journal of Electroanalytical Chemistry, 1991. 301(1-2): p. 1-13.
    36. Li, L.J., M. Fleischmann, and L.M. Peter, Microelectrode Studies of Lead Acid Battery Electrochemistry. Electrochimica Acta, 1989. 34(3): p. 459-474.
    37. Fleischmann, M., L.J. Li, and L.M. Peter, Microelectrode Studies of Electrocrystallization. Journal of the Electrochemical Society, 1986. 133(8): p. C324-C324.
    38. Kakihana, M., et al., Diffusion Current at Microdisk Electrodes - Application to Accurate Measurement of Diffusion-Coefficients. Journal of Electroanalytical Chemistry, 1981. 117(2): p. 201-211.
    39. Fletcher, S. and M.D. Horne, Random assemblies of microelectrodes (RAM (TM) electrodes) for electrochemical studies. Electrochemistry Communications, 1999. 1(10): p. 502-512.
    40. Newman, J., Resistance for Flow of Current to a Disk. Journal of the Electrochemical Society, 1966. 113(5): p. 501-&.
    41. Lee, H.J., et al., Cyclic voltammetry at a regular microdisc electrode array. Journal of Electroanalytical Chemistry, 2001. 502(1-2): p. 138-145.
    42. Beriet, C., R. Ferrigno, and H.H. Girault, Simulation of the chronoamperometric response of a regular array of micro-disc electrodes. Journal of Electroanalytical Chemistry, 2000. 486(1): p. 56-64.
    43. Amatore, C., J.M. Saveant, and D. Tessier, Charge-Transfer at Partially Blocked Surfaces - a Model for the Case of Microscopic Active and Inactive Sites. Journal of Electroanalytical Chemistry, 1983. 147(1-2): p. 39-51.
    44. Amatore, C., J.M. Saveant, and D. Tessier, Kinetics of Electron-Transfer to Organic-Molecules at Solid Electrodes in Organic Media. Journal of Electroanalytical Chemistry, 1983. 146(1): p. 37-45.
    45. Davies, T.J. and R.G. Compton, The cyclic and linear sweep voltammetry of regular and random arrays of microdisc electrodes: Theory. Journal of Electroanalytical Chemistry, 2005. 585(1): p. 63-82.
    46. Davies, T.J., C.E. Banks, and R.G. Compton, Voltammetry at spatially heterogeneous electrodes. Journal of Solid State Electrochemistry, 2005. 9(12): p. 797-808.
    47. Ordeig, O., et al., Regular arrays of microdisc electrodes: simulation quantifies the fraction of 'dead' electrodes. Analyst, 2006. 131(3): p. 440-445.
    48. Chevallier, F.G. and R.G. Compton, Regular arrays of microdisk electrodes: Numerical simulation as an optimizing tool to maximize the current response and minimize the electrode area used. Electroanalysis, 2006. 18(23): p. 2369-2374.
    49. Chan, H.Y., et al., Fabrication and characterization of all-diamond microprobes for electrochemical analysis. 2008 3rd Ieee International Conference on Nano/Micro Engineered and Molecular Systems, Vols 1-3, 2008: p. 505-508
    50. Dong, H., et al., Drug effects on the electrochemical detection of norepinephrine with carbon fiber and diamond microelectrodes. Journal of Electroanalytical Chemistry, 2009. 632(1-2): p. 20-29.
    51. Jones, S.E.W. and R.G. Compton, Stripping analysis using boron-doped diamond electrodes. Current Analytical Chemistry, 2008. 4(3): p. 170-176.
    52. Park, J., et al., Fabrication, characterization, and application of a diamond microelectrode for electrochemical measurement of norepinephrine release from the sympathetic nervous system. Diamond and Related Materials, 2006. 15(4-8): p. 761-772.
    53. Provent, C., et al., Boron-doped diamond electrodes and microelectrode-arrays for the measurement of sulfate and peroxodisulfate. Electrochimica Acta, 2004. 49(22-23): p. 3737-3744.
    54. Suzuki, A., et al., Fabrication, characterization, and application of boron-doped diamond microelectrodes for in vivo dopamine detection. Analytical Chemistry, 2007. 79(22): p. 8608-8615.
    55. Tsunozaki, K., et al., Fabrication and electrochemical characterization of boron-doped diamond microdisc array electrodes. Chemistry Letters, 2002(5): p. 502-503.
    56. Ward-Jones, S., et al., An in situ copper plated boron-doped diamond microelectrode array for the sensitive electrochemical detection of nitrate. Electroanalysis, 2005. 17(20): p. 1806-1815.
    57. Yano, T., et al., Electrochemical behavior of highly conductive boron-doped diamond electrodes for oxygen reduction in alkaline solution. Journal of the ElectrochemicalSociety, 1998. 145(6): p. 1870-1876.
    58. Zhang, W., et al., Electrochemical Characteristics of an Interdigitated Microband Electrode Array of Boron-Doped Diamond Film. Collection of Czechoslovak Chemical Communications, 2009. 74(3): p. 393-407.
    59. Zhong, D.J., et al., Fabrication and electrochemical characterization of boron-doped diamond interdigitated array disc electrode. Proceedings of the Institution of Mechanical Engineers Part E-Journal of Process Mechanical Engineering, 2007. 221(E4): p. 201-205.
    60. Kadara, R.O., N. Jenkinson, and C.E. Banks, Characterization and fabrication of disposable screen printed microelectrodes. Electrochemistry Communications, 2009. 11(7): p. 1377-1380.
    61. Hood, S.J., et al., High throughput screening of lead utilising disposable screen printed shallow recessed microelectrode arrays. Analyst, 2010. 135(1): p. 76-79.
    62. Khairy, M., R.O. Kadara, and C.E. Banks, Electroanalytical sensing of nitrite at shallow recessed screen printed microelectrode arrays. Analytical Methods, 2010. 2(7): p. 851-854.
    63. Wittstock, G., et al., Evaluation of microelectrode arrays for amperometric detection by scanning electrochemical microscopy. Electroanalysis, 1998. 10(8): p. 526-531.
    64. Schuler, T., et al., Screen printing as cost-efficient fabrication method for DNA-chips with electrical readout for detection of viral DNA. Biosensors & Bioelectronics, 2009. 24(7): p. 2077-2084.
    65. Kadara, R.O., N. Jenkinson, and C.E. Banks, Screen printed recessed microelectrode arrays. Sensors and Actuators B-Chemical, 2009. 142(1): p. 342-346.
    66. Yoon, H.C. and H.S. Kim, Electrochemical characteristics of a carbon-based thick-film L-lactate biosensor using L-lactate dehydrogenase. Analytica Chimica Acta, 1996. 336(1-3): p. 57-65.
    67. Erlenkotter, A., M. Kottbus, and G.C. Chemnitius, Flexible amperometric transducers for biosensors based on a screen printed three electrode system. Journal of Electroanalytical Chemistry, 2000. 481(1): p. 82-94.
    68. Wu, H.P., Fabrication and Characterization of a New Class of Microelectrode Arrays Exhibiting Steady-State Current Behavior. Analytical Chemistry, 1993. 65(11): p.1643-1646.
    69. Lee, C.Y., Y.J. Tan, and A.M. Bond, Identification of surface heterogeneity effects in cyclic voltammograms derived from analysis of an individually addressable gold array electrode. Analytical Chemistry, 2008. 80(10): p. 3873-3881.
    70. Szunerits, S. and D.R. Walt, Fabrication of an optoelectrochemical microring array. Analytical Chemistry, 2002. 74(7): p. 1718-1723.
    71. Szunerits, S. and D.R. Walt, Aluminum surface corrosion and the mechanism of inhibitors using pH and metal ion selective imaging fiber bundles. Analytical Chemistry, 2002. 74(4): p. 886-894.
    72. Szunerits, S., et al., Spatially resolved electrochemiluminescence on an array of electrode tips. Analytical Chemistry, 2003. 75(17): p. 4382-4388.
    73. Szunerits, S. and D.R. Walt, The use of optical fiber bundles combined with electrochemistry for chemical Imaging. Chemphyschem, 2003. 4(2): p. 186-192.
    74. Monk, D.J. and D.R. Walt, Fabrication of gold microtubes and microwires in high aspect ratio capillary arrays. Journal of the American Chemical Society, 2004. 126(37): p. 11416-11417.
    75. Monk, D.J. and D.R. Walt, Optical fiber-based biosensors. Analytical and Bioanalytical Chemistry, 2004. 379(7-8): p. 931-945.
    76. Strohben, W.E., D.K. Smith, and D.H. Evans, Characterization of Arrays of Microelectrodes for Fast Voltammetry. Analytical Chemistry, 1990. 62(15): p. 1709-1712.
    77. Maisonhaute, E., P.C. White, and R.G. Compton, Surface acoustic cavitation understood via nanosecond electrochemistry. Journal of Physical Chemistry B, 2001. 105(48): p. 12087-12091.
    78. Odell, D.M. and W.J. Bowyer, Fabrication of Band Microelectrode Arrays from Metal Foil and Heat-Sealing Fluoropolymer Film. Analytical Chemistry, 1990. 62(15): p. 1619-1623.
    79. Bowyer, W.J. and D.M. Odell, Preparation of Band Microelectrode Arrays from Tefzel Film and Metal Foil. Abstracts of Papers of the American Chemical Society, 1990. 199: p. 6-Anyl.
    80. Liu, J., et al., Detection of hydrazine, methylhydrazine, and isoniazid by capillaryelectrophoresis with a palladium modified microdisk array electrode. Analytical Chemistry, 1996. 68(19): p. 3350-3353.
    81. Caudill, W.L., J.O. Howell, and R.M. Wightman, Flow-Rate Independent Amperometric Cell. Analytical Chemistry, 1982. 54(14): p. 2532-2535.
    82. Magee, L.J. and J. Osteryoung, Fabrication and Characterization of Glassy-Carbon Linear-Array Electrodes. Analytical Chemistry, 1989. 61(18): p. 2124-2126.
    83. Jin, W.R., Q.F. Weng, and J.R. Wu, Determination of bovine serum albumin by capillary zone electrophoresis with end-column amperometric detection at the carbon fiber microdisk array electrode. Analytica Chimica Acta, 1997. 342(1): p. 67-74.
    84. Jin, W.R., H.Y. Wei, and X. Zhao, Determination of adenine and guanine by capillary zone electrophoresis with end-column amperometric detection at a carbon fiber microdisk array electrode. Electroanalysis, 1997. 9(10): p. 770-774.
    85. Zhang, B., et al., Spatially and temporally resolved single-cell exocytosis utilizing individually addressable carbon microelectrode arrays. Analytical Chemistry, 2008. 80(5): p. 1394-1400.
    1 Fletcher, S. and M.D. Horne, Random assemblies of microelectrodes (RAM (TM) electrodes) for electrochemical studies. Electrochemistry Communications, 1999. 1(10): p. 502-512.
    2 Provent, C., et al., Boron-doped diamond electrodes and microelectrode-arrays for the measurement of sulfate and peroxodisulfate. Electrochimica Acta, 2004. 49(22-23): p. 3737-3744.
    3董绍俊,赵峰,王鸣魁。微盘阵列电极的制备方法。ZL. 200310110043.7
    1. Lee, H.J., et al., Cyclic voltammetry at a regular microdisc electrode array. Journal of Electroanalytical Chemistry, 2001. 502(1-2): p. 138-145.
    2. Sosna, M., et al., Development of a reliable microelectrode dissolved oxygen sensor. Sensors and Actuators B-Chemical, 2007. 123(1): p. 344-351.
    3. Pletcher, D. and S. Sotiropoulos, Towards a microelectrode sensor for the determination of oxygen in waters. Analytica Chimica Acta, 1996. 322(1-2): p. 83-90.
    4. Akita, K., Diffusivities of Gases in Aqueous-Electrolyte Solutions. Industrial & Engineering Chemistry Fundamentals, 1981. 20(1): p. 89-94.
    5. Xu, X., et al., A simple and inexpensive method for fabrication of ultramicroelectrode array and its application for the detection of dissolved oxygen. Electroanalysis, 2008. 20(7): p. 797-802.
    1. Barreca, D., et al., Chemical vapor deposition of copper oxide films and entangled quasi-1D nanoarchitectures as innovative gas sensors. Sensors and Actuators B-Chemical, 2009. 141(1): p. 270-275.
    2. Chen, Y., et al., Multifunctional ZnO-Based Thin-Film Bulk Acoustic Resonator for Biosensors. Journal of Electronic Materials, 2009. 38(8): p. 1605-1611.
    3. Khanderi, J., et al., Synthesis and sensoric response of ZnO decorated carbon nanotubes. Journal of Materials Chemistry, 2009. 19(28): p. 5039-5046.
    4. Gupta, M.K., et al., Piezoelectric, dielectric, optical and electrical characterization of solution grown flower-like ZnO nanocrystal. Materials Letters, 2009. 63(22): p. 1910-1913.
    5. Zhang, Y., H. Sun, and C.F. Chen, New template for metal decoration and hydrogen adsorption on graphene-like C3N4. Physics Letters A, 2009. 373(31): p. 2778-2781.
    6. Andrade, A.L., et al., Catalytic Effect of Magnetic Nanoparticles Over the H2O2 Decomposition Reaction. Journal of Nanoscience and Nanotechnology, 2009. 9(6): p. 3695-3699.
    7. Polshettiwar, V., B. Baruwati, and R.S. Varma, Self-Assembly of Metal Oxides into Three-Dimensional Nanostructures: Synthesis and Application in Catalysis. Acs Nano, 2009. 3(3): p. 728-736.
    8. Ma, L., et al., Synthesis and characterization of flower-like MoS2 microspheres by a facile hydrothermal route. Materials Letters, 2009. 63(23): p. 2022-2024.
    9. Zhao, W., et al., Catalytic deposition of pb on regenerated gold nanofilm surface and its application in selective determination of Pb2+. Langmuir, 2007. 23(16): p. 8597-8601.
    10. Zhao, W., et al., Fabrication, characterization and application of gold nano-structured film. Electrochemistry Communications, 2006. 8(5): p. 773-778.
    11. Ding, H.J., et al., Novel sea urchin-like polyaniline microspheres-supported molybdenum catalyst: Preparation, characteristic and functionality. Journal of Molecular Catalysis a-Chemical, 2009. 308(1-2): p. 25-31.
    12. Shiigi, H., et al., Self-organization of an organic-inorganic hybrid nanomushroom by a simple synthetic route at the organic/water interface. Chemical Communications, 2009(24): p. 3615-3617.
    13. Lu, G.W., C. Li, and G.Q. Shi, Synthesis and characterization of 3D dendritic gold nanostructures and their use as substrates for surface-enhanced raman scattering.Chemistry of Materials, 2007. 19(14): p. 3433-3440.
    14. Hu, Y., et al., Fabrication of dendrite-like Au nanostructures and their enhanced photolumineseence emission. Physica Status Solidi a-Applications and Materials Science, 2007. 204(10): p. 3398-3404.
    15. Qin, Y., et al., Ionic liquid-assisted growth of single-crystalline dendritic gold nanostructures with a three-fold symmetry. Chemistry of Materials, 2008. 20(12): p. 3965-3972.
    16. Tang, X.L., et al., Poly(N-vinyl-2-pyrrolidone) (PVP)-capped dendritic gold nanoparticles by a one-step hydrothermal route and their high SERS effect. Langmuir, 2008. 24(5): p. 1763-1768.
    17. Zhang, J.C., et al., Fabrication of dendritic gold nanoparticles by use of an ionic polymer template. Langmuir, 2008. 24(6): p. 2699-2704.
    18. Saltykova, N.A., O.L. Semerikova, and N.G. Molchanova, Dendrite structure of electrolytic gold deposited from molten chlorides. Russian Journal of Electrochemistry, 2007. 43(8): p. 863-869.
    19. Sheffer, M. and D. Mandler, Control of locally deposited gold nanoparticle on polyaniline films. Electrochimica Acta, 2009. 54(11): p. 2951-2956.
    20. Malel, E. and D. Mandler, Localized electroless deposition of gold nanoparticles using scanning electrochemical microscopy. Journal of the Electrochemical Society, 2008. 155(6): p. D459-D467.
    21. Meltzer, S. and D. Mandler, Microwriting of Gold Patterns with the Scanning Electrochemical Microscope. Journal of the Electrochemical Society, 1995. 142(6): p. L82-L84.
    22. Radtke, V., C. Hess, and J. Heinze, Metal deposition by inducing a microgalvanic cell with the scanning electrochemical microscope (SECM). Zeitschrift Fur Physikalische Chemie-International Journal of Research in Physical Chemistry & Chemical Physics, 2007. 221(9): p. 1221-1236.
    23. Radtke, V., et al., Electroless, electrolytic and galvanic copper deposition with the Scanning Electrochemical Microscope (SECM). Zeitschrift Fur Physikalische Chemie-International Journal of Research in Physical Chemistry & Chemical Physics, 2006. 220(4): p. 393-406.
    24. Radtke, V. and J. Heinze, Scanning electrochemical microscopy as a versatile tool for modifying surfaces. Zeitschrift Fur Physikalische Chemie-International Journal of Research in Physical Chemistry & Chemical Physics, 2004. 218(1): p. 103-121.
    1 Y. Li, Y.-Y. Song, C. Yang, and X.-H. Xia, Electrochemistry Communications 9:981 (2007).
    2 S. Papadimitriou, S. Armyanov, E. Valova, A. Hubin, O. Steenhaut, E. Pavlidou, G. Kokkinidis, and S. Sotiropoulos, Journal of Physical Chemistry C 114:5217 (2010).
    3 A. Tegou, S. Armyanov, E. Valova, O. Steenhaut, A. Hubin, G. Kokkinidis, and S. Sotiropoulos, Journal of Electroanalytical Chemistry 634:104 (2009).
    4 J. Yin, J. B. Jia, and L. D. Zhu, International Journal of Hydrogen Energy 33:7444 (2008).
    5 W. Zhao, J. J. Xu, C. G. Shi, and H. Y. Chen, Electrochemistry Communications 8:773 (2006).
    6 J. B. Jia, L. Y. Cao, and Z. H. Wang, Langmuir 24:5932 (2008).
    7 W. Huang, M. H. Wang, J. F. Zheng, and Z. L. Li, Journal of Physical Chemistry C 113:1800 (2009).
    8 Y. P. Deng, W. Huang, X. Chen, and Z. L. Li, Electrochemistry Communications 10:810 (2008).
    9 A. Kiani and E. N. Fard, Electrochimica Acta 54:7254 (2009).
    10 X. Xu, C. Liu, J. Jia, B. Liu, X. Yang, and S. Dong, Electroanalysis 20:797 (2008).
    11 W. Zhao, P. Y. Ge, J. J. Xu, and H. Y. Chen, Langmuir 23:8597 (2007).
    12 Y. Shen, L. H. Bi, B. F. Liu, and S. J. Dong, New Journal of Chemistry 27:938 (2003).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700