用户名: 密码: 验证码:
陶瓷膜及吸附剂在高温气体分离和CO_2捕集中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文针对与三条二氧化碳捕集技术路线(即燃烧后脱碳、燃烧前脱碳和富氧燃烧技术)相关的两类气体,即CO_2和O_2,的分离和富集展开研究。选用致密离子导体膜和陶瓷吸附剂作为分离载体。
     第二章建立了一个分析CO_2/O_2渗透通过包含混合电子-离子传导氧化物陶瓷(MCOC)相和熔融碳酸盐(MC)相的双相膜模型。并推导出了描述一些特殊情况下纯CO_2的渗透模型。结果显示,当CO_2和O_2一起渗透时,CO_2的渗透通量比相应的纯CO_2渗透时的大一个数量级。CO_2和O_2的渗透通量都随着反应侧O_2分压和MCOC相的电子电导率(σ_(h·))的增大而增大。当MCOC相的电子电导率很小时,例如σ_(h·)≤0.1 S/cm,CO_2的渗透通量随着MCOC相的离子电导率增大而增大;而当MCOC相的电子电导率很大时,例如σ_(h·)>1 S/cm,CO_2的渗透通量随着MCOC相的离子电导率增大而减小。对于纯的CO_2渗透过程,CO_2的渗透通量随着MCOC相的离子电导率增大而增大,随着MC相的体积分数的增加而减小。规则的陶瓷载体的孔结构有利于CO_2和O_2的渗透。
     第三章利用直接浸润法合成了致密的Bi_(1.5)Y_(0.3)Sm_(0.2)O_3 (BYS)- MC双相膜,并将其用于高温CO_2的选择性渗透分离。由于氧离子的传导相中的斜方六面体结构和立方萤石结构之间的可逆相变,在高温CO_2渗透实验的初始阶段,需要很长时间才能达到稳态渗透。CO_2在双相膜中的渗透通量随着温度的升高而增大(500-650℃),其渗透活化能是113.4 kJ/mol。CO_2的渗透通量随着吹扫气流速的增大而增大(25-125 mL/min)。
     第四章推导了一个一维致密透氧膜反应器模型,并用其对膜反应器中甲烷部分氧化反应(POM)制合成气的过程进行了模拟。采用了燃烧-重整机理描述POM,并且考虑了重整产物H2和CO的氧化。结果表明:考虑重整产物氧化反应的模型比忽视产物氧化反应的模型更合理。如果在反应器中甲烷完全消耗,则将发生飞温。选定反应器进料温度作为主要参考指标考察反应器的各种操作性能和这种现象的关系,并且定义了临界进料温度(BIT)概念。模拟结果显示,当反应器进料温度接近BIT时,可以获得最佳的膜反应器操作性能。
     第五章利用模型分析了反应条件下离子或混合传导陶瓷膜的氧渗透性能。该模型考虑了不同的氧传输传导机理,例如p型或者n型传输膜,以及不同的化学反应速率。结果表明,无论对p或n型传导机理膜来说,当膜一侧有氧消耗反应发生时,反应侧氧分压随反应速率的增快而降低,而氧渗透通量随之增大。这些变化介于没有化学反应发生和反应达到平衡这两种极限情况之间,并在反应速率极慢或者极快时接近于这两种极限情况。反应速率的增快能导致p型膜的氧传输机理从p向n型转变,而这种转变能使氧渗透通量增大近30倍。
     第六章利用柠檬酸盐法制备钙钛矿结构SrCo_(0.8)Fe_(0.2)O_(3-δ)(SCF),并利用其制备用于富氧燃烧过程中需要的高温O_2-CO_2气体混合物。当吸附剂在高温条件下暴露于CO_2气体流时,氧气将会从吸附剂内脱附出来,得到一个富含氧气的高温CO_2气体流。当SCF吸附剂在空气中再生时,氧气又会被吸附剂吸收。利用XRD和TGA分析结果鉴定了O_2脱附过程的碳酸盐化反应机理。最佳的氧气吸附和脱附温度分别为900和850℃。多次吸附/脱附循环实验显示SCF吸附剂具有很高的活性和循环稳定性。
This work focuses on high-temperature separation and enrichment of CO_2 and O_2, which are the most relevant separations with three CO_2 capture pathways: post-combustion capture, pre-combustion capture, and oxy-combustion, with dense ionic conducting membrane and ceramic sorbent.
     In chapter 2, a theoretical model is developed for CO_2/O_2 permeation through a dual-phase membrane consisting of mixed-conducting oxide ceramic (MCOC) and molten carbonate (MC) phases. Somewhat simpler theoretical CO_2 permeation equation is obtained for the pure CO_2 permeation case. The results show that CO_2 permeation flux (J CO_2) with involving oxygen permeation is more than one order of magnitude higher than the corresponding J CO_2 for a pure CO_2 permeation case. The fluxes of CO_2 and O_2 (J O_2) increase with increasing O_2 partial pressure in the feeding gases. Both J CO_2and J O_2 increase with increasing electronic conductivity (σ_(h·)) of the MCOC phase. J CO_2increases with increasing ionic conductivity (σ_( V··)) of the MCOC phase atσ_(h·)≤0.1 S/cm, while decreases with an increase ofσ_( V··)atσ_(h·)>1 S/cm. For the pure CO_2 permeation case, J CO_2 increases with the increase ofσ_( V··)and decreases with increasing MC volume fraction. An ordered ceramic pore structure benefits CO_2 and O_2 permeation.
     In chapter 3, a dense Bi_(1.5)Y_(0.3)Sm_(0.2)O_3 (BYS)-MC dual-phase membrane is synthesized by the direct infiltration method and used for selective permeation of CO_2 at high temperatures. Permeation takes a long time to reach a steady state at the initial stage due to the reversible phase change of the oxygen ions conduction phase between the rhombohedral structure and cubic fluorite structure. J CO_2increases with increasing temperature (500-650°C), with apparent activation energy of 113.4 kJ/mol. J CO_2 increases with increasing sweep gas flow rate(25-125 mL/min).
     In chapter 4, a one-dimensional dense oxygen permeation membrane reactor (DMR) model is developed to simulate the partial oxidation of methane (POM) to syngas. A combustion-reforming mechanism is adopted and the oxidation of reforming products, i.e. H_2 and CO, is considered. The results show that the model with incorporation of the product oxidation steps is more reasonable than those ignoring the product oxidation reactions. The model predicts that if methane is consumed completely in the reactor, a temperature runaway occurs. The reactor inlet temperature is chosen as a major factor to demonstrate the correspondence of the reactor performance and this phenomenon. A borderline inlet temperature (BIT) is defined. Simulation results show that when the reactor inlet temperature approaches to this value, an optimized reactor performance is achieved.
     In chapter 5, the oxygen permeation through oxygen ionic or mixed-conducting ceramic membranes under reaction conditions is examined with a model taking into account of different transport mechanisms, i.e. p-type and n-type transport, and finite reaction rate. It is demonstrated that with a reaction consuming oxygen in one side of the membrane, the oxygen partial pressure in the reaction side decreases, whileJ O_2 increases from the value of no reaction case to that of complete reaction case, with the increase of the reaction rate. The increase of reaction rate causes a transition of the transport mechanism from p-type to n-type, which leads to an increase of J O_2 by up to 30 times of magnitude.
     In chapter 6, perovskite-type SrCo0.8Fe0.2O3-δ(SCF) is prepared by a liquid citrate method and used to produce O_2-CO_2 gas mixture for oxyfuel combustion. O_2 is desorbed and an O_2-enriched CO_2 stream is obtained when SCF is exposed in a CO_2 stream at high temperature. O_2 is adsorbed when SCF is regenerated in an air stream. A carbonation-reaction mechanism for O_2-desorption is identified with the evidences of XRD and TGA analysis. Optimal temperatures for O_2 sorption and desorption processes are determined to be 900 and 850℃, respectively. Multiple sorption and desorption cycles indicate that SCF sorbent has high reactivity and cyclic stability.
引文
[1]黄黎明,陈赓良,二氧化碳的回收利用与捕集储存,石油与天然气化工,2006, 35(5): 354-358.
    [2] National Oceanic and Atmospheric Administration (2008, April 24). Greenhouse gases, carbon dioxide and methane, rise sharply in 2007. Science Daily, http://www.sciencedaily.com/releases/2008/04/080423181652.htm.
    [3] Bredesen R., Jordal K., Bolland O., High-temperature membranes in power generation with CO_2 capture, Chem. Eng. Process., 2004, 43: 1129-1158.
    [4] Personal communication with Paul Freund of the IEA Greenhouse Gas R&D Programme.
    [5] IEA World Energy Outlook (2000 data).
    [6] Energil?get, The energy situation, Swedish National Energy Administration, Publication ET, 2002, 18: 2002.
    [7]段立强,林汝谋,蔡睿贤,金红光,CO_2零排放的整体煤气化联合循环系统研究进展,燃气轮机技术,2002, 15(3): 31-35.
    [8] Ito S., Makino H., Carbon dioxide separation from coal gas by physical adsorption at warm temperature, Greenhouse Gas Control Technologies, 1999, 131-136.
    [9] Lozza G., Chiesa P., Natural gas decarbonization to reduce CO_2 emission from combined cycles: Part I. Partial oxidation, J. Eng. Gas Turbines Power, 2002, 124: 82-88.
    [10] Lozza G., Chiesa P., Natural gas decarbonization to reduce CO_2 emission from combined cycles: Part II. Steam-methane reforming, J. Eng. Gas Turbines Power, 2002, 124: 89-95.
    [11] Andersen T., Kvamsdal H.M., Bolland O., Gas turbine combined cycle with CO_2 using auto-thermal reforming of natural gas, in: Proceedings of ASME Turboexpo, 2000, Paper no. 2000-GT-162.
    [12] Kvamsdal H.M., Ertesv?g I.S., Bolland O., et al., Energy analysis of gas turbine combined cycle with CO_2 capture using pre-combustion decarbonization of natural gas, in: Proceedings of ASME Turboexpo, 2002, Paper no.GT-2002-30411.
    [13]阎维平,温室气体的排放以及烟气再循环煤粉燃烧技术的研究,中国电力, 1997, 30(6): 59-62.
    [14] Yang R. T., Gas separation by adsorption processes, Imperial College Press: River Edge, NJ, 1997.
    [15] Chung S. J., Park J. H., Li D., et al., Dual-phase metal-carbonate membrane for high-temperature carbon dioxide separation, Ind. Eng. Chem. Res., 2005, 44: 7999-8006.
    [16] Chung S.J., Dual-phase inorganic membrane for high temperature carbon dioxide separation, Thesis, University of Cincinnati, 2004.
    [17] Apffel F.P., Carbon dioxide absorption methanol process, US patent: 4,675,035, 1987.
    [18] Vilcu R., Gainar I., Anitescu G., The influence of the diisopropanol amine addition on the carbon dioxide absorption in dimethylether polyethylene glycols at high pressures, Revue Roumaine de Chimie, 1997, 42(1): 63-66.
    [19] Herzog H., An introduction to CO_2 separation and capture technologies, MIT Energy Laboratory, August, 1999.
    [20] Bai H., Yeh A.C., Removal of CO_2 greenhouse gas by ammonia scrubbling, Ind. Eng. Chem. Res., 1997, 36: 2490-2493.
    [21] Yeh A. C., Bai H., Comparison of ammonia and monoethanolamine solvents to reduce CO_2 greenhouse emissions, Science of the Total Environment, 1999, 228: 121-133.
    [22] Siriwardane R.V., Shen M., Fisher E.P., et al., Adsorption of CO_2 on molecular sieves and activated carbon, Energy and Fuels, 2001, 15: 279-284.
    [23] Yong Z., Mata V., Rodrigues A.E., Adsorption of carbon dioxide on chemically modified high surface area carbon based adsorbents at high temperatures, Adsorption, 2001, 7(1): 41-50.
    [24] Lila M.M., Finn J.E., Carbon dioxide adsorption on 5A zeolite adsorption designed for CO_2, Removal in Spacecraft Cabins, NASA, 1998, TM-1998-208752.
    [25] Auronox A., Gervasini A., Microcalorimetric study of the acidity and basicity of metal oxide surfaces, J. Phys. Chem., 1990, 94: 6371-6379.
    [26] Sircar S., Anand M., Carvill B., et al., Sorption enhanced reaction process (SERP) for production of hydrogen, Proc. 1995 U.S. DOE Hydrogen Program Rev.,1995, 1: 815-832.
    [27] Ding Y., Alpay E., Equilibria and kinetics of CO_2 adsorption on hydrotalcite adsorbent, Chem. Eng. Sci., 2000, 55(17): 3471-3474.
    [28] Yong Z., Mata V., Rodrigues A.E., Adsorption of carbon dioxide onto Hydrotalcite-like compounds (HTlcs) at high temperatures, Ind. Eng. Chem. Res., 2001, 40: 204-209.
    [29] Anand M., Hufton J., Mayorga S., et al., Sorption enhanced reaction process (SERP), Proc. 1996 U.S. DOE Hydrogen Program Rev., 1996, 1: 537-549.
    [30] Hufton J.R., Mayogra S.G., Gaffney T.R., et al., Sorption enhanced reaction process (SERP) for the production of hydrogen, Proc. 1996 U.S. DOE Hydrogen program Rev., 1996, 2: 693-705.
    [31] Riemer P.W.F., Webster I.C., Ormerod W.G., et al., Results and full fuel cycle study plants from the IEA greenhouse gas research and development programme, Fuel, 1994, 73(7): 1151-1158.
    [32] U.S. Department of Energy, The capture, utilization and disposal of carbon dioxide from fossil fuel-fired power plants, DOE/ER30194.
    [33] Chemical rubber company, CRC handbook of chemistry and physics, 2002.
    [34] Riemer P.W.F., Audus H., Smith A., Carbon dioxide capture from power stations, IEA Greenhouse Gas R&D Programme, IEA, UK, 1994.
    [35] Mulder M., Basic principle of membrane technolog, Kluwer, Boston, 1991.
    [36] Nakagawa T., Encyclopedia of Membrane Technology, vol. 1, Fuji, Technosystem, Tokyo, 1991.
    [37] Takagi K., Kazama S., Hirayama Y., et al., CO_2 separation through polymeric hollow fiber membranes, Preprints of the 60th annual meeting of the Society of Chemical Engineers, Osaka, Japan, 1995, p.336.
    [38] Hayashi J., Yamamoto M., Kusakabe K., et al., Effect of oxidation on gas permeation of carbon molecular sieving membranes based on BPDA-pp’OD A Polyimide, Ind. Eng. Chem. Res., 1997, 36: 2134-2140.
    [39] Kusakabe K., Ichiki K., Hayashi J., et al., Preparation and characterization of silica-polyimide composite membrane coated on porous tubes for CO_2 separation, J. Membr. Sci., 1996, 115: 65-75.
    [40] Okamoto K., Fujii M., Okamyo S., et al., Selective permeation of carbon dioxide over nitrogen thorough polyethylene oxide-containing polyimide membranes, Chem. Lett., 1993, 2: 225-228.
    [41] Haraya K., Nakajima M., Itoh N., et al., Feasibility study of the application of membrane separation in CO_2 removal from flue gases, Kagaku Kogaku Ronbunsyu, 1993, 19: 714-721.
    [42] Matsuyama H., Teramoto M., Iwai K., Development of a new functional cation- exchange membrane and its application to facilitated transport of CO_2, J. Membr. Sci., 1994, 93(3): 237-244.
    [43] Matsuyama H., Terada A., Nakagawara T., et al., Facilitated transport of CO through polyethylenimine/poly(viniyalcohol) blend membrane, J. Membr. Sci., 1999, 163: 221-227.
    [44] Young J.S., Espinoza B.F., Berchtold K.A., et al., High temperature CO_2 separations using polymeric-metallic composite membranes, Abstracts of papers of the American chemical society, 2003, 225, IEC-027.
    [45] Yan Y., Davis M.E., Gavalas G.R., Preparation of zeolite ZSM-5 membranes by in-situ crystallization on porousα-Al2O3, Ind. Eng. Chem. Res., 1995, 34: 1652-1661.
    [46] Poshusta J.C., Tuan V.A., Falconer J.L., et al., Synthesis and permeation properties of SAPO-34 tubular membranes, Ind. Eng. Chem. Res., 1998, 37: 3924-3929.
    [47] Kusakabe K., Kuroda T., Murata A., et al., Formation of a Y-type Zeolite membrane on a porousα–alumina tube for gas separation, Ind. Eng. Chem. Res., 1997, 36: 649-655.
    [48] Kusakabe K., Kuroda T., Morooka S., Separation of carbon dioxide from nitrogen using ion-exchanged faujasite-type zeolite membranes formed on porous support tubes, J. Membr. Sci., 1998, 148 (1): 13-23.
    [49] Raman N.K., Anderson M.T., Brinker C.J., Template-based approaches to the preparation of amorphous nanoporous silicas, Chem. Matter., 1996, 8: 1682-1701.
    [50] Kuraoka K., kubo N., Yazawa T., Microporous silica xerogel membrane with high selectivity and high permeance for carbon dioxide separation, J. of Sol-gel Science and Technology, 2000, 19: 515-518.
    [51] Japan Fine Ceramic Society Reports, High temperature carbon dioxide separation, recovery and utilization, JFCC, Nagoya 1998-2000.
    [52] Shekhawat D., Luebke D.R., Pennline H.W., A review of carbon dioxide selective membranes, Department of Energy, 2003 National Energy TechnologyLaboratory.
    [53] Granite E.J., O’Brien T., Review of novel methods for carbon dioxide separation from flue and fuel gases, Fuel Process. Technol., 2005, 86: 1423-1434.
    [54]徐南平,面向应用过程的陶瓷膜材料设计、制备与应用,北京,科学出版社,2005.
    [55] Anderson M., Lin Y.S., Synthesis and characterization of carbonate-ceramic dual-phase membranes for carbon dioxide separation, Proc. 9th Internal. Conf. on Inorganic Membranes, R. Bredesen and H. Rader (Eds), 2006, pp. 678-681.
    [56] Wade J.L., Lackner K.S., West A.C., Transport model for a high temperature, mixed conducting CO_2 separation membrane, Solid State Ionics, 2007, 178: 1530-1540.
    [57] Abdel-Salam O.E. and winnick J., Simulation of an electrochemical carbon dioxide concentrator, AIChE J., 1976, 22 (6):1042-1050.
    [58] Weaver J.L. and Winnick J., The molten carbonate carbon dioxide concentrator: cathode performance at high CO_2 utilization, J. Electrochem. Soc.: Electrochemical Science and Technology, 1983, 130(1): 20-28.
    [59] Kang M.P., Winnick J., Concentration of carbon dioxide by a high-temperature electrochemical membrane cell, J. Applied Electrochemistry, 1985, 15: 431-439.
    [60] Kasai H., CO_2 electrochemical separation by molten carbonate technology, 223rd American Chemical Society national meeting, Fuel chemistry division, 2002, 47(1): 69-70.
    [61] Bouwmeester H.J.M., Burggraaf A.J., Dense ceramic membranes for oxygen separation, In: Burggraaf A.J. and Cot L., Editors, Fundamentals of Inorganic Membrane Science and Technology, Elsevier, Amsterdam, 1996.
    [62] Sunarso J., Baumann S., Serra J.M., et al., Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation, J. Membr. Sci., 2008, 320:13-41.
    [63] Bouwmeester H.J.M., Kruidhof H., Burggraaf A.J., et al., Oxygen permeability of erbia-stabilized bismuth oxide, Solid State Ionics, 1992, 460: 53-56.
    [64] Lin Y.S., Wang W., Han J., Oxygen permeation through dense mixed-conducting oxide membranes, AIChE J., 1994, 40: 786-798.
    [65] Zeng Y., Lin Y.S., Oxidative coupling of methane on improved bismuth oxide membrane reactor, AIChE J., 2001, 47(2): 436-444.
    [66] Arashi H., Naito H., Oxygen permeability in ZrO_2-TiO_2-Y2O3 system, Solid StateIonics, 1992, 53-56: 431-435.
    [67] Cales B., Baumard J.F., Mixed conduction and defect structure of ZrO_2-TiO_2-Y2O3 solid solutions, J. Electrochem. Soc., 1984, 131: 2407-2413.
    [68] Nigara Y., Mizusaki J., Ishigame M., Measurement of oxygen permeability in CeO_2 doped CSZ, Solid State Ionics, 1995, 79: 208-211.
    [69] Nigara Y., Kosaka Y., Kawamura K., et al., Oxygen permeability in ZrO_2-CeO_2-MgO at high temperatures, Solid State Ionics, 1996, 86-88: 739-744.
    [70] Cao G.Z., Liu X.Q. , Brinkman H.W., et al., Mixed Conduction and oxygen permeation of ZrO_2-Tb2O3.5-Y2O3 solid solutions, In: Badwal S.P.S., Bannister M.J., Hannink R.H.J., Editors, Science and technology of zirconia V, Technomic Publishing Company Inc., Lancaster, Pennsylvania, U.S.A., 1993.
    [71] Han P., Worrell W.L., Mixed (oxygen ion and p-type) conductivity in yttria-stabilized zirconia containing terbia, J. Electrochem. Soc., 1995, 142: 4235-4245.
    [72] Iwahara H., Esaka T., Takada K., Science and technology of zirconia III, Yanagida H, Yamamoto N, and Somiya S, Editors, Advances in Ceramics, 1988, 24: 907.
    [73] Van Dijk M.P., De Vries K.J., Burggraaf A.J., Oxygen ion and mixed conductivity in compounds with the fluorite and pyrochlore structure, Solid State Ionics, 1983, 9/10, 913-920.
    [74] Van Dijk M.P., De Vries K.J., Burggraaf A.J., Electrical conductivity and defect chemistry of the system (TbxGd1-x)Zr2O7+y (0    [75] Steele B.C.H., Oxygen ion conductors and their technological applications, Mater. Sci. Eng., 1992, B13: 79-87.
    [76] Costa A.D.S., Labrincha J.A., Marques F.M.B., Composite (YSZ +LSM) ceramic filters with oxygen electrochemical permeability, In: R Waser, S Hoffmann, D Bonnenberg and CH Hoffmann, Editors, Electroceramics IV, Augustinus Buchhandlung, Aachen, Germany, 1994, pp. 781-784.
    [77] Mazanec T.J., Cable T.L., Frye J.G., Electrocatalytic cells for chemical reactions, Solid State Ionics, 1992, 111: 53-56.
    [78] Chen C.S., Boukamp B.A., Bouwmeester H.J.M., et al., Microstructure development, electrical properties and oxygen permeation behavior of zirconia composites, Solid State Ionics, 1995, 76: 23-28.
    [79] Ten Elshof J.E., Nguyen N.Q., Den Otter M.W., et al., Oxygen permeation properties of dense Bi1.5Er0.5O3-Ag cermet membranes, J. Electrochem. Soc., 1997, 144: 4361-4366.
    [80] Liu M.L., Joshi A.V., Shen Y.S., et al., Composite mixed ionic-electronic conductors for oxygen separation and electrocatalysis, US patent: 5,478,444, 1995.
    [81] Kharton V.V., Kovalevsky A.V., Viskup A.P., et al., Oxygen permeability of Ce0.8Gd0.2O_2-δ-La0.7Sr0.3MnO3-δcomposite membranes, J. Electrochem. Soc., 2000, 147: 2814-2821.
    [82] Zhu X.F., Yang W.S., Composite membrane based on ionic conductor and mixed conductor for oxygen permeation, AIChE J., 2008, 54(3): 665-672.
    [83] Iwahara H., JP 56292103, 1981.
    [84] Teraoka Y., Zhang H.M., Furukawa S., et al., Oxygen permeation through perovskite-type oxides, Chem. Lett. , 1985, 14(11): 1743-1746.
    [85] Teraoka Y., Nobanaga T., Yamazoe N., Effect of cation substitution on the oxygen semipermeability of perovskite-type oxides, Chem. Lett., 1988, 17(3): 503-506.
    [86] Teraoka Y., Nobunaga T., Okamoto K., et al., Influence of constituent metal cations in substituted LaCoO3 on mixed conductivity and oxygen permeability, Solid State Ionics, 1991, 48: 207-212.
    [87] Kharton V.V., Naumovich E.N., Nikolaev A.V., Materials of high-temperature electrochemical oxygen membranes, J. Membr. Sci., 1996, 111(2): 149-157.
    [88] Zhang H., Li Z., Yu G., et al., Proceedings of the Fifth International Conference on Inorganic Membranes, 1998, 196-199.
    [89] Steele B.C.H., Ceramic ion conducting membranes, Curr. Opin. Solid State Mater. Sci., 1996, 1(5): 684-691.
    [90] Bouwmeester H.J.M., Kruidhof H., Burggraaf A.J., Importance of the surface exchange kinetics as rate limiting step in oxygen permeation through mixed-conducting oxides, Solid State Ionics, 1994, 72(38): 185-194.
    [91] Kilner J. A., in 2nd Int. Symp. on Ionics and Mixed Conducting Ceramics (eds. Ramanarayanan T A ,Warrell W L , Tuller H L ) , Electrochemical Society, New jersey, 1994, 174.
    [92] Qiu L., Lee T.H., Liu L.M., et al., Oxygen permeation studies of SrCo0.8Fe0.2O3-δ, Solid State Ionics, 1995, 76: 321-329.
    [93] Miura N., Okamoto Y., Tamaki J., et al., Oxygen semipermeability of mixed-conductive oxide thick-film prepared by slip casting, Solid State Ionics, 1995, 79: 195-200.
    [94] Thorogood R.M., Srinivasan R., Yee T.F., et al., Composite mixed conductor membranes for producing oxygen, US patent:5,240,480, 1993.
    [95] Tan X., Li K., Modeling of air separation in a LSCF hollow-fiber membrane Module, AIChE J., 2002, 48(7): 1469-1477.
    [96] Tan X., Liu Y., Li K., Preparation of LSCF ceramic hollow-fiber membranes for oxygen production by a phase-inversion/sintering technique, Ind. Eng. Chem. Res., 2005, 44(1): 61-66.
    [97] Wang Z., Yang N., Meng B., et al., Preparation and oxygen permeation properties of highly asymmetric La0.6Sr0.4Co0.2Fe0.8O3-δperovskite hollow-fiber membranes, Ind. Eng. Chem. Res., 2009, 48(1): 510-516.
    [98] Liu S., Gavalas G.R., Preparation of oxygen ion conducting ceramic hollow-fiber membranes, Ind. Eng. Chem. Res., 2005, 44(20): 7633-7637.
    [99] Liu S., Gavalas G.R., Oxygen selective ceramic hollow fiber membranes, J. Membr. Sci., 2005, 246(1): 103-108.
    [100] Schiestel T., Kilgus M., Peter S., et al., Hollow fibre perovskite membranes for oxygen separation, J. Membr. Sci., 2005, 258(1-2): 1-4.
    [101] Shao Z.P., Yang W.S., Cong Y., et al., Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3-δo?xygen membrane, J. Membr. Sci., 2000, 172(1-2): 177-188.
    [102]Tong J., Yang W., Cai R., et al., Novel and ideal zirconium based dense membrane reactors for partial oxidation of methane to syngas, Catal. Lett., 2002, 78: 129-137.
    [103] Kharton V.V., Viskup A.P., Kovalevsky A.V., et al., Oxygen ionic conductivity of Ti-containing strontium ferrite, Solid State Ionics, 2000, 133(1-2): 57-65.
    [104] Li S.G., Jin W.Q., Huang P., et al., Perovskite-related ZrO_2-doped SrCo0.4Fe0.6O3-δmembrane for oxygen permeation, AIChE J., 1999, 45(2): 276-284.
    [105] Yang L., Tan L., Gu X.H., et al., Effect of the size and amount of ZrO_2 addition on properties of SrCo0.4Fe0.6O3-δ, AIChE J., 2003, 49(9): 2374-2382.
    [106] Yang L., Gu X.H., Qi H., et al., Oxygen transport properties and stability of mixed-conducting ZrO_2-promoted SrCo0.4Fe0.6O3-δoxides, Ind. Eng. Chem. Res.,2002, 41(17): 4273-4280.
    [107] Schwartz M., White J.H., Sammels A.F., Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them, US patent: 6,214,757, 2001.
    [108] Figueiredo F.M., Kharton V.V., Viskup A.P., et al., Surface enhanced oxygen permeation in CaTi1-xFexO3-δceramic membranes, J. Membr. Sci., 2004, 236: 73-80.
    [109] Wang H.H., Tablet C., Feldhoff A., Caro J., A cobalt-free oxygen permeable membrane based on the perovskite-type oxide Ba0.5Sr0.5Zn0.2Fe0.8O3-δ, Adv. Mater., 2005, 17: 1785-1793.
    [110] Zhu X.F. Wang H.H., Yang W.S., Novel cobalt-free oxygen permeable membrane, Chem. Comm., 2004, 9: 1130-1131.
    [111]邵宗平,混合导体透氧膜及其在甲烷部分氧化制合成气反应中的应用,大连:中国科学院大连化学物理研究所, 2000.
    [112] Chen C.S., Ran S., Liu W., et al., YBa2Cu3O6+δas an oxygen separation membrane , Angew. Chem. Int. Ed., 2001, 40(4): 784-786.
    [113] Zeng Q., Zuo Y.-B., Fan C.-G., et al., CO_2-tolerant oxygen separation membranes targeting CO_2 capture application, J. Membr. Sci., 2009, 335: 140-144.
    [114] Dong X.L., Zhang G.R., Liu Z.K., et al., CO_2-tolerant mixed conducting oxide for catalytic membrane reactor, J. Membr. Sci., doi:10.1016/j.memsci.2009.05.023.
    [115] Tsai C-Y, Ma Y.H., Moser W.R., et al., Modeling and simulation of a nonisothermal catalytic membrane reactor, Chem. Eng. Commun., 1995, 134: 107-132.
    [116] Tsai C-Y, Ma Y.H., Moser W.R., et al., in Abstracts of Papers Presented at the Fourth International Conference on Inorganic Membrane, 1996, Gatlinburg, Tennessee USA.
    [117] Balachandran U, Dusek J.T., Mieville R.L., et al., Dense ceramic membranes for partial oxidation of methane to syngas, Appl. Catal. A: Gen., 1995, 133: 19-29.
    [118] Pei S., Kleefisch M.S., Kobylinski T. P., et al., Failure mechanisms of ceramic membrane reactors in partial oxidation of methane to synthesis gas, Catal. Lett., 1995, 30, 201-212.
    [119] Zhu X.F., Li Q.M., Cong Y., et al., Syngas generation in a membrane reactor with a highly stable ceramic composite membrane, Catal. Commun., 2008, 10: 309-312.
    [120] Lin Y.S., Zeng Y., Catalytic properties of oxygen semipermeable perovskite-type ceramic membrane materials for oxidative coupling of methane, J. Catal., 1996, 164: 220-231.
    [121] Zeng Y., Lin Y.S., Swartz S.L., Perovskite type ceramic membranes: synthesis, oxygen permeation and membrane reactor performance for oxidative coupling of methane, J. Memb. Sci., 1998, 150: 87-98.
    [122] Zeng Y., Lin Y.S., Oxygen permeation and oxidative coupling of methane in yttria doped bismuth oxide membrane reactor, J. Catal., 2000, 193: 58-64.
    [123] Bhatia S., Thien C.Y., Mohamed A.R., Oxidative coupling of methane (OCM) in a catalytic membrane reactor and comparison of its performance with other catalytic reactors, Chem. Eng. J., 2009,148: 525-532.
    [124] Zhang C., Chang X.F., Dong X.L., et al., The oxidative stream reforming of methane to syngas in a thin tubular mixed-conducting membrane reactor, J. membr. Sci., 2008, 320: 401-406.
    [125] Jin W.Q., Zhang C., Zhang P., et al., Thermal decomposition of carbon dioxide coupled with POM in a membrane reactor, AIChE J., 2006, 52(7): 2545-2550.
    [126]徐南平,金万勤,范益群,等,以CO_2为氧源制合成气的方法及其反应装置:中国专利,200410065196.9, 2004-04-10.
    [127]金万勤,徐南平,混合导体透氧膜材料的设计与应用,化工进展, 2006, 25(10): 1143-1151.
    [128] Dyer P.N., Richards R.E., Russek S.L., et al., Ion transport membrane technology for oxygen separation and syngas production, Solid State Ionics, 2000, 134: 21-33.
    [129] Kang D, Srinivasan R S, Thorogood R M, et al., Integrated high temperature method for oxygen production, US patent: 5,516,359, 1996.
    [130] Prasad R, Advanced membrane system for separating gaseous mixtures, US patent: 5,709,732, 1998.
    [131] Lin Y.S., McLean D.L., Zeng Y., High temperature adsorption process, US patent: 6,059,858, 2000.
    [132] Yang Z.H., Lin Y.S., Zeng Y., High-temperature sorption process for air separation and oxygen removal, Ind. Eng. Chem. Res., 2002, 41: 2775-2784.
    [133] Mizusaki J., Mima Y., Yamauchi S., et al., Nonstoichiometry of the perovskite-type oxides La1-xSrxCoO3-δ, J. Solid State Chem., 1989, 80(11): 102-111.
    [134] Mizusaki J., Yamauchi S., Fueki K., et al., Nonstoichiometry of perovskite-type oxides La1-xSrxCoO3-δ, Solid State Ionics, 1984, 12: 119-124.
    [135] Bouwmeester H.J.M., Burggraaf A.J., Dense ceramic membranes for oxygen separation, in: Gellings P. J., Bouwmeester H. J. M. (Eds.), The CRC Handbook of Solid State Electrochemistry, Chapter 14, CRC Press, Boca Raton, FL, 1997.
    [136] Yang Z.H., High temperature sorption process for air separation and oxygen removal, PhD Dissertation, U.S.: University of Cincinnati, 2002.
    [137] Yang Z.H., Lin Y.S., Equilibrium of oxygen sorption on perovskite-type lanthanum cobaltite sorbent, AIChE J., 2003, 49: 793-798.
    [138] Yang Z.H., Lin Y.S., Synergetic thermal effects for oxygen sorption and order-disorder transition on perovskite-type oxides, Solid State Ionics, 2005, 176: 89-96.
    [139] Yang Z.H., Lin Y.S., High-temperature oxygen sorption in a fixed bed packed with perovskite-type ceramic sorbents, Ind. Eng. Chem. Res., 2003, 42: 4376-4381.
    [140] Yin Q.H., Lin Y.S., Effect of dopant addition on oxygen sorption properties of La-Sr-Co-Fe-O perovskite type oxide, Adsorption, 2006, 12: 329-338.
    [141] Guntuka S., Banerjee S., Farooq S., et al., A- and B-site substituted lanthanum cobaltite perovskite as high temperature oxygen sorbent, 1. thermogravimetric analysis of equilibrium and kinetics, Ind. Eng. Chem. Res., 2008, 47: 154-162.
    [142] Kusaba H., Sakai G., Shimanoe K., et al., Oxygen-sorptive and -desorptive properties of perovskites related oxides under temperature-swing condition for oxygen enrichment, Solid State Ionics, 2002, 152: 689-694.
    [143] Kusaba H., Sakai G., Shimanoe K., et al., Temperature swing based oxygen enrichment by using perovskites-type oxide, J. Mater. Sci. Lett., 2002, 21(5): 407-409.
    [144] Yin Q.H., Lin Y.S., Beneficial effect of order-disorder phase transition on oxygen sorption properties of perovskite-type oxides, Solid State Ionics, 2007, 178: 83-89.
    [145] Stevenson J.W., Armstrong T.R., Carneim R.D., et al., Electrochemicalproperties of mixed conducting perovskites La1-xMxCo1-yFeyO3-δ(M=Sr, Ba, Ca), J. Electrochem. Soc., 1996, 143: 2722-2729.
    [146] Mizusaki J., Yoshihiro M., Yamauchi S., et al., Nonstoichiometry and defect structure of the perovskite-type oxides La1-xSrxFeO3-δ, J. Solid State Chem., 1985, 58: 257-266.
    [147] Lankhorst M.H.R., Bouwmeester H.J.M., Verweij H., High-temperature coulometric Titration of La1?xSrxCoO3?δ: evidence for the effect of electronic band structure on nonstoichiometry behavior, J. Solid State Chem., 1997, 133: 555-567.
    [148] Yin Q.H., Kniep J., Lin Y.S., Oxygen sorption and desorption properties of Sr-Co-Fe oxide, Chem. Eng. Sci., 2008, 63: 2211-2218.
    [149] Yang Q., Lin Y.S., Bülow M., High temperature sorption separation of air for producing oxygen-enriched CO_2 stream, AIChE J., 2006, 52(2): 574-581.
    [150] Yang Q., Lin Y.S., Fixed-bed performance for production of oxygen-enriched carbon dioxide stream by perovskite-type ceramic sorbent, Sep. Purif. Technol., 2006, 49: 27-35.
    [151] Yang Q., Lin Y.S., Improved sorbent for high-temperature production of oxygen-enriched carbon dioxide stream, Ind. Eng. Chem. Res., 2007, 46(18): 6025-6031.
    [152] Li Z.S., Zhang T., Cai N.S., Experimental study of O_2-CO_2 production for the oxyfuel combustion using a Co-based oxygen carrier, Ind. Eng. Chem. Res., 2008, 47: 7147-7153.
    [153] Yang H.Q., Xu Z.H., Fan M.H., et al., Progress in carbon dioxide separation and capture: A review, J. Environ. Sci., 2008, 20: 14-27.
    [154] Figueroa J.D., Fout T., Plasynski S., et al., Advances in CO_2 capture technology-The U.S. Department of Energy’s Carbon Sequestration Program, Int. J. Greenhouse Gas Control, 2008, 2: 9-20.
    [155] Energy Information Administration (EIA), Annual Energy Outlook 2006, 2006, http://www.eia.doe.gov/oiaf/aeo/.
    [156] Turkenburg W. C., Sustainable development, climate change and carbon dioxide removal (CDR), Energy Convers. Manage, 1997, 38: 3-12.
    [157] Draper E. L., Becker R. A., Research and development needs for the sequestration of carbon dioxide as part of a carbon management strategy, The National Coal Council: Washington D. C., 2000.
    [158] Horlock J. H., Advanced gas turbine cycles, Pergamon: Oxford, U.K., 2003.
    [159] Lackner K. S., West A. C., Wade J. L., In: U. Columbia (Ed.), WO_2006113674, 2006, United States.
    [160] Anderson M., Lin Y. S., Carbonate-ceramic dual-phase membrane for carbon dioxide separation, to be submitted.
    [161] Heyne L., Electrochemistry of Mixed Ionic-Electronic Conductors, Solid Electrolytes, Geller S. (eds), Springer-Verlag, New York, 1977, 167.
    [162] Xu S. J., Thomson W. J., Oxygen permeation rates through ion-conducting perovskite membranes, Chem. Eng. Sci., 1999, 54: 3839-3850.
    [163] Xu Q., Huang D., Chen W., Lee J., Kim B., Wang H., Yuan R., Influence of sintering temperature on microstructure and mixed electronic-ionic conduction properties of perovskite-type La0.6Sr0.4Co0.8Fe0.2O3 ceramics, Ceram. Int., 2004, 30: 429-433.
    [164] Selman J. R., Maru H. C., in: Mamantov G., Braunstein J., Mamantov C. B. (Eds.), Advances in Molten Salt Chemistry, New York: Plenum Press, 1981, p. 159.
    [165] Koh J.C.Y., Fortini A., Prediction of thermal conductivity and electrical resistivity of porous metallic materials, Int. J. Heat Mass Transfer, 1973, 16: 2013-2022.
    [166] Yamahara K., Sholklapper T. Z., Jacobson C. P., Visco S. J., De Jonghe L. C., Ionic conductivity of stabilized zirconia networks in composite SOFC electrodes, Solid State Ionics, 2005, 176: 1359-1364.
    [167] Aasberg-Peterson K., et al., in: Steynberg A., Dry M. (Eds.), Fischer-Tropsch technology, Elsevier, Amsterdam, 2004.
    [168] Lin Y.S., Kumakiri I., Nair B. N., et al., Microporous inorganic membranes, Separation and Purification methods, 2002, 31: 229-279.
    [169] Hasegawa Y., Kusakabe K., Morooka S., Effect of temperature on the gas permeation properties of NaY-type zeolite formed on the inner surface of a porous support tube, Chem. Eng. Sci., 2001, 56: 4273-4281.
    [170] Lu Y., Cao G., Kale R.P., et al., Microporous silica prepared by organic templating: relationship between the molecular template and pore structure, Chem. Mater., 1999, 11: 1223-1229.
    [171] Janz G., Allen C., Bansal N., et al., Physical Properties Data Compilations Relevant to Energy Storage; Molten Salts: Data on Single and Multi ComponentSalt System; NIST Standard Reference Database Standard NSRDS-NBS.61, Part 2; National Bureau of Standards: Washington, DC, 1979.
    [172] Zeng Y., Lin Y.S., Synthesis and properties of copper and samarium doped yttria-bismuth oxide powders and membranes, J. Mater. Sci., 2001, 36:1271-1276.
    [173] Abraham F., Boivin J.C., Mairesse G., et al., The BIMEVOX Series: A new family of high performances oxide ion conductors, Solid State Ionics, 1990, 40/41: 934-937.
    [174] Kim J., Lin Y.S., Synthesis and preparation of suspension derived porous ionic conducting ceramic membranes, J. Am. Ceram. Soc., 1999, 82(10): 2641-2646.
    [175] Chang C.H., Gopalan R., Lin Y.S., A comparative study on thermal and hydrothermal stability of alumina, titania and zirconia membranes, J. Membr. Sci., 1994, 91: 27-45.
    [176] Lin Y.S., Burggraaf A.J., Experimental studies on pore size change of porous ceramic membrane after modification, J. Membr. Sci., 1993, 79: 65-82.
    [177] Dionysiou D., Qi X., Lin Y.S., et al., Preparation and characterization of proton conducting terbium doped strontium cerate membranes, J. Membr. Sci., 1999, 154: 143-153.
    [178] Kanezashi M., O'Brien J., Lin Y. S., Thermal stability improvement of MFI-type zeolite membranes with doped zirconia intermediate layer, Micropor. Mesopor. Mater., 2007, 103: 302-308.
    [179] Watanabe A., Kikuchi T., Cubic-hexagonal transformation of yttria-stabilizedδ-bismuth sesquioxide, Bi2-2xY2xO3(x = 0.215-0.235), Solid State Ionics, 1986, 21: 287-291.
    [180] Petersen H., The properties of helium-density, specific heat, viscosity and thermal conductivity at pressures from 1 to 100 bar and from room temperature to 1800 K, Ris? Report, No. 224, 1970.
    [181] Youn J.Y., Yoon S.P., Han J., et al., Fabrication and characteristics of anode as an electrolyte reservoir for molten carbonate fuel cell, J. Membr. Sci., 2006, 157: 121-127.
    [182] Tsai C.Y., Dixon A.G., Moser W.R., et al., Dense perovskite membrane reactors for partial oxidation of methane to syngas, AIChE J., 1997, 43: 2741-2750.
    [183] Ashcroft A.T., Cheetham A.K., Foord J.S., et al., Selective oxidation ofmethane to synthesis gas using transition metal catalysts, Nature, 1990, 344: 319-321.
    [184] Dissanayake D., Rosynek M.P., Kharas K.C.C., et al., Partial oxidation of methane to carbon monoxide and hydrogen over a Ni/Al2O3 catalyst, J. Catal., 1991, 132: 117-127.
    [185] Hickman D.A., Schmidt L.D., Steps in CH4 oxidation on Pt and Rh surfaces: high-temperature reactor simulations, AIChE J., 1993, 39: 1164-1177.
    [186] Tong J., Yang W., Suda H., et al., Initiation of oxygen permeation and POM reaction in different mixed conducting ceramic membrane reactors, Catal. Today, 2006, 118: 144-150.
    [187] Wang H., Tablet C., Schiestel T., et al., Partial oxidation of methane to syngas in a perovskite hollow fiber membrane reactor, Catal. Commun., 2006, 7: 907-912.
    [188] Jin W., Gu X., Li S., et al., Experimental and simulation study on a catalyst packed tubular dense membrane reactor for partial oxidation of methane to syngas, Chem. Eng. Sci., 2000, 55: 2617-2625.
    [189] Ji P., Van der Kooi H. J., De Swaan Aron J., Simulation and thermodynamic analysis of conventional and oxygen permeable CPO reactors, Chem. Eng. Sci., 2003, 58: 2921-2930.
    [190] De Groote A. M., Froment G. F., Simulation of the catalytic partial oxidation of methane to synthesis gas, Appl. Catal. A., 1996, 138: 245-264.
    [191]Trimm D. L., Lam C. W., The combustion of methane on platinum-alumina fiber catalysts: I. kinetics and mechanism, Chem. Eng. Sci., 1980, 35: 1405-1413.
    [192] De Smet C.R.H., De Croon M.H.J.M., et al., Design of adiabatic fixed-bed reactors for the partial oxidation of methane to synthesis gas, Application to production of methanol and hydrogen-for-fuel-cells, Chem. Eng. Sci., 2001, 56: 4849-4861.
    [193] Xu J., Froment G. F., Methane steam reforming, methanation and water-gas shift: I. intrinsic kinetics, AIChE J., 1989, 35: 88-96.
    [194] Shi J., Wang G.D., Yu G.Z., et al., Chemical engineering handbook, Beijing (China): Chemical Industry Press, 1996.
    [195] King D. A., Woodruff D. P., Fundamental studies of heterogeneous catalysis: the Chemical Physics of Solid Surfaces and Heterogeneous Catalysis (Vol.4), Amsterdam: Elsevier, 1982.
    [196] Williams W. R., Marks C. M., Schmidt L. D., Steps in the reaction H2+O2 = H2O on Pt: OH desorption at high temperatures, J. Phys. Chem., 1992, 96: 5922-5931.
    [197] Murzin D., Salmi T., Catalytic Kinetics, Amsterdam: Elsevier, 2005.
    [198] David C. G., Calvin H. B., Kinetics of carbon deposition during methanation of CO, Ind. Eng. Chem. Prod. Res. Dev., 1981, 20: 80-87.
    [199] Bénard J., Adsorption on metal surfaces, Amsterdam: Elsevier, 1983.
    [200] Winkler A., Rendulic K.D., Wendl K., Quantitative measurement of the sticking coefficient for oxygen on nickel, Appl. Surf. Sci., 1983, 14: 209-220.
    [201] Ten Elshof J.E., Bouwmeester H.J.M., Verweij H., Oxidative coupling of methane in a mixed-conducting perovskite membrane reactor, Appl. Catal. A: Gen., 1995, 130: 195-212.
    [202] Ikeguchi M., Mimura T., Sekine Y., et al., Reaction and oxygen permeation studies in Sm0.4Ba0.6Fe0.8Co0.2O3-δmembrane reactor for partial oxidation of methane to syngas, Appl. Catal. A: Gen., 2005, 290: 212-220.
    [203] Akin F.T., Lin Y.S., Oxygen permeation through oxygen ionic or mixed-conducting ceramic membranes with chemical reactions, J. Membr. Sci., 2004, 231: 133-146.
    [204] Dixon A.G., Analysis of intermediate product yield in distributed-feed nonisothermal tubular membrane reactors, Catal. Today, 2001, 67:189-203.
    [205] Yaremchenko A.A., Valente A.A., Kharton V. V., et al., Oxidation of dry methane on the surface of oxygen ion-conducting membranes, Catal. Lett., 2003, 91: 69-174.
    [206] Kharton V.V., Shaula A.L., Snijkers F.M.M., et al., Processing, stability and oxygen permeability of Sr(Fe, Al)O3 - based ceramic membranes, J. Membr. Sci., 2005, 252: 215-225.
    [207] Kilner J.A., Fast oxygen transport in acceptor doped oxides, Solid State Ionics, 2000, 129: 13-23.
    [208] Lin Y.S., Microporous and dense inorganic membranes: current status and prospective, Sep. Purif. Technol., 2001, 25: 39-55.
    [209] Xu S.J., Thomson W.J., Stability of La0.6Sr0.4Co0.2Fe0.8O3-δperovskite membranes in reducing and nonreducing environments, Ind. Eng. Chem. Res., 1998, 37: 1290-1299.
    [210] Fagg D.P., Shaula A.L., Kharton V.V., et al., High oxygen permeability influorite-type Ce0.8Pr0.2O2-δvia the use of sintering aids, J. Membr. Sci., 2007, 299(1-2): 1-7.
    [211] Horovistiz A.L., Fagg D.P., Abrantes J.C.C., et al., Effects of Fe-additions on sintering and transport properties of Yb2Ti2-yFeyO7-δ, J. Eur. Ceram. Soc., 2007, 27(13-15):4283-4286.
    [212] Kruidhof H., Bouwmeester H.J.M., Van Doorn R.H.E., et al., Influence of order-disorder transitions on oxygen permeability through selected nonstoichiometric perovskite-type oxides, Solid State Ionics, 1993, 63-65: 816-822.
    [213] Tsai C.Y., Dixon A.G., Ma Y.H., et al., Dense perovskite La1-xA’xFe1-yCoyO3-δ(A’= Ba, Sr, Ca) membrane synthesis, application and characterization., J. Am. Ceram. Soc., 1998, 81: 1437-1444.
    [214] Li S., Jin W., Huang P., Xu N., et al., Comparison of oxygen permeability and stability of perovskite type La0.2A0.8Co0.2Fe0.8O3?δ(A=Sr, Ba, Ca) membranes, Ind. Eng. Chem. Res., 1999, 38: 2963-2972.
    [215] Yi J., Feng S., Zuo Y., et al., Oxygen permeability and stability of Sr0.95Co0.8Fe0.2O3?δin a CO2- and H2O-containing atmosphere, Chem. Mater., 2005, 17: 5856-5861.
    [216] Arnold M., Wang H., Feldhoff A., Influence of CO2 on the oxygen permeation performance and the microstructure of perovskite-type Ba0.5Sr0.5Co0.8Fe0.2O3-δmembranes, J. Membr. Sci., 2007, 293: 44-52.
    [217] Zhang K., Yang Y.L., Ponnusamy D., et al., Effect of microstructure on oxygen permeation in SrCo0.8Fe0.2O3?δ, J. Mater. Sci., 1999, 34: 1367-1372.
    [218] Kharton V.V., Figueiredo F.M., Kovalevsky A.V., et al., Processing, microstructure and properties of LaCoO3?δceramics, J. Eur. Ceram. Soc., 2001, 21: 2301-2309.
    [219] Wu Z., Zhou W., Jin W., et al., Effect of pH on synthesis and properties of perovskite oxide via a citrate process, AIChE J., 2006, 52: 769-776.
    [220] Qi X., Lin Y.S., Swartz S.L., Electric transport and oxygen permeation properties of lanthanum cobaltite membranes synthesized by different methods, Ind. Eng. Chem. Res., 2000, 39: 646-653.
    [221] Park J.H., Blumenthal R.N., Electronic transport in 8 mole percent Y2O3-ZrO2, J. Electrochem. Soc., 1989, 136: 2867-2876.
    [222] Gu X.H., Jin W.Q., Chen C.L., et al., YSZ-SrCo0.4Fe0.6O3-δmembranes for thepartial oxidation of methane to syngas, AIChE J., 2002, 48: 2051-2060.
    [223] Ten Elshof J.E., Bouwmeester H.J.M., Verweij H., Oxygen transport through La1-xSrxFeO3-δmembranes: I. Permeation in air/He gradients, Solid State Ionics, 1995, 81:97-109.
    [224] Van Hassel B.A., Ten Elshof J.E., Bouwmeester H.J.M., Oxygen permeation flux through La1-ySryFeO3 limited by carbon monoxide oxidation rate, Appl. Catal. A, 1994, 119: 279-291.
    [225] Stephens W.T., Mazanec T.J., Anderson H.U., Influence of gas flow rate on oxygen flux measurements for dense oxygen conducting ceramic membranes, Solid State Ionics, 2000, 129: 271-284.
    [226] Houghton J.T., Meira Filho L.G., Callander B.A., et al. (Eds), Climate change 1995: the science of climate change, contribution of working group I to the second assessment of the intergovernmental panel on climate change, Cambridge University Press: Cambridge, UK, 1996.
    [227] Okawa M., Kimura N., Kiga T., et al., Trial design for a CO2 recovery plant by burning pulverized coal in O2/CO2, Energy Convers. Manage., 1997, 38: 123-127.
    [228] Tan Y., Douglas M. A., Thambimuthu K.V., CO2 capture using oxygen enhanced combustion strategies for natural gas power plants, Fuel, 2002, 81: 1007-1016.
    [229] Tan Y., Croiset E., Douglas M.A., et al., Combustion characteristics of coal in a mixture of oxygen and recycled flu gas, Fuel, 2006, 85: 507-512.
    [230] Wilkinson M.B., Boden J.C., Panesar R. S., et al., CO2 capture via oxyfuel firing: optimisation of a retrofit design concept for a refinery power station boiler, Proceedings of First National Conference on Carbon Sequestration, Washington D. C., USA, 2001.
    [231] Wilkinson M.B., Simmonds M., Allam R.J., et al., Oxyfuel conversion of heaters and boilers for CO2 capture, Proceedings of Second National Conference on Carbon Sequestration, Washington D. C., USA, 2003.
    [232] Buhre B.J.P., Elliott L.K., Sheng C.D., et al., Oxyfuel combustion technology for coal-fired power generation, Energy and Combustion Science, 2005, 31(4): 283-307.
    [233] Liu L.M., Lee T.H., Qiu L., et al., A thermogravimetric study of the phase diagram of strontium cobalt iron oxide SrCo0.8Fe0.2O3-δ, Mater. Res. Bull, 1996,31: 29-35.
    [234] Scholten M. J., Schoonman J., Synthesis of srontium and barium cerate and their reaction with carbon dioxide, Solid State Ionics, 1993, 61 :83-91.
    [235] Lin Y.S., Yang Q., Ida J., High temperature sorption of carbon dioxide on perovskite-type metal oxides, J. Chin. Inst. Chem. Eng., doi:10.1016/j.jtice.2008.12.010.
    [236] Ida J., Xiong R.T., Lin Y.S., Synthesis and CO2 sorption properties of pure and modified lithium zirconate, Sep. Purif. Technol., 2004, 36: 41-51.
    [237] Xiong R.T., Ida J., Lin Y.S., Kinetics of carbon dioxide sorption on potassium-doped lithium zirconate, Chem. Eng. Sci., 2003, 58: 4377-4385.
    [238] Normura K., Homonnay Z., Juhasz G., et al., Mossbauer study of (Sr, Ca)(Fe, Co)O3-δapplied to CO2 absorption at high temperatures, Hyperfine Interact, 2002, 139/140: 297-305.
    [239] Nomura K., Ujihira Y., Hayakawa T., et al., CO2 absorption properties and characterization of perovskite oxides, (Ba,Ca)(Co,Fe)O3-δ, Appl. Catal., A: Gen., 1996, 137: 25-36.
    [240] Nomura K., Kobayashi S., Jashimoto K., et al., Microstructure analysis of (Ba,Ca)(Fe,Mg)O3-δfor rapid CO2 absorption by mossbauer spectroscopy, J. Radioanal.Nucl. Chem. 2003, 255 (3): 513-518.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700