用户名: 密码: 验证码:
陶瓷中空纤维氧分离膜研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于氧离子电子混合传导的陶瓷氧分离膜有望将现有的氧气生产成本降低30%以上。氧分离膜技术实用化的主要障碍是缺乏氧渗透性能和稳定性均能满足要求的膜材料。本论文提出了突破这一障碍的新思路,即把稳定性好但氧渗透速率偏低的双相复合材料制成中空纤维膜,利用纤维膜单位面积氧渗透速率高、单位体积可填充的膜数量大的优点,从而大幅度提高膜组件和膜装置的制氧能力。
     第一章简要介绍了陶瓷氧分离膜的原理、背景和应用,重点综述了陶瓷中空纤维氧分离膜的研究进展、现状和主要问题。
     第二章研究了由氧离子导体Zr_(0.84)Y_(0.16)O_(1.92)(YSZ)和电子导体La_(0.8)Sr_(0.2)MnO_(3-δ)(LSM)构成的双相复合氧分离膜。采用相转化/烧结法将复合材料制成气密的中空纤维。所制得的纤维膜的外径为1.64 mm,壁厚为0.16 mm。中空纤维膜的热膨胀系数为11.1×10~(-6) K~(-1),三点支撑法测定的断裂强度为152±12 MPa。测量纤维膜的氧渗透速率时采用长度为57.0 mm的样品,其外壁与空气接触,用氦气或者CO_2作为吹扫气将渗透的氧携带出,用气相色谱分析。在950℃和He气吹扫速率30ml/min的条件下,中空纤维膜的氧渗透速率为2.1×10~(-7)mol·cm~(-2)·s~(-1)。采用二氧化碳替代氦气作为吹扫气,氧渗透速率没有下降。基于YSZ-LSM复合膜优异的耐CO_2侵蚀性能,我们采用该分离膜实验验证了富氧燃烧—CO_2捕获所需的O_2/CO_2混合气的制备新工艺,即在膜管的外侧施加高的氧分压(压缩空气),通过调节管内CO_2吹扫气的速率,可以获得氧分压为0.2-0.3大气压的O_2/CO_2混合气。若采用该混合气作为含碳燃料的助燃剂,燃烧产物含高浓度的CO_2,可以方便地实现CO_2的捕获。与常见的单相钙钛矿型氧分离膜材料相比,YSZ-LSM复合氧分离膜的另一个重要特点是不含贵重和有毒的元素。综合考虑材料的氧渗透率和稳定性以及中空纤维膜的高填充密度,YSZ-LSM中空纤维膜的实用化前景良好。
     第三章研究了Ce_(0.8)Sm_(0.2)O_(2-δ)(SDC)和LSM双相复合氧分离膜,其中SDC作为氧离子导电相,其氧离子电导率在中温明显高于YSZ。采用相转化/烧结法将该复合材料制成气密的中空纤维膜。在air/He和air/CO_2梯度下,中空纤维膜在950℃时的氧渗透速率分别为3.2×10~(-7)mol·cm~(-2)·s~(-1)和3.0×10~(-7)mol·cm~(-2)·s~(-1)。经过700多个小时的测试,膜管的氧渗透速率只略有下降。SDC-LSM膜材料在二氧化碳中稳定存在,且具有较高氧渗透速率,可望用于制备富氧燃烧—CO_2捕获所需的O_2/CO_2混合气。采用活塞式流动模型和Wagner氧渗透理论模拟了双相复合中空纤维膜的氧渗透行为。该模拟方法可以用于膜管(组件)的氧气产能计算等。
     第四章研究了YSZ-La_(0.8)Sr_(0.2)Cr_(0.5)Mn_(0.5)O_(3-δ)(LSCM)双相复合氧分离膜。LSCM是一种新报道的固体氧化物燃料电池阳极材料,在还原性条件下能保持稳定。采用相转化/烧结法将该双相复合膜制成气密的中空纤维膜。所制得的纤维膜形貌均匀,膜体内部不含有手指状的大孔,只含有少量闭气孔。纤维膜具有优异的机械性能,其断裂强度高达279±5 MPa。在950℃和He吹扫速率30ml/min的条件下,中空纤维膜的氧渗透速率为3.3×10~(-8)mol·cm~(-2)·s~(-1)。改用同样流速的还原性气体CO作为吹扫气,经过250小时左右时间氧渗透速率达到稳定,为3.9×10~(-7)mol·cm~(-2)·s~(-1)。在air/CO梯度下经过600小时实验后,膜管仍然保持完好,没有出现裂纹。鉴于膜材料在大氧分压梯度下优异的稳定性,YSZ-LSCM中空纤维膜有希望用于膜反应器。
     第五章研究了SDC-LSCM双相复合氧分离膜。与前述几章不同,本研究没有采用SDC和LSCM粉体作为起始原料,而是采用金属氧化物和碳酸盐作为前驱物来制备浆料,挤出成型。这种改进的相转化法制备中空纤维膜的方法去掉了预先合成陶瓷粉这一步骤,将本来五步的工艺过程缩减为四步,并将成相和烧结在一步完成,缩短了制备时间,也减少了能耗,有利于降低制备成本。采用TGA/DTA研究了纤维膜坯体的热解行为,采用热膨胀仪研究了膜管的高温烧结过程。最终选定的热处理条件是:在N_2(+H_24%)的气氛中,以2℃/min的速率升温将纤维膜坯体升至800℃,保温240min,除去有机物,升温至1350℃,保温300min,得到气密的陶瓷中空纤维膜。SEM和XRD分析表明烧结后的膜管由SDC和LSCM两相构成,不含其它杂相。在950℃和He吹扫速率30ml/min的条件下,中空纤维膜的氧渗透速率为1.4×10~(-7)mol·cm~(-2)·s~(-1)。改用同样流速的还原性气体CO吹扫时,氧渗透速率大幅增加至3.3×10~(-6)mol·cm~(-2)·s~(-1)。显然,从空气侧渗入的氧与CO发生反应,使得膜管内部的氧分压大幅度降低,增大了氧渗透的驱动力。XRD分析表明:氧渗透实验后膜管的相组成没有发生变化,但SEM分析发现LSCM相的品粒穿孔,几乎破碎成粉状,这可能表明其在还原性气氛中的稳定性不够高。
     第六章研究了SrCo_(0.8)Fe_(0.2)O_(3-δ)—SrZrO_3(10 mol%)((SCF-SZ)复合膜。该复合膜为非对称型结构,其基底层为多孔的中空纤维,顶层为同质的致密氧分离膜。基底层采用相转化法制备,顶层膜则采用浸渍/烧结法制备。所制得的复合膜的外径为1.70 mm,壁厚为0.25 mm。在950℃和He气吹扫流速30 ml/min的条件下测得的氧渗透速率为1.0×10~(-6)mol·cm~(-2)·s~(-1)。我们还研究了以二氧化碳为吹扫气时SCF-SZ复合膜的透氧行为。当吹扫气中二氧化碳浓度低于40%时,SCF-SZ复合膜具有较高的透氧速率。采用活塞式流动模型和Wagner氧渗透理论模拟了中空纤维氧分离膜的氧渗透过程,得出的结果与所测实验数据符合较好。
     第七章总结了前述的研究工作,并展望了陶瓷中空纤维氧分离膜的实用化前景和面临的挑战。
The ceramic membrane holds promise to reduce the oxygen production cost by 30%over the present cryogenic distillation process.The main barrier hindering the development of this novel technology is the lack of membrane materials exhibiting both high oxygen permeability and stability.The composite involving an oxygen ionic conducting phase and an electronic conducting phase exhibits improved stability over the single-phase mixed conducting material,but the oxygen permeability of the former is lower that of the latter.The disadvantage of the dual-phase composite can be largely compensated by fabrication the membrane into the hollow fiber geometry.This is because that the hollow fiber has a small outer diameter,thus a large quantity of membranes can be packed in a module and that it usually has a small wall thickness and thus imposes less resistance to the permeation of oxygen.Based on these considerations,this dissertation is focused on the preparation and characterization of dual-phase composite hollow membranes.
     Chapter 1 presents an overview of the principle of oxygen permeation through the membrane and state-of-the-art membrane materials as well as the preparation of the membrane especially in hollow fiber geometry.The research needs in the oxygen separation membrane are identified,and the scope of the dissertation is described.
     In Chapter 2,dual phase composite of Zr_(0.84)Y_(0.16)O_(1.92)(YSZ) and La_(0.8)Sr_(0.2)MnO_(3-δ)(LSM) are explored for oxygen separation application,in which oxygen ions and electrons transport through YSZ and LSM phase respectively.The hollow fiber precursor was prepared by the phase-inversion process,and transformed to a gas-tight ceramic by sintering at 1350℃.The as-prepared fiber exhibited a thermal expansion coefficient of 11.1×10~(-6) K~(-1) and a three-point bending strength of 152±12 MPa.The oxygen permeability of the hollow fiber was measured by exposing its shell side to the ambient air and sweeping the tube side with high purity helium or CO_2 to carry away the permeated oxygen.An oxygen permeation flux of 2.1×10~(-7) mol·cm~(-2)·s~(-1) was obtained under air/He gradient at 950℃for a hollow fiber of length 57.00 mm and wall thickness 0.16 mm.The oxygen permeation flux remained almost unchanged when CO_2 was used as the sweep gas.The as-produced O_2/CO_2 mixture can be used as oxidant for combustion of fossil fuel;this oxyfuel combustion process produces a concentrated CO_2 stream and thus enables efficient CO_2 capture.The other important feature of the YSZ-LSM membrane is that unlike the single-phase perovskite-structured oxide membrane,the composite membrane does contain any toxic and expensive elements,which is also vital for practical application.Considering the satisfactory trade-off between the permeability and stability and the packing density of the hollow fiber,the YSZ-LSM hollow fiber is promising for oxygen production applications.
     In Chapter 3,dual-phase composite of Ce_(0.8)Sm_(0.2)O_(2-δ)(SDC) and LSM are investigated.In this composite,oxygen ions are transported through the SDC phase.The reason for choosing SDC is due to its higher oxygen ionic conductivity than that of YSZ.The SDC-LSM hollow fiber was prepared using the phase-inversion/sintering technique.A stable oxygen permeation rate of 3.2×10~(-7) mol·cm~(-2)·s~(-1) was measured under air/He gradient at 950℃,and 3.0×10~(-7) mol·cm~(-2)·s~(-1) under air/CO_2 gradient.The oxygen permeation rate was slightly lower than the value measured at the early stage of the measurement after 700 h.The oxygen permeability of the fiber did not degrade significantly under the given operation condition,thus the membrane is promising for production of O_2/CO_2 required for combustion of fossil fuels with integrated CO_2 capture.It was also found that oxygen permeation through the hollow fiber can be well described by the Wagner equation and assuming that the gas flow in the core of the fiber conforms to the plug flow model. The oxygen production capacity for a membrane unit can be accessed through modeling.
     Chapter 4 presents a study on dual-phase composite of YSZ and La_(0.8)Sr_(0.2)Cr_(0.5)Mn_(0.5)O_(3-δ) (LSCM).LSCM,as a potential anodic material for solid oxide fuel cells,has been reported to be stable under reducing conditions,thus the composite membrane of YSZ-LSCM is expected to be stable under a large oxygen gradient,i.e.,with one side of the membrane exposed to air and the other side to reducing atmosphere.The composite was fabricated into hollow fibers using phase-inversion/sintering process.The as-prepared fiber shows a three-point bending strength of 279±5 MPa.A stable oxygen permeation rate of 3.3×10~(-8) mol·cm~(-2)·s~(-1) was observed under air/He gradient at 950℃,and 3.9×10~(-7) mol·cm~(-2)·s~(-1) under air/CO gradient.The membrane was found to remain stable under stringent condition for over 600 h,showing that it is promising for chemical reactor application.
     Chapter 5 describes a study on SDC-LSCM composite membrane.The composite was fabricated into hollow fibers by an improved phase inversion/sintering process.Instead of using SDC and LSCM as starting materials,individual metal oxides and carbonates were used,thus reducing the number of preparation steps and costs.The thermal decomposition behaviour of the hollow fiber precursor was analyzed using TGA/DTA,and its densification process was investigated using dilatometer.The hollow fiber precursor was converted to a gas-tight ceramic by sintering at 1350℃in the atmosphere of N_2 containing 4%H_2.An appreciable oxygen permeation flux of 1.4×10~(-7) mol·cm~(-2)·s~(-1) was observed for the fiber under air/He gradient at 950℃,and a much larger flux(3.3×10~(-6) mol·cm~(-2)·s~(-1)) under a large oxygen gradient(air/CO). Examination on the membrane after oxygen permeation measurement shows that the LSCM phase of the composite has been degraded by CO,indicating that it may not possess sufficient stability under highly reducing atmosphere(CO).
     In Chapter 6,a hollow fiber membrane of SrCo_(0.8)Fe_(0.2)O_(3-δ) in composite with SrZrO_3(10 mol%) is investigated.The hollow fiber was prepared using the phase-inversion/sintering method. The as-prepared hollow fiber had a dimension of 0.25 mm in thickness,1.70 mm in outer diameter. An oxygen flux as large as 1.0×10~(-6) mol·cm~(-2)·s~(-1) was obtained under the air/helium gradient at 950℃.The permeation flux increased with temperature as expected,and the apparent activation energy was calculated to be 35.3±1.6 kJ/mol in the temperature range of 850-950℃.A plug-flow model in combination with the Wagner theory was used to simulate the oxygen permeation process.The simulation result is in a fair agreement with the measured permeation data.
     In the last chapter,the summary of this dissertation is presented,and future research need indentified.
引文
1 Vattenfall formally commissions pilot plant free of carbon dioxide emissions;available at http://www.industrialinfo.com/showAbstract.jsp?newsitemID=138950.
    2 Davison,J.Performance and costs of power plants with capture and storage of CO2.Energy 32,1163-1176(2007).
    3 D.J.Wilhelm,D.R.Simbeck,A.D.Karp,R.L.Dickenson,Syngas production for gas-to-liquids applications:technologies,issues and outlook,Fuel Process.Technol.71(2001) 139.
    4 Armstrong,P.A.Bennett,D.L.Foster,E.P.Stein,V.E.ITM oxygen for gasification.Proceedings of gasification technologies 2004,Washington,D.C.3-6 October 2004.
    5 H.Schmalzried,Solid state reactions,2nd ed.,Verlag Chemie,Weinheim-Deerfield Beach-Basel,1981
    6 C.S.Chen,Ph.D.thesis,"Fine Grained Zirconia-Metal Dual Phase Composites:Oxygen Permeation and Electrical Properties",University of Twente,The Netherlands,1994
    7 J.Nowotny and J.B.Wagner,jr.,"Influence of the surface on the equilibration kinetics of nonstoichiometric oxides," Oxid.Met.,15(1981) 169-190
    8 Z.Adamczyk and J.Nowotny,"Effect of the surface on gas/solid equilibration kinetics on nonstoichiometric compounds," Solid State Phenom.- Diffusion and Defect Data,15& 16(1991)285-336
    9 S.Carter,A.Selcuk,R.J.Chater,J.Kajda,J.A.Kilner and B.C.H.Steele,"Oxygen transport in selected nonstoichiometric perovskite-type oxides," Solid State Ionics,53-56(1992) 597-605
    10 Z.Shao,W.Yang,Y.Cong,H.Dong,J.Tong,G.Xiong,Investigation of the permeation behavior and stability of a Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ) oxygen membrane,J.Membr.Sci.172 2000)177.
    11 L.Qiu,T.H.Lee,L.M.Liu,Y.L.Yang,A.J.Jacobson,Oxygen permeation studies of SrCo0.8Fe0.2O3-1,Solid State lonics 76(1995) 321.
    12 S.W.Li,Y.Cong,L.Q.Fang,W.Yang,L.W.Lin,J.Meng,Y.F.Ren,Oxygen permeating properties of the mixed conducting membrane without cobalt,Mater.Res.Bull.33(2)(1998) 183.
    13 H.Wang,C.Tablet,A.Feldhoff,J.Caro,A cobalt-free oxygen-permeable membrane based on the perovskite-type oxide Ba_(0.5)Sr_(0.5)Zn_(0.2)Fe_(0.8)O_(3-δ,) Adv.Mater.17(2005) 1785.
    14 X.Zhu,H.Wang,W.Yang,Novel cobalt-free oxygen permeable membrane,Chem.Commun.(2004) 1130.
    15 J.Tong,W.Yang,B.Zhu,R.Cai,Investigation of ideal zirconium-doped perovskite-type ceramic membrane materials for oxygen separation,J.Membr.Sci.203 (2002)175.
    16 F.Prado,N.Grunbaum,A.Caneiro,A.Manthiram,Effect of La3+ doping on the perovskite-to-brownmillerite transformation in Sr_(1-x)La_xCo_(0.8)Fe_(0.2)O_(3-δ)(0(?)x(?)0.4),Solid State Ionics 167(2004)147.
    17 V.V.Kharton,A.P.Viskup,A.V.Kovalevsky,J.R.Jurado,E.N.Naumovich,A.A.Vecher,J.R.Frade,Oxygen ionic conductivity of Ti-containing strontium ferrite,Solid State Ionics 133 (2000)57.
    18 T.Ishihara,T.Yamada,H.Arikawa,H.Nishiguchi,Y.Takita,Mixed electronicoxide ionic conductivity and oxygen permeating property of Fe-,Co-orNidoped LaGaO3 perovskite oxide,Solid State Ionics 135 (2000)631.
    19 W.Yang,H.Wang,X.Zhu,L.Lin,Development and application of oxygen permeable membrane in selective oxidation of light alkanes,Topics Catal.35 (1-2)(2005)155.
    20 P.Zeng,R.Ran,Z.Chen,W.Zhou,H.Gu,Z.Shao,S.Liu,Efficient stabilization of cubic perovskite SrCoO_(3-δ)by B-site low concentration scandium doping combined with sol-gel synthesis,J.Alloys Compd.455 (2008)465.
    21 S.J.Skinner,J.A.Kilner,Oxygen diffusion and surface exchange in LaB2-xBSrBxBNiOB4+δB,Solid State Ionics 135 (2000)709
    22 V.V.Kharton,A.P.Viskup,E.N.Naumovicha,F.M.B.Marques,Oxygen ion transport in La_2NiO_4-based ceramics,J.Mater.Chem.9 (1999)2623
    23 C.S.Chen,W.Liu,S.Xie,G.G.Zhang,H.Liu,G.Y.Meng,D.K.Peng,A novel intermediate-temperature oxygen-permeable membrane based on the high-Tc superconductor Bi_2Sr_2CaCu_2O_8,Adv.Mater.12 (2000)1132
    24 C.S.Chen,S.Ran,W.Liu,P.H.Yang,D.K.Peng,H.J.M.Boumeester,“YBa_2Cu_3O_(6+δ)as Oxygen Separation Membrane”,Angew.Chim.Int.Ed.,40 (2001)784
    25 Zhonglin Wu,Meilin Liu,Modelling of ambipolar transport properties of composite mixed ionic-electronic conductors,Solid State Ionics 93 (1997)65-84
    26 J.Sunarso,S.Baumann,J.M.Serra,W.A.Meulenberg,S.Liua,Y.S.Lin,J.C.Diniz da Cost,Mixed ionic-electronic conducting (MIEC)ceramic-based membranes for oxygen separation,Journal of Membrane Science 320 (2008)13-41
    27 C.S.Chen,A.J.Burggraaf,Stabilized bismuth oxide-noble metal mixed conducting composites as high temperature oxygen separation membranes,J.Appl.Electrochem.29 (1999)355.
    28 K.Wu,S.Xie,G.S.Jiang,W.Liu,C.S.Chen,Oxygen permeation through (Bi_2O_3)_(0.74)(SrO)_(0.26)-Ag(40%v/o) composite,J.Membrane Sci.188(2001) 189.
    29 V.V.Kharton,A.V.Kovalevsky,A.P.Viskup,A.L.Shaula,F.M.Figueiredo,E.N.Naumovich,F.M.B.Marques,Oxygen transport in Ce_(0.8)Gd_(0.2)O_(2-δ~-)based composite membranes,Solid State Ionics 160(2003) 247.
    30 V.V.Kharton,A.V.Kovalevsky,A.P.Viskup,F.M.Figueiredo,A.A.Yaremehenko,E.N.Naumovich,F.M.B.Marques,Oxygen permeability of Ce_(0.8)Gd_(0.2)O_(2-δ~-) La_(0.8)Mn_(0.2)CrO_(3-δ)composite membranes,J.Electrochem Soc.147(2000) 2814.
    31 U.Nigge,H.-D.Wiemh(o|¨)fer,E.W.J.R(o|¨)mer,H.J.M.Bouwmeester,T.R.Schulte,Composites of Ce_(0.8)Gd_(0.2)O_(1.9) and Gd_(0.7)Ca_(0.3)CoO_(3-δ) as oxygen permeable membranes for exhaust gas sensors,Solid State lonics 146(2002) 163.
    32 H.Takamura,K.Okumura,Y.Koshino,A.Kamegawa,M.Okada,Oxygen permeation properties of ceria-ferrite-based composites,J.Electroceram.13(2004) 613.
    33 H.Takamura,T.Kobayashi,T.Kasahara,A.Kamegawa,M.Okada,Oxygen permeation and methane reforming properties of ceria-based composite membranes,J.Alloys Comp.408-412(2006) 1084
    34 Jianxin Yi,Yanbo Zuo,Wei Liu,Louis Winnubst,Chusheng Chen,Oxygen permeation through a Ce_(0.8)Sm_(0.2)O_(2-δ)-La_(0.8)Sr_(0.2)CrO_(3-δ) dual-phase composite membrane,Journal of Membrane Science 280(2006) 849-855
    35 Bo Wang,Jianxin Yi,Louis Winnubst,Chusheng Chen,Stability and oxygen permeation behavior of Ce_(0.8)Sm_(0.2)O_(2-δ)-La_(0.8)Sr_(0.2)CrO_(3-δ) composite membrane under large oxygen partial pressure gradients,Journal of Membrane Science 280(2006) 849-855
    36 A.L.Shaula,V.V.Kharton,F.M.B.Marques,Phase interaction and oxygen transport in La_(0.8)Sr_(0.2)Fe_(0.8)Co_(0.2)O_3-(La_(0.9)Sr_(0.1))_(0.98)Ga_(0.8)Mg_(0.2)O_3 composites,J.Eur.Ceram.Soc.24(2004)2631.
    37 H.H.Wang,W.S.Yang,Y.Cong,X.F.Zhu,Y.S.Lin,Structure and oxygen permeability of a dual-phase membrane,J.Membrane Sci.224(2003) 107.
    38 Y.S.Shen,A.Joshi,M.L.Liu,K.Krist,Structure,microstructure and transport properties of mixed ionic-electronic conductors based on bismuth oxide Part Ⅰ.Bi-Y-Cu-O system,Solid State Ionics 72(1994) 209
    39 Bo Wang,Min-chuan Zhan,De-chun Zhu,Chu-sheng Chen,Oxygen permeation and stability of Zr_(0.8)Y_(0.2)O_(0.8)-La_(0.8)Sr_(0.2)CrO_(3-δ) dual-phase composite,J Solid State Electrochem 86(2006) 10:625-628
    40 刘茉娥等,膜分离技术,化学工业出版社,1998年
    41 H.Kusaba,Y.Shibata,K.Sasaki,Y.Teraoka,Surface effect on oxygen permeation through dense membrane of mixed-conductive LSCF perovskite-type oxide,Solid State Ionics 177(2006)2249.
    42 B.A.van Hassel,Oxygen transfer across composite oxygen transport membranes,Solid State Ionics 174(2004) 253.
    43 H.J.M.Bouwmeester,H.Kruidhof,A.J.Burggraaf,Importance of the surface exchange kinetics as rate limiting step in oxygen permeation through mixed conducting oxides,Solid State Ionics 72(1994) 185.
    44 J.Han,G.Xomeritakis,Y.S.Lin,Oxygen permeation through thin zirconia/yttria membranes prepared by EVD,Solid State Ionics 93(1997) 263.
    45 J.Han,Y.Zeng,G.Xomeritakis,Y.S.Lin,Electrochemical vapor deposition synthesis and oxygen permeation properties of dense zirconia-yttria-ceria membranes,Solid State Ionics 98(1997) 63.
    46 O.B" uchler,J.M.Serra,W.A.Meulenberg,D.Sebold,H.P.Buchkremer,Preparation and properties of thin Lal-xSrxCol-yFeyO3-1 perovskitic membranes supported on tailored ceramic substrates,Solid State Ionics 178(2007) 91.
    47 J.C.C.Chen,H.Chen,R.Prasad,G.Whichard,Plasma sprayed oxygen transport membrane coatings,US Patent 6,638,575(2003).
    48 徐又一,徐志康等编著,高分子膜材料,化学工业出版社,北京(2005.2)19-72
    49 S.P.Numes,K.V.Peinemann编著,化学工业中的膜技术,化学工业出版社,北京(2005.5)6-10
    50 Luyten,J.et al.Preparation of LaSrCoFeO_(3-x) membranes.Solid State Ionics 135,637-642(2000)
    51 Mineshinge,A.;Inaba,M.;Ogumi,Z.;Takahashi,T.;Kawagoe,T.;Tasaka,A.;Kikuchi,K.Solid State Ionics 1996,86-88,1251-1254.
    52 Rodrigues Filho,U.R;Gushikem,Y.;Fujiwara,F.Y.;Castro,S.C,D.;Torriani,I.C.L.;Cavalcanti,L.P.Langmuir 1994,10,4357-4360.
    53 Li Xu and Hian Kee Lee,Zirconia Hollow Fiber:Preparation,Characterization,and Microextraction Application,Anal.Chem.2007,79,5241-5248
    54 http://www.igb.fraunhofer.de/WWW/GF/GrenzflMem/membranen/start.en.html
    55 http://www3.imperial.ac.uk/people/kang.li/research
    56 Haihui Wang,Peter K"olsch,Thomas Schiestel,Cristina Tablet,Steffen Werth,J"urgen Caro,Production of high-purity oxygen by perovskite hollow fiber membranes swept with steam,Journal of Membrane Science 284(2006) 5-8
    57 Haihui Wang,Steffen Werth,Thomas Schiestel,and J_rgen Caro,Perovskite Hollow-Fiber Membranes for the Production of Oxygen-Enriched Air,Angew.Chem.Int.Ed.2005,44,6906-6909
    58 J.Caro,H.H.Wang,C.Tablet,A.Kleinert,A.Feldhoff,T.Schiestel,M.Kilgus,P.Ko¨lsch,S.Werth,Evaluation of perovskites in hollow fibre and disk geometry in catalytic membrane reactors and in oxygen separators,Catalysis Today 118 (2006)128-135
    59 A.Thursfield.I.S.Metcalfe,Methane oxidation in a mixed ionic-electronic conducting ceramic hollow fibre reactor module.J Solid State Electrochem.2005
    60 Alexandra Kleinert,Armin Feldhoff,Thomas Schiestel,Ju'rgen Caro,Novel hollow fibre membrane reactor for the partial oxidation of methane,Catalysis Today 118 (2006)44-51
    61 Haihui Wang,Cristina Tablet,Thomas Schiestel,Ju'rgen Caro,Hollow fiber membrane reactors for the oxidative activation of ethane,Catalysis Today 118 (2006)98-103
    62 Xiaoyao Tan,K.Li,A.Thursfield,I.S.Metcalfe,Oxyfuel combustion using a catalytic ceramic membrane reactor,Catalysis Today 131 (2008)292-304
    63 Haihui Wang,Cristina Tablet,Thomas Schiestel,Steffen Werth,Ju'rgen Caro,Partial oxidation of methane to syngas in a perovskite hollow fiber membrane reactor,Catalysis Communications 7 (2006)907-912
    64 Xiaoyao Tan and K.Li,Oxidative Coupling of Methane in a Perovskite Hollow-Fiber Membrane Reactor,Ind.Eng.Chem.Res.2006,45,142-149
    65 Heqing Jiang,HaihuiWang,Fangyi Liang,Steffen Werth,Thomas Schiestel,and Jurgen Caro,Direct Decomposition of Nitrous Oxide to Nitrogen by In Situ Oxygen Removal with a Perovskite Membrane,Angew.Chem.Int.Ed.2009,48,1-5
    66 Heqing Jiang,Haihui Wang,Steffen Werth,Thomas Schiestel,and Jurgen Caro,Simultaneous Production of Hydrogen and Synthesis Gas by Combining Water Splitting with Partial Oxidation of Methane in a Hollow-Fiber Membrane Reactor,Angew.Chem.Int.Ed.2008,47,9341-9344
    67 Xiaoyao Tan,Zhaobao Pang,K.Li,Oxygen production using La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δ)(LSCF)perovskite hollow fibre membrane modules,Journal of Membrane Science 310 (2008)550-556
    68 K.Li,Xiaoyao Tan,Yutie Liu,Single-step fabrication of ceramic hollow fibers for oxygen permeation,Journal of Membrane Science 272 (2006)1-5
    69 Xiaoyao Tan,Yutie Liu,and K.Li,Preparation of LSCF Ceramic Hollow-Fiber Membranes for Oxygen Production by a Phase-Inversion/Sintering Technique,Ind.Eng.Chem.Res.2005,44, 61-66
    70 Shaomin Liu,Xiaoyao Tan,K.Li,R.Hughes,Preparation and characterisation of SrCe_(0.95)Yb_(0.05)O_(3-δ)hollow fibre membranes,Journal of Membrane Science 193 (2001)249-260
    71 Shaomin Liu,K.Li,R.Hughes,Preparation of SrCe_(0.95)Yb_(0.05)O_(3-δ)perovskite for use as a membrane material in hollow fibre fabrication,Materials Research Bulletin 39 (2004)119-133
    72 Yutie Liu,K.Li,Preparation of SrCe_(0.95)Yb_(0.05)O_(3-δ)hollow fibre membranes:Study on sintering processes,Journal of Membrane Science 259 (2005)47-54
    73 Sirichai Koonaphapdeelert,K.Li,Preparation and characterization of hydrophobic ceramic hollow fibre membrane,Journal of Membrane Science 291 (2007)70-76
    74 Chiao ChienWei,Oi Yee Chen,Y.Liu,K.Li,Ceramic asymmetric hollow fibre membranes—One step fabrication Process,Journal of Membrane Science 320 (2008)191-197
    75 Y.Liu,Oi Yee Chen,Chiao Chien Wei,K.Li.Preparation of yttria-stabilised zirconia (YSZ)hollow fibre membranes,Desalination 199(2006)360-362
    76 Lihong Liu,Xiaoyao Tan,Shaomin Liu,Yttria Stabilized Zirconia Hollow Fiber Membranes,J.Am.Ceram.Soc,89 [3]1156-1159 (2006)
    77 Benjamin F.K.Kingsbury,K.Li,A morphological study of ceramic hollow fibre membranes,Journal of Membrane Science 328 (2009)134-140
    78 Chiao Chien Wei and K.Li,Yttria-Stabilized Zirconia (YSZ)-Based Hollow Fiber Solid Oxide Fuel Cells,Ind.Eng.Chem.Res.2008,47,1506-1512
    79 T.He,M.H.V.Mulder,H.Strathmann,M.Wessling,Preparation of composite hollow fiber membranes:co-extrusion of hydrophilic coatings onto porous hydrophobic support structures,Journal of Membrane Science 207 (2002)143-156
    80 Dongliang Wang,K.Li,W.K.Teo,Preparation of annular hollow fibre membranes,Journal of Membrane Science 166 (2000)31-39
    81 Chun Cao,Tai-Shung Chung,Shing Bor Chen,ZhengJun Dong,The study of elongation and shear rates in spinning process and its e&ect on gas separation performance of Poly(ether sulfone)(PES)hollow (ber membranes,Chemical Engineering Science 59 (2004)1053-1062
    82 Dong Fei Li,Tai-Shung Chung,Rong Wang,Ye Liu,Fabrication of fluoropolyimide/polyethersulfone (PES)dual-layer asymmetric hollow fiber membranes for gas separation,Journal of Membrane Science 198 (2002)211-223
    83 Natalia Widjojo,Shaohua David Zhang,Tai Shung Chung,Ye Liu,Enhanced gas separation performance of dual-layer hollow fiber membranes via substructure resistance reduction using mixed matrix materials,Journal of Membrane Science 306 (2007)147-158
    84 Xiaoyao Tan,Yutie Liu,and K.Li,Mixed Conducting Ceramic Hollow-Fiber Membranes for Air Separation,AIChE Journal July 2005 Vol.51,No.7 1991
    85 Chiao Chien Wei and K.Li,Yttria-Stabilized Zirconia (YSZ)-Based Hollow Fiber Solid Oxide Fuel Cells,Ind.Eng.Chem.Res.2008,47,1506-1512
    86 Shaomin Liu,Xiaoyao Tan,K.Li,R.Hughes,Preparation and characterisation of SrCe_(0.95)Yb_(0.05)O_(3-δ)hollow fibre membranes,Journal of Membrane Science 193 (2001)249-260
    87 Yutie Liu,Xiaoyao Tan,K.Li,SrCe_(0.95)Yb_(0.05)O_(3-δ)(SCYb)hollow fibre membrane:Preparation,characterization and performance,Journal of Membrane Science 283 (2006)380-385
    88 A.Thursfield.I.S.Metcalfe,Methane oxidation in a mixed ionic-electronic conducting ceramic hollow fibre reactor module,J Solid State Electrochem,2005
    89 Xiaoyao Tan,Yutie Liu,and K.Li,Mixed Conducting Ceramic Hollow-Fiber Membranes for Air Separation,AIChE Journal July 2005 Vol.51,No.7 1991
    90 Shaomin Liu,George R.Gavalas,Oxygen selective ceramic hollow fiber membranes,Journal of Membrane Science 246 (2005)103-108
    91 Hua Liu,Xiaoyao Tan,Zhaobao Pang,J.C.Diniz da Costa,Gao Qing Lu,Shaomin Liu,Novel dual structured mixed conducting ceramic hollow fibre membranes,Separation and Purification Technology 63(2008)243-247
    92 Haihui Wang,Thomas Schiestel,Cristina Tablet,Michael Schroeder,Jürgen Caro,Mixed oxygen ion and electron conducting hollow fiber membranes for oxygen separation,Solid State Ionics 177(2006)2255-2259
    93 Xiaoyao Tan,Zhaobao Pang,K.Li,Oxygen production using La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δ)(LSCF)perovskite hollow fibre membrane modules,Journal of Membrane Science 310 (2008)550-556
    94 A.Thursfield.I.S.Metcalfe,Methane oxidation in a mixed ionic-electronic conducting ceramic hollow fibre reactor module,J Solid State Electrochem,2005
    95 Xiaoyao Tan and K.Li,Modeling of Air Separation in a LSCF Hollow-Fiber Membrane Module,AIChE Journal July 2002 Vol.48,No.7 1469
    96 Xiaoyao Tan,Yutie Liu,and K.Li,Mixed Conducting Ceramic Hollow-Fiber Membranes for Air Separation,AIChE Journal July 2005 Vol.51,No.7 1991
    97 Christof Hamel,Andreas Seidel-Morgenstern,Thomas Schiestel,Steffen Werth,Haihui Wang,Cristina Tablet,and Ju'Ygen Caro,Experimental and Modeling Study of the 02-Enrichment by Perovskite Fibers,AIChE Journal September 2006 Vol.52,No.9,3118
    98 Jiang H.Q.,Wang H.H.,Werth S.;Schiestel T.,Caro J.,Simultaneous production of hydrogen and synthesis gas by combining water splitting with partial oxidation of methane in a hollow-fiber membrane reactor.Angew.Chem.Int.Ed.2008,47,9341
    1 J.Sunarso,S.Baumann,J.M.Serra,W.A.Meulenberg,S.Liu,Y.S.Lin,J.C.Diniz da Cost,Mixed ionic-electronic conducting (M1EC)ceramic-based membranes for oxygen separation,J.Membr.Sci.320 (2008)13-41
    2 P.N.Dyer,R.E.Richards,S.L.Russek,D.M.Taylor,Ion transport membrane technology for oxygen separation and syngas production,Solid State Ionics 134(2000)21-33
    3 H.J.M.Bouwmeester,,Dense Ceramic Membranes for Oxygen Separation,In Fundamentals of Inorganic Membrane Science and Technology,Edited by A.J.Burggraaf and L.Cot,Elservier,Amsterdam,1996,pp.435-528
    4 C.S.Chen,S.J.Feng,S.Ran,D.C.Zhu,W.Liu,H.J.M.Bouwmeester,Conversion of methane to syngas by a membrane-based oxidation-reforming process,Angew.Chim.Int.Ed.42 (2003)5196
    5 J.Davison,Performance and costs of power plants with capture and storage of CO2,Energy 32 (2007)1163
    6 Vattenfall formally commissions pilot plant free of carbon dioxide emissions;available at http://www.industrialinfo.com/showAbstract.jsp?newsitemID=138950.
    7 Y.Teraoka,H.M.Zhang,S.Furukawa,N.Yamazoe,Oxygen permeation through perovskite-type oxides,Chem.Lett.(1985)1743
    8 J.H.Tong,W.S.Yang,B.C.Zhu,R.Cai,Investigation of ideal zirconium-doped perovskite-tpye ceramic membrane materials for oxygen separation,J.Membr.Sci.203 (2002)175
    9 M.Arnold,H.H.Wang,A.Feldhoff,Influence of CO_2 on the oxygen permeation performance and the microstructure of perovskite-tpye (Ba_(0.5)Sr_(0.5))(Co_(0.8)Fe_(0.2))O_(3-δ)membranes,J.Membr.Sci.293(2007)44
    10 S.G.Li,W.Q.Jin,N.P.Xu,J.Shi,Mechanical strength,and oxygen and electronic transport properties of SrCo_(0.4)Fe_(0.6)O_(3-δ)-YSZ membranes,J.Membr.Sci.186 (2001)195
    11 J.X.Yi,Y.B.Zuo,W.Liu,L.Winnubst,C.S.Chen,Oxygen permeation through a Ce_(0.8)Sm_(0.2)O_(2-δ)-La_(0.8)Sr_(0.2)CrO_(3-δ)dual-phase composite membrane,J.Membr.Sci.280 (2006)849-855
    12 B.Wang,J.X.Yi,L.Winnubst,C.S.Chen,Stability and oxygen permeation behavior of Ce_(0.8)Sm_(0.2)O_(2-δ)-La_(0.8)Sr_(0.2)CrO_(3-δ) composite membrane under large oxygen partial pressure gradients,J.Membr.Sci.280(2006) 849-855
    13 H.Takamura,H.Sugai,M.Watanabe,T.Kasahara,A.Kamegawa,M.Okada,Oxygen permeation properties and surface modification of acceptor-doped CeO_2/MnFe_2O_4 composites,J.Electroceram.17(2006)741-748
    14 N.Q.Minh,Journal of the American Ceramic Society,76(1993) 563
    15 易建新,致密陶瓷膜的稳定性和氧输运性能研究,中国科学技术大学博士学位论文,安徽合肥,2006.5
    16 Bo Wang,Min-chuan Zhan,De-chun Zhu,Chu-sheng Chen,Oxygen permeation and stability of Zr_(0.8)Y_(0.2)O_(0.9)-La_(0.8)Sr_(0.2)CrO_(3-δ) dual-phase composite,J Solid State Electrochem 86(2006) 10:625-628
    17 S.K.Lau and S.C.Singhal,High temperature interactions at solid oxide fuel cell interfaces,Proc.Corrosion 85(1985) 1.
    18 A.Grosjean,O.Sans(?)au,V.Radmilovic,A.Thorel,Reactivity and diffusion between La_(0.8)Sr_(0.2)MnO_3 and ZrO_2 at interfaces in SOFC cores by TEM analyses on FIB samples,Solid State Ionics 177(2006) 1977
    19 K.Wiik,C.R.Schmidt,S.Faaland,S.Shamsili,M.A.Einarsrud,T.Grande,Reactions between strontium-substituted lanthanum manganite and yttria-stabilized zirconia:I,powder samples,J.Am.Ceram.Soc.82(1999) 721
    20 A.Mitterdorfer,L.J.Gauckler,La_2Zr_2O_7 formation and oxygen reduction kinetics of the La_(0.85)Sr_(0.15)Mn_yO_3,O_2(g) | YSZ system,Solid State Ionics 111(1998) 185
    21 High Temperature Solid Oxide Fuel Cells-- Fundamentals,Design and Applications,Edited by Subhash C.Singhal and Kevin Kendall,Published by Elsevier Advanced Technology,2003,
    22 Chiao Chien Wei and K.Li,Yttria-Stabilized Zirconia(YSZ)-Based Hollow Fiber Solid Oxide Fuel Cells,Ind.Eng.Chem.Res.2008,47,1506-1512
    23 N.M.Sammes,F.M.Keppeler,H.Nafe,F.Aldinger,Mechanical properties of solid-state-synthesized strontium- and magnesium- doped lanthanum gallate,J.Am.Ceram.Soc.81(1998) 3104.
    24 Zhonglin Wu,Meilin Liu,Modelling of ambipolar transport properties of composite mixed ionic-electronic conductors,Solid State Ionics 93(1997)65-84
    25 Y.Ji et al,Solid State Ionics 176(2005) 937-943
    26 C.-C.T.Yang et al.Electrical conductivity and microstructures of La0.65Sr0.3MnO3-8 mol%
    27 V.V.Kharton,A.A.Yaremchenko,M.V.Patrakeev,E.N.Naumovich,and F.M.B.Marques,Thermal and chemical induced expansion of La_(0.3)Sr_(0.7)(Fe,Ga)O_(3-δ)ceramics,J.Eur.Ceram.Soc.23(2003)1417
    28 C.Y.Park and A.J.Jacobson,Thermal and chemical expansion properties of La_(0.2)Sr_(0.8)Fe_(0.55)Ti_(0.45)O_(3-δ),Solid State Ionics 176 (2005)2671
    29 S.Mcintosh,J.F.Vente,W.G.Haije,D.H.A.Blank,and H.J.M.Bouwmeester,Oxygen stoichiometry and chemical expansion of Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)measured by in situ neutron diffraction,Chem.Mater.18 (2006)2187.
    30 S.B.Adler,Chemical expansivity of electrochemical ceramics,J.Am.Ceram.Soc.84 (2001)2117.
    31 Harumi Yokokawa,Natsuko Sakai,Tatsuya Kawada,and Masayuki Dokiya,Thermodynamic Analysis of Reaction Profiles Between LaMO_3 (M=Ni,Co,Mn)and ZrO_2,J.Electrochem.Soc,Vol.138,No.9,September 1991,2719-2727
    32 Mette Juhl,Seren Primdahl,Carrie Manon,Mogens Mogensen Performance/structure correlation for composite SOFC cathodes,Journal of Power Sources 61 (1996)173-1S1
    33 S.Taniguchi,M.Kadowaki,H.Kawamura,T.Yasuo,Y.Akiyama,Y.Miyake,T.Saitoh,Degradation phenomena in the cathode of a solid oxide fuel cell with an alloy separator,Journal of Power Sources 55 (1995)73-79
    34 Anil V.Virkar,Jong Chen,Cameron W.Tanner,Jai-Woh Kim,The role of electrode microstructure on activation and concentration polarizations in solid oxide fuel cells Solid State Ionics 131 (2000)189-198
    1 P.N.Dyer,R.E.Richards,S.L.Russek,D.M.Taylor,Ion transport membrane technology for oxygen separation and syngas production,Solid State Ionics 134(2000)21-33
    2 H.J.M.Bouwmeester,,Dense Ceramic Membranes for Oxygen Separation,In Fundamentals of Inorganic Membrane Science and Technology,Edited by A.J.Burggraaf and L.Cot,Elservier,Amsterdam,1996,pp.435-528
    3 C.S.Chen,S.J.Feng,S.Ran,D.C.Zhu,W.Liu,H.J.M.Bouwmeester,Conversion of methane to syngas by a membrane-based oxidation-reforming process,Angew.Chim.Int.Ed.42 (2003)5196
    4 Y.Teraoka,H.M.Zhang,S.Furukawa,and N.Yamazoe,Oxygen permeation through perovskite-type oxides,Chem.Lett.,1985,1743-1746
    5 Y.Teraoka,T.Nobunaga,N.Yamazoe,Effect of cation substitution on the oxygen semipermeability of perovksite-type oxides,Chem.Lett.,1988,503-506
    6 Shao,Z.P.et al.Investigation of the permeation behavior and stability of a Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)oxygen membrane.J.Membr.Sci.172,177-188 (2000).
    7 T.J.Mazanec,T.L.Cable and J.G.Frye,Electrocatalytic cells for chemical reaction,Solid State Ionics,53-56 (1992)111-118
    8 Y.Shen,M.Liu,D.Taylor,S.Bolagopal,A.Joshi and K.Krist,“Mixed ionic-electronic conductors based on Bi-Y-O-Ag metal-ceramic system,” Proc.2nd Intl.Symp.on Ionic and mixed conducting ceramics,ed.T.A.Ramanarayanan,W.L.Worrell and H.L.Tuller,Proc.vol.94-12,The Electrochemical Society,Pennington,NJ,1994,p.574-597
    9 C.S.Chen,Ph.D.thesis,“Fine Grained Zirconia-Metal Dual Phase Composites:Oxygen Permeation and Electrical Properties”,University of Twente,The Netherlands,1994
    10 Soichiro Sameshima,Tatsuhiko Ichikawa,Manabu Kawaminami,Yoshihiro Hirata,Thermal and mechanical properties of rare earth-doped ceria ceramics.Materials Chemistry and Physics 61 (1999)31-35
    11 K.Eguchi,T.Setoguchi,T.Inoue,H.Arai,Electrical properties of ceria-based oxides and their application to solid oxide fuel cells,Solid State Ionics 52 (1992)165.
    12 H.Yahiro,T.Ohuchi,K..Eguchi,H.Arai,Electrical properties and microstructure in the system ceria-alkaline earth oxide,J.Mater.Sci.23 (1988)1036.
    13 Hidenori Yahiro,Yukari Eguchi,Koichi Eguchi and Hiromichi Arai,Oxygen ion conductivity of the ceria-samarium oxide system with fluorite structure,Journal of Applied Electrochemistry 18 (1988)527-531
    14 H.Yahiro,K.Eguchi,H.Arai,Electrical properties and reducibilities of ceria-rare earth oxide systems and their application to solid oxide fuel cell,Solid State Ionics 36 (1989)71.
    15 Xiaoyao Tan and K.Li.Modeling of Air Separation in a LSCF Hollow-Fiber Membrane Module,AIChE Journal July 2002 Vol.48,No.7 1469
    16 Xiaoyao Tan,Yutie Liu,and K.Li.Mixed Conducting Ceramic Hollow-Fiber Membranes for Air Separation,AIChE Journal July 2005 Vol.51,No.7 1991
    17 Christof Hamel,Andreas Seidel-Morgenstern,Thomas Schiestel,Steffen Werth,Haihui Wang,Cristina Tablet,and Ju'Ygen Caro,Experimental and Modeling Study of the O2-Enrichment by Perovskite Fibers,AIChE Journal September 2006 Vol.52,No.9,3118
    18 Jiang H.Q.,Wang H.H.,Werth S.;Schiestel T.,Caro J.,Simultaneous production of hydrogen and synthesis gas by combining water splitting with partial oxidation of methane in a hollow-fiber membrane reactor.Angew.Chem.Int.Ed.2008,47,9341
    19 Yi,J.X.,Zuo,Y.B.,Liu,W.,Winnubst,L.& Chen,C.S.,Oxygen permeation through a Ce_(0.8)Sm_(0.2)O_(2-δ)-La_(0.8)Sr_(0.2)CrO_(3-δ)dual-phase composite membrane.J.Membr.Sci.,2006,280,849-855
    20 V.V.Kharton,A.V.Kovalevsky,A.P.Viskup,F.M.Figueiredo,A.A.Yaremchenko,E.N.Naumovich,F.M.B.Marques,Oxygen permeability of Ce_(0.8)Gd_(0.2)O_(2-δ)-La_(0.7)Sr_(0.3)MnO_(3-δ)composite membranes,J.Electrochem.Soc.147 (2000)2814.
    21 V.V.Kharton,A.V.Kovalevsky,A.P.Viskup,F.M.Figueiredo,A.A.Yaremchenko,E.N.Naumovich,F.M.B.Marques,Oxygen permeability and Faradaic efficiency of Ce_(0.8)Gd_(0.2)O_(2-δ)-La_(0.7)Sr_(0.3)MnO_(3-δ)composites,Journal of the European Ceramic Society 21 (2001)1763-1767
    22 V.V.Khartona,A.V.Kovalevsky,A.P.Viskup,A.L.Shaula,F.M.Figueiredo,E.N.Naumovich,F.M.B.Marques,Oxygen transport in Ce_(0.8)Gd_(0.2)O_(2-δ)-based composite membranes,Solid State Ionics 160 (2003)247-258
    23 Hidenori Yahiro,Yukari Eguchi,Koichi Eguchi and Hiromichi Arai,Oxygen ion conductivity of the ceria-samarium oxide system with fluorite structure,Journal of Applied Electrochemistry 18 (1988)527-531
    24 Hidenori Yahiro,Yukari Eguchi,Koichi Eguchi and Hiromichi Arai,Oxygen ion conductivity of the ceria-samarium oxide system with fluorite structure,Journal of Applied Electrochemistry 18 (1988)527-531
    25 H.Inaba,H.Tagawa,Ceria-based solid electrolytes,Solid State Ionics 83 (1996)
    26 T.Ishihara,H.Matsuda,Y.Takita,Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor,J.Am.Chem.Soc.116 (1994)3801
    27 Armstrong P.A.;Bennett D.L.;Foster E.P.;Stein V.E.ITM oxygen for gasification.Proceedings of gasification technologies 2004,Washington,D.C.3-6 October 2004.
    1 Chen,C.S.,Feng,S.J.,Ran,S.,Zhu,D.C.,Liu,W.& Bouwmeester,H.J.M.,Conversion of Methane to Syngas by a Membrane-Based Oxidation-Reforming Process.Angew.Chem.Int.Ed.2003,42,5196-5198
    2 Zhang,W.X.,Smit,J.,Annaland,M.van S.& Kuipers,J.A.M.,Feasibility study of a novel membrane reactor for syngas production:Part 1:Experimental study of O_2 permeation through perovskite membranes under reducing and non-reducing atmospheres.J.Membr.Sci.,2007,291,19-32
    3 汪波,高温致密透氧膜材料和膜过程研究,中国科学技术大学,2006.5安徽合肥
    4 S.W.Tao,J.T.S.Irvine,A redox-stable efficient anode for solid-oxide fuel cells,Nat.Mater,2(2003)320
    5 San Ping Jiang,Li Liu,Khuong P.Ong,Ping Wu,Jian Li,Jian Pu,Electrical conductivity and performance of doped LaCrO_3 perovskite oxides for solid oxide fuel ceils,Journal of Power Sources 176(2008) 82-89
    6 Bo Wang,Min-chuan Zhan,De-chun Zhu,Chu-sheng Chen,Oxygen permeation and stability of Zr_(0.8)Y_(0.2)O_(0.9)-La_(0.8)Sr_(0.2)CrO_(3-δ) dual-phase composite,J Solid State Electrochem 86(2006) 10:625-628
    7 Chiao Chien Wei and K.Li,Yttria-Stabilized Zirconia(YSZ)-Based Hollow Fiber Solid Oxide Fuel Cells,Ind.Eng.Chem.Res.2008,47,1506-1512
    8 Benjamin F.K.Kingsbury,K.Li,A morphological study of ceramic hollow fibre membranes,Journal of Membrane Science 328(2009) 134-140
    9 Chiao Chien Wei and K.Li,Yttria-Stabilized Zirconia(YSZ)-Based Hollow Fiber Solid Oxide Fuel Cells,Ind.Eng.Chem.Res.2008,47,1506-1512
    10 徐又一,徐志康等编著,高分子膜材料,化学工业出版社,北京(2005.2)19-72
    11 Michael van den Bossche,Steven McIntosh,The rate and selectivity of methane oxidation over La_(0.75)Sr_(0.25)Cr_xMn_(1-x)O_(3-δ) as a function of lattice oxygen stoichchiometry under solid oxide fuel cell anode conditions,Journal of catalysis 255(2008) 313-323
    12 X.J.Chen,Q.L.Liu,K.A.Khor,S.H.Chan,High-performance(La,Sr)(Cr,Mn)O_3/(Gd,Ce)O_(2-δ)composite anode for direct oxidation of methane,Journal of Power Sources 165(2007) 34-40
    13 M.Martin,Materials in thermodynamic potential gradients,J.Chem.Thermodynamics 35(2003) 1291-1308
    1 Jinsoo Kim and Y.S.Lin,Synthesis and Oxygen-Permeation Properties of Thin YSZ/Pd Composite Membranes,AIChE Journal August 2000 Vol.46,No.8 1521-1529
    2 Jinsoo Kim,Y.S.Lin,Synthesis and oxygen permeation properties of ceramic-metal dual-phase membranes,Journal of Membrane Science 167(2000) 123-133
    3 J.Smid,C.G.Avci,V.G(u|¨)nay,et al.,Preparation and characterization of microporous ceramic hollow fiber membranes,J.Membr.Sci.112(1996) 85-90
    4 R.F.C.Marques,H.E.Zorel,M.S.Crespi,M.Jafelicci,C.O.Paiva-Santos,L.C.Varanda,R.H.M.Godoi,J.Therm.Anal.Calorim.56(1)(1999) 143-149.
    5 J.de Jong,N.E.Benes,G.H.Koops,M.Wessling,Towards single step production of multi-layer inorganic hollow fibers,J.Membr.Sci.239(2004) 265-269
    6 Paulik,S.W.,Baskaran,S.& Armstrong,T.R.,Mechanical properties of calcium and strontium substituted lanthanum chromite.Journal of Materials Science Letters,1998,33,2397-2404
    7 Peck,D.H.,Miller,M.& Hilpert,K.,Vaporization and thermodynamics of La_(1-x)Ca_xCrO_(3-δ)investigated by Knudsen effusion mass spectrometry.Solid State lonics,2001,143,391-400
    8 L.Groupp andH.U.Anderson,J.Am.Ceram.SOC.,59(1976) 449.
    9 Tolchard,J.& Grande,T.,Physicochemical compatibility of SrCeO_3 with potential SOFC cathodes,J.of Solid State Chemistry,2007,180,2808-2815
    10 Yi,J.X.,Zuo,Y.B.,Liu,W.,Winnubst,L.& Chen,C.S.,Oxygen permeation through a Ce_(0.8)Sm_(0.2)O_(2-δ)-La_(0.8)Sr_(0.2)CrO_(3-δ) dual-phase composite membrane.J.Membr.Sci.,2006,280,849-855
    11 Liu,S.M.;Li,K.;Hughes,R.Preparation of Porous Aluminium Oxide(Al_2O_3) Hollow Fibre Membranes by a Combined Phase-Inversion and Sintering Method.Ceram.Int.29,2003,875-881.
    12 C.C.Wei,K.Li,Yttria-stabilized zirconia(YSZ)-based hollow fiber solid oxide fuel cells,Ind.Eng.Chem.Res.47(2008)1506.
    13 Wei Li,Jian-jun Liu,Chu-sheng Chen,Hollow fiber membrane of yttrium-stabilized zirconia and strontium-doped lanthanum manganite dual-phase composite for oxygen separation,submitted to Journal of Membrane Science
    14 Wei Li,Ting-fang Tian,Feng-yuan Shi,Yue-song Wang,Chu-sheng Chen,Ce_(0.8)Sm_(0.2)O_(2-δ)-La_(0.8)Sr_(0.2)MnO_(3-δ) dual-phase composite hollow fiber membrane for oxygen separation.Industrial & Engineering Chemistry Research
    15 汪波,高温致密透氧膜材料及膜过程研究,中国科学技术大学博士学位论文,交徽合肥,2006.5
    16 K.Li,X.Tan and Y.Liu,Single-step fabrication of ceramic hollow fibers for oxygen permeation,J.Membrane Sci.,272 (2006)1-5
    17 Michael van den Bossche,Steven Mcintosh,The rate and selectivity of methane oxidation over La_(0.75)Sr_(0.25)Cr_xMn_(1-x)O_(3-δ)as a function of lattice oxygen stoichchiometry under solid oxide fuel cell anode conditions,Journal of catalysis 255(2008)313-323
    18 X.J.Chen,Q.L.Liu,K.A.Khor,S.H.Chan,High-performance (La,SrXCr,Mn)O_3/(Gd,Ce)O_(2-δ)composite anode for direct oxidation of methane,Journal of Power Sources 165 (2007)34—40
    19 T.Nakamura,G.Petzow,L.J.Gauckler,Stability of the perovskite phase LaBO_3 (B=V,Cr,Mn,Co,Ni)in reducing atmosphere,Mater.Res.Bull.14 (1979)649-659
    20 E.Povoden,M.Chen,A.N.Grundy,T.Ivas,and L.J.Gauckler,Thermodynamic Assessment of the La-Cr-0 System,Journal of Phase Equilibria and Diffusion.30(2009)12-27
    21 Taroh Atsumi,Naoki Kamegashira,Decomposition oxygen partial pressures of Ln_(1-x)Sr_xMnO_3 (Ln=La,Nd and Dy),Journal of Alloys and Compounds 257 (1997)161-167
    22 T.Kobayashi,S.R.Wang,M.Dokiya,H.Tagawa,T.Hashimoto,Oxygen nonstoichiometry of CeB_(1-y)BSm_(By)BOB_(2-0.5y-x)B (y=0.1,0.2),Solid State Ionics 126 (1999)349
    23 S.P.S.Badwal,F.T.Ciacchi,J.Drennan,Investigation of the stability of ceria-gadolinia electrolytes in solid oxide fuel cell environments,Solid State Ionics 121 (1999)253
    24 M.Godickemeier,K.Sasaki,L.J.Gauckler,J.Electrochem.Soc,144 (1997)1635
    25 M.Godickemeier,L.J.Gauckler,J.Electrochem.Soc,145 (1998)414
    1 Armstrong P.A.,Bennett D.L.,Foster E.P.,et al,ITM oxygen for gasification.Proceedings of gasification technologies,2004,Washington,D.C.,3-6 October 2004
    2 Dyer P.N.,Richards R.E.,Russek S.L.,et al,Ion transport membrane technology for oxygen separation and syngas production.Solid State Ionics,2000,134,21-33
    3 J.Sunarso,S.Baumann,J.M.Serra,W.A.Meulenberg,S.Liu,Y.S.Lin,J.C.Diniz da Cost,Mixed ionic-electronic conducting(MIEC) ceramic-based membranes for oxygen separation,J.Membr.Sci.320(2008)13-41
    4 Bouwmeester H.J.M.,Dense ceramic membranes for oxygen separation,In fundamentals of inorganic membrane science and technology.Amsterdam:A.J.Burggraaf and L.Cot,Elservier,1996:435-528
    5 Chen C.S.,Feng S.J.,Ran S.,et al,Conversion of methane to syngas by a membrane-based oxidation-reforming process.Angew.Chem.Int.Ed.,2003,42:5196-5198
    6 Z.Shao,W.Yang,Y.Cong,H.Dong,J.Tong,G.Xiong,Investigation of the permeation behavior and stability of a Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ) oxygen membrane,J.Membr.Sci.172 2000)177.
    7 L.Qiu,T.H.Lee,L.M.Liu,Y.L.Yang,A.J.Jacobson,Oxygen permeation studies of SrCo_(0.8)Fe_(0.2)O_(3-δ),Solid State lonics 76(1995) 321.
    8 左艳波,致密陶瓷透氧膜和固体氧化物燃料电池电极材料研究,中国科学技术大学博士论文,合肥,(2007)
    9 Schiestel T.,Kilgus M.,Peter S.,et al,Hollow fibre perovskite membranes for oxygen separation.J.Membr.Sci.,2005,258:1-4
    10 Wang H.H,Werth S.,Schiestel T.,et al,Perovskite hollow-fiber membranes for the production of oxygen-enriched Air.Angew.Chem.Int.Ed.,2005,44:6906-6909
    11 Wang H.H,Tablet C.,Schiestel T.,et al,Hollow fiber membrane reactors for the oxidative activation of ethane.Catal.Today,2006,118:98-103
    12 Tan X.Y,Liu Y.T.,Li K.,Mixed conducting ceramic hollow-fiber membranes for air separation.AIChE J.,2005,51:1991-2000
    13 Li K.,Tan X.T,Liu Y.T.,Single-step fabrication of ceramic hollow fibers for oxygen permeation.J.Membr.Sci.,2006,272:1-5
    14 Liu S.M,Gavalas G.R.,Oxygen selective ceramic hollow fiber membranes.J.Membr.Sci.,2005,246:103-108
    15 Liu S.M.,Tan X.Y.,Shao Z.P.,et al,Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ) ceramic hollow-fiber membranes for oxygen permeation.AIChE J.,2006,52:3452-3461
    16 Grunbaum N.,Mogni L.,Prado F.,et al,Phase equilibrium and electrical conductivity of SrCo_(0.8)Fe_(0.2)O_(3-δ).J.of Solid State Chem.,2004,177:2350-2357
    17 Qiu L.,Lee T.H.,Liu L.M.,et al,Oxygen permeation studies of SrCo_(0.8)Fe_(0.2)O_(3-δ).Solid State Ionics,1995,76:321-329
    18 Kruidhof H.,Bouwmeester H.J.M.,Doom R.H.E.,et al,Influence of order-disorder transitions on oxygen permeability through selected nonstoichiometric perovskite-type oxides.Solid State Ionics,1993,63-65:816-822

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700