用户名: 密码: 验证码:
气体燃料对内燃机燃烧过程及排放影响的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着汽车保有量的不断增加和排放法规的日益严格,进一步降低内燃机排放成为当前能源与环境领域的一个重要课题。气体燃料发动机以其优良的排放、良好的经济性以及能部分替代石油资源而受到了空前重视。本文从改善燃烧降低排放的目标出发,重点研究了煤层气和氢气对内燃机燃烧过程和排放性能的影响。
     根据煤层气的理化性质,将S195柴油机改装成火花点火式煤层气发动机,并详细试验研究了煤层气组分变化对发动机燃烧和性能的影响。结果表明,当压缩比和点火定时一定时,煤层气发动机的怠速稳定性随甲烷浓度的增加而增加,当点火定时一定时,增加压缩比对提高怠速稳定性有利;在小负荷工况下,煤层气浓度的变化对缸内压力的影响不大,但在高负荷时,最大爆发压力受煤层气浓度的影响较大。当负荷一定时,压力升高率随甲烷浓度的增加而增加,主燃期变短。煤层气中甲烷的浓度达到一定程度后,煤层气中惰性气体对燃烧过程的影响较小。NOX排放浓度随着甲烷浓度的增加而增加,HC和CO排放随负荷和甲烷浓度的增加而降低。
     利用MATLAB软件,模拟了燃烧室内涡流强度,并利用随机点法计算火焰相关参数,最后建立了涡流室式煤层气发动机准维双区燃烧模型;在燃烧模型的基础上,建立了煤层气发动机主要排放(NOX、CO和HC)的预测模型。模拟结果与试验值的比较表明:论文建立的燃烧和排放预测模型基本合理,能较好反映煤层气发动机缸内工作过程,是研究涡流室式煤层气发动机燃烧机理的有效工具。
     试验研究了不同EGR率、掺氢率和掺氢EGR(HEGR)对ZS195柴油机性能的影响。结果表明,ZS195柴油机采用EGR技术后,缸内最大爆发压力和压力升高率峰值减小,工作粗暴性有所改善,发动机的动力性和经济性有一定退化;EGR技术能显著降低NOX排放,但CO、HC和烟度排放会增加。ZS195柴油机掺氢燃烧后,随着掺氢率的增加,缸内最大爆发压力和压力升高率峰值都会增加。掺氢燃烧会提高ZS195柴油机的热效率,经济性得到改善;掺氢燃烧可以减少HC、CO和烟度排放,但NOX排放增加;ZS195柴油机使用HEGR技术后,当EGR率一定时,随着掺氢率的增加,最大爆发压力、压力升高率峰值和放热率峰值都有所增加;ZS195柴油机使用HEGR技术后,能同时降低NOX和烟度排放,发动机的有效热效率略有改善。
     利用CHEMKIN软件对柴油废气重整反应进行了化学动力学模拟。结果表明,无论有无催化剂,重整器入口温度是影响柴油重整反应的主要因素。没有催化剂时入口温度在900K以上重整反应才能开始,反应速率慢,重整产物中H2和CO的体积分数少。有催化剂时入口温度在600K以上重整反应即可进行,反应速率快,重整产物H2和CO的产量大。没有催化剂时,柴油废气重整反应是吸热反应,水蒸汽重整反应和水煤气反应是主要反应,氧化反应是次要反应。有催化剂时,柴油废气重整反应是放热过程,放热量主要由氧碳比决定。水碳比(H2O/C)和氧碳比(O2/C)是影响柴油重整反应的外部因素。增加水碳比(H2O/C)和氧碳比(O2/C),可以增加H2和CO的产量。最优水碳比(H2O/C)在1.5-2之间,氧碳比(O2/C)在0.3-0.5之间。不考虑催化作用,重整产物H2和CO体积分数随着流速得增加而下降;考虑催化作用时,空速对重整产物H2和CO体积分数几乎没有影响。重整反应器的结构(长度和直径)对柴油废气重整反应的影响很小。
     利用FLUENT软件建立了ZS195柴油机三维燃烧模型,对ZS195柴油机在标定工况下采用EGR、掺氢燃烧和HEGR技术进行了三维燃烧模拟。模拟结果和测试结果较为吻合,变化趋势一致,说明建立的燃烧模型真实可行。缸内速度矢量分布受柴油喷射量的影响较大,但在喷油前和燃烧后期,EGR率对缸内最大速度和流场分布影响不大。随着EGR率的增加,缸内局部最高温度下降,O2浓度下降,NO的局部质量浓度也下降。随着掺氢量的增加,缸内流场的最大速度有所下降,但压缩过程前期和膨胀冲程后期缸内速度矢量分布没有明显变化。缸内局部最高温度和NO质量浓度也随掺氢量的增加而增加。模拟结果显示ZS195柴油机采用HEGR技术可以同时降低NO和微粒排放。
With increasing concerns on environment protection, the worldwide communities are bringing forward increasingly rigorous regulations for reducing toxic emissions from Internal Combustion Engines (ICE). As a result, improving fuel economy and reducing exhaust emissions are among the highest priorities for automotive industry and also remain as the most demanding subject for academia engaged in the research of combustion engines. Gas fuel can offer a promising perspective to enable the internal combustion engine to meet these challenges. In order to improve combustion process and decrease emissions, this paper studies the effect of gas fuel on performance and emission of ICE.
     Based on the physical and chemical characters of coal-bed gas, a model S195 diesel engine with swirl chamber has been modified to fuel with coal-bed gas. Detailed experiments have been carried out to investigate the combustion and emission characteristics of the engine operating with different grades of coal-bed gas. The experimental results show that the idling stability of coal-bed gas engine increases with the methane percentage increasing. Increasing compression ratio is helpful to enhance idling stability when ignition timing is constant. The combustion pressure difference resulting from the variation of methane content in coal-bed gas is not evident at low load condition, but it is evident at high load condition. The pressure rise rate increases with the methane percentage increasing when engine load condition is constant, and the combustion duration also reduces. The effect of inertia gas on combustion process is small when methane percentage reaches a certain level. The HC and CO emission decreases with methane percentage and engine load increasing, but it is reverse for NO emission.
     A quasi-dimensional 2-zone combustion model has been developed by using the MATLAB platform. The combustion model includes two sub-models, with the first calculating the turbulence intensity history and the second calculating flame parameters by random point method. Emissions of NO, HC and CO have been predicted using the numerical model based on an extended Zeldovich mechanism, wall quenching and incomplete oxidation theory. The effects of various components in coal-bed gas on the engine combustion process and emissions have been investigated, with a satisfactory agreement between the simulation and experimental data achieved.
     The influence of EGR ratio and hydrogen addition on performance and emissions of diesel engine has been studied. The experimental results show that the peak pressure and maximum rate of pressure rise reduces when EGR technique is adopted. EGR system can improve the operation stability. EGR system will result in engine output decreasing, fuel consumption increasing and smoke increasing. The peak pressure and maximum rate of pressure rise increases with the quantities of hydrogen increasing at all kind of load condition. It is concluded that induction of small quantities of hydrogen can significantly enhance the thermal efficiency and economics of ZS195 diesel engine. With hydrogen induction, NOX level increases, but smoke, HC and CO emissions reduce. In addition, hydrogen-enriched air is also used as intake charge in a diesel engine adopting exhaust gas recirculation (HEGR) technique. When HEGR technique is adopted, peak pressure reduces and the maximum rate of pressure rise and heat release increase at low load condition. But they are increase at high load condition. The HEGR technique can reduce NOX and smoke emissions simultaneously while the engine efficiency is improved.
     The chemical kinetics model of diesel fuel exhaust gas reforming has been developed using the CHEMKIN platform. The results show that the reaction profile of diesel fuel exhaust gas reforming was significantly influenced by the reformer inlet temperature with or without catalyst. The reforming reaction can start without catalyst until the reformer inlet temperature reach 900K, H2 and CO content in the reformer product is small. When the catalyst is adopted, the reforming reaction can start at the reformer inlet temperature of 600K, the reforming reaction rate is high, H2 and CO content increase. With the catalyst, the diesel fuel exhaust gas reforming reaction is endothermic, steam reforming reaction and water gas shift reaction are main reaction; partial oxidation reaction is secondary. Without catalyst, the reforming reaction is exothermic which the quantities of heat release are decided by the O2/C ratio. H2O/C ratio and O2/C ratio also influence the reforming reaction. The H2 and CO content of reformer product increases with the H2O/C ratio and O2/C ratio increasing. The optimum H2O/C ratio and H2O/C ratio is 1.5-2 and 0.3-0.5 respectively. Without catalyst, the H2 and CO percent in reformer product decreases with flow rate while the volume of reformer is constant. With the catalyst, the effect of Gas Hourly Space Velocity (GHSV) on H2 and CO percent is small while volume of reformer is constant. The structural parameter of reformer (length and volume) slightly influences the reaction profiles of diesel fuel exhaust gas reforming.
     Three-dimensional combustion model has been developed using FLUENT software. The effect of EGR, hydrogen addition and HEGR on performance of ZS195 diesel engine is studied. The modeling results are compared with the measured data obtained from a parallel experimental investigation, with a good agreement. The velocity vector was influenced by the fuel injection quantities, although the influence is small during the prophase of fuel injection and anaphase of combustion. The partial temperature, O2 and NO mass fraction decreases with the EGR ratio increasing. The local temperature, O and NO mass fraction increases with the quantities hydrogen addition increasing. The HEGR technique can reduce NO and smoke emission simultaneously.
引文
1. BP集团.2006BP世界能源统计年鉴[R].北京:人民大会堂,2007.
    2.中国石油期货网. http://www.oilprice.cn/news/ShowNews.aspx?newsId=152876&classId=59, 2008-07-12.
    3.新华网. http://news3.xinhuanet.com/fortune/2007-03/30/content_5914661.htm, 2007-03-30.
    4.中国客车信息网.解读欧Ⅲ排放标准. Http://www.chinaBus.Info.2005-12-31.
    5.中研普华管理咨询公司. 2007年中国天然气行业研究咨询报告[R].深圳,2007.
    6.国家发改委. http://www.sdpc.gov.cn/zwjjbd/hyyw/t20060922_85442.htm, 2006-09-22.
    7.中研普华管理咨询公司. 2007年中国LPG行业研究咨询报告[R].深圳,2007.
    8.黄树辉.需求出现拐点国内液化石油气需求17年首次下降.第一财经日报,2007-03-14.
    9.中国矿业报.煤层气:蛋糕好看吃着难. http://www.chinapower.com.cn, 2006-10-16.
    10.毛宗强.氢能-21世纪的绿色能源[M].北京:化学工业出版社,2005, 20-30.
    11.倪萌, M.Leung, K.Sumathy.电解水制氢技术进展[J].能源环境保护,2004,18(5):1-5.
    12.邢新会.发酵生物制氢研究进展[J].生物加工过程, 2005,3(1):1-8.
    13.左宜,左剑恶,张薇.利用有机物厌氧发酵生物制氢的研究进展[J].环境科学与技术, 2004, 27(1):97-99.
    14.李鑫,李安定,李斌,杨培尧.太阳能制氢研究现状及展望[J].太阳能学报, 2005,26(1):127-133.
    15.崔可润,高孝洪.氢在内燃机中的应用和发展[J].兵工学报坦克装甲车与发动机分册, 1994, 54(2):24-30.
    16.刘少文,吴广义.制氢技术现状及展望[J].贵州化工, 2005,28(5):4-9.
    17.杨新桥,周祥军.天然气/柴油双燃料发动机改装实用技术研究[J].交通科技, 2005, 210(3): 112-114.
    18.李克,杨铁皂,徐斌,张保恒.天然气/柴油双燃料发动机研发现状及发展[J].河南科技大学学报(自然科学版), 2004,25(2):28-32.
    19.徐兆坤,蒋妙范,吴伟蔚,赵华.天然气/柴油混合燃料发动机的特性研究[J].天然气工业, 2006,26(4):128-131.
    20. O. Nwafor. Effect of advanced injection timing on emission characteristics of diesel engine running on natural gas[J]. Renewable Energy, 2007, 32(14):2361-2368.
    21.宁智,刘建华,张欣,朱家松.天然气/柴油双燃料发动机燃烧特性的研究[J].车用发动机, 2001,131(10):5-7.
    22.徐兆坤,蒋妙范,张珏成,李西秦等.气体双燃料发动机运行模式的研究[J].天然气工业,2005, 25(3):157-180.
    23.张延峰,谭从民,郭永田,常立家等.柴油/天然气双燃料发动机技术改装方案分析[J].农业机械学报, 2004, 35(3):167-171.
    24. C. Mansour, A. Bounif, A. Aris, F. Gaillard. Gas–diesel (dual-fuel) modeling in diesel engine environment[J]. International Journal of Thermal Science, 2001, 40(4):409-424.
    25. O. Nwafor. Effect of choice of pilot fuel on the performance of natural gas in diesel engines[J]. Renewable Energy, 2000, 21(3-4):495-504.
    26. R. Papagiannakis, D. Hountalas. Combustion and exhaust emission characteristics of a dual fuel compression ignition engine operated with pilot diesel fuel and natural gas[J]. Energy Conversion and Management, 2004, 45(18-19):2971-2987.
    27.姚春德,刘增勇,高昌卿,孙家峰.柴油引燃天然气双燃料燃烧机理的研究[J].工程热物理学报, 2002, 23(6):761-763.
    28.宋金瓯,姚春德,姚广涛,姜泽军.柴油引燃天然气发动机燃烧过程的研究[J].热科学与技术, 2005, 4(2):169-173.
    29.宋金瓯,姚春德,解茂昭,刘增勇.柴油引燃天然气发动机燃烧模型的研究[J].内燃机学报, 2003, 21(5):303-307.
    30.姚春德,刘增勇,高昌卿.柴油引燃预混天然气准均质压燃着火过程的研究[J].内燃机学报, 2003,21(1):7-12.
    31.姚春德,姚广涛,宋金瓯,段峰.双燃料内燃机引燃油混合气形成与燃烧过程模型研究[J].燃烧科学与技术, 2005, 11(1):19-23.
    32.宋金瓯,姚春德.涡流比对双燃料发动机燃烧过程影响的数值分析[J].汽车工程, 2004,26(1):20-23.
    33.张武高,周明,欧阳明高.柴油/天然气双燃料发动机的燃烧特性分析[J].内燃机学报, 2000, 18(3):299-304.
    34.张武高,李希浩,欧阳明高.引燃柴油供给系统对双燃料发动机性能的影响[J].内燃机工程, 2000, 20(4):28-36.
    35.刘震涛,俞小莉,费少梅.天然气/柴油双燃料发动机燃气供给系统特性研究[J].内燃机工程, 2002,23(2):15-20.
    36.马艳明,许忠厚,马凡华,吕剑飞.对装有EGR的天然气发动机的试验研究[J].车用发动机, 2002, 141(5):38-40.
    37.苏万华,林志强,汪洋,谢辉等.气口顺序喷射、稀燃、全电控柴油/天然气双燃料发动机的研究[J].内燃机学报, 2001, 19(2):102-108.
    38.谢辉,张震,王国祥,林志强等.全电控双燃料发动机32位电控单元的开发[J].内燃机工程, 2001, 22(3):11-15.
    39.张红光,盛宏至,潘奎润,张锐.车用柴油/天然气双燃料发动机的开发[J].农业机械学报, 2003,34(5):8-14.
    40.张纪鹏,高青,孙济美,郝利君.天然气/柴油双燃料发动机排放的影响因素[J].兵工学报,坦克装甲车与发动机分册, 2000, 78 (2):15-18.
    41.高青,张纪鹏,王立君,孙志军等.天然气/柴油双燃料发动机燃烧排放规律[J].汽车工程, 2000, 22(5):342-345.
    42.梁保山,高青,张纪鹏,孙济美.双燃料发动机天然气喷射控制系统及其性能[J].吉林工业大学自然科学学报, 2001, 31(2):1-6.
    43.高青,梁宝山,李虎,张纪鹏等.天然气/柴油双燃料发动机电控喷气技术研究[J].汽车工程, 2000, 22(6):389-392.
    44.张纪鹏,高青,王立军,孙志军等.供油提前角对天然气/柴油双燃料发动机排放的影响[J].燃烧科学与技术, 2000, 6(1):73-76.
    45. G. Cowan, S. Rogak, W. Bushe, P. Hill et al. The effects of high-pressure injection on a compression ignition, direct injection of natural gas engine[J]. Journal of Engineering for Gas Turbines and Power, 2007, 129(2):579-588.
    46. R. Papagiannakis, D. Hountalas. Experimental investigation concerning the effect of natural gas percentage on performance and emissions of a DI dual fuel diesel engine[J]. Applied Thermal Engineering, 2003, 23(4):353-365.
    47.高青,田文凯,张纪鹏,孙志军,孙济美.双燃料发动机燃烧经济性和稳定性研究[J].农业机械学报, 2000, 31(6):1-3.
    48.林志强,苏万华.柴油引燃式天然气发动机最佳引燃柴油量及过量空气系数浓限、稀限的研究[J].内燃机学报, 2002, 20(6):505-510.
    49. Z. Huang, S. Shiga, T. Ueda, H. Nakamura et al. Effect of fuel injection timing relative to ignition timing on the natural-gas direct-injection combustion[J]. Journal of Engineering for Gas Turbines and Power, 2003, 125(3):783-790.
    50. S. Mohamed. Effect of engine parameters and gaseous fuel type on the cyclic variability of dual fuel engines[J]. Fuel, 84(7-8):961-971.
    51. S. Krishnan, K. Srinivasan, S. Singh, S. Bell, et al. Strategies for reduced NOx emissions in pilot-ignited natural gas engines[J]. Journal of Engineering for Gas Turbines and Power, 2004, 126(3):662-671.
    52.林志强,苏万华,王国祥.柴油引燃天然气发动机着火特性及其影响因素的研究[J].燃烧科学与技术, 2003, 9(3):234-237.
    53. U. Kesgin. Study on prediction of the effects of design and operating parameters on NOX emissions from a lean burn natural gas engine[J]. Energy Conversion and Management, 2003, 44(6):907-921.
    54. H. Cho, B. He. Spark ignition natural gas engines—a review[J]. Energy Conversion and Management, 2007, 48(2):608-618.
    55. S. Soylu. Prediction of knock limited operating conditions of a natural gas engine[J]. Energy Conversion and Management, 2005, 46(1):121-138.
    56. Z. Ristovski, L. Morawska, J. Hitchins, S. Thomas, et al. Particle emissions from compressed natural gas engines[J]. Journal Aerosol Science, 2000, 31(4): 403-413.
    57. A. Gangopadhyay, P. Meckl. Modeling and validation of a lean burn natural gas engine[J]. Journal of Dynamic Systems, Measurement, and Control, 2005, 123(3):425-430.
    58. R. Roethlisberger, D. Favrat. Investigation of the prechamber geometrical configuration of a natural gas spark ignition engine for cogeneration: part II. experimentation[J]. International Journal of Thermal Sciences, 2003, 42(3):239–253.
    59. J. Hiltner, R. Agama, F. Mauss, B. Johansson, et al. Homogeneous charge compression Ignition operation with natural gas: fuel composition implications[J]. Journal of Engineering for Gas Turbines and Power, 2003, 125(3):837-844.
    60. U. Kesgin. Effect of turbocharging system on the performance of a natural gas engine[J]. Energy Conversion and Management, 2005, 46(1):11-32.
    61. G. Kim, A. Kirkpatrick, C. Mitchell. Computational modeling of natural gas injection in a large bore engine[J]. Transactions of the ASME, 2004, 126(3):656-664.
    62. M. Aslam, H. Masjuki, M. Kalam, H. Abdesselam, et al. An experimental investigation of CNG as an alternative fuel for a retrofitted gasoline vehicle[J]. Fuel, 2006, 85(5-6):717–724.
    63. D. Zhang, S. Frankel. A numerical study of natural gas combustion in a lean burn engine[J]. Fuel, 1998, 77(12):1339-1347.
    64. E. Khalil, G. Karim. A Kinetic Investigation of the role of changes in the composition of natural gas in engine applications[J]. Transactions of the ASME, 2002, 124(2):404-411.
    65.刘亮欣,黄佐华,蒋德明,任毅等.不同喷射时刻下缸内直喷天然气发动机的燃烧特性[J].内燃机学报, 2005, 23(5):469-473.
    66.孙嗣炎,张振东,方祖华,郭辉等.缸内直喷式天然气发动机的试验研究[J].农业机械学报, 2005, 36(10):13-16.
    67.窦慧莉,刘忠长,李骏,闫涛.过量空气系数对天然气发动机燃烧及排放的影响[J].汽车技术, 2006, (3):8-12.
    68.郑清平,张惠明,张德福.压燃式天然气发动机的技术现状及展望[J].农业机械学报, 2004, 35(5):215-219.
    69.郑清平,张惠明,张德福.分隔室压燃式天然气发动机燃烧过程模拟[J].内燃机学报, 2005, 23(2):124-130.
    70.张惠明,张德福,张振明,郑清平.预混合压燃式天然气发动机燃烧性能的初步试验研究[J].燃烧科学与技术, 2005, 11(5):389-394.
    71.张德福,张惠明,龚英力,张振明.天然气发动机供气系统的开发研究[J].航海技术, 2004, 5:39-40.
    72.张德福,张惠明,张振明,郑清平.压燃式天然气发动机着火和敲缸的试验研究[J].内燃机学报, 2005, 23(4):322-328.
    73.邓玉龙,张惠明,张德福,王昊宇.天然气压缩着火燃烧过程的研究[J].车用发动机, 2006, 161(1):15-18.
    74.张德福,张惠明,张振明,郑清平.电控喷射压缩点火天然气发动机特性的试验研究[J].农业机械学报, 2005, 36(12):1-4.
    75.尧命发,郑尊清,汪洋,余本雄. DME/CNG双燃料均质压燃发动机性能试验研究[J].燃烧科学与技术, 2004, 10(2):155-159.
    76.曾科,刘兵,许二磊,黄佐华.汽油/CNG混合燃料发动机的性能和燃烧特性研究[J].内燃机学报, 2005, 23(3):224-231.
    77.唐晓东,文永勇,白健,卢开和.富氧助燃技术提高天然气汽车动力性能的研究[J].石油与天然气化工, 2000, 29(6):284-288.
    78. M. Aslam, H. Masjuki, M. Kalam, H. Abdesselam, et al. An experimental investigation of CNG as an alternative fuel for a retrofitted gasoline vehicle[J]. Fuel, 2006, 85(5-6):717-724.
    79.高世伦,张捷,金国栋. LPG/汽油双燃料发动机台架试验研究[J].车用发动机, 2001, 133(3):17-21.
    80.吕兆华,卜明,姚国忠.汽油/LPG双燃料发动机的试验研究[J].汽车研究与开发, 2000, (4):23-26.
    81.顾善愚,赵奎翰,刘建京,饶如麟.汽油/液化石油气(LPG)两用燃料发动机的研究[J].内燃机学报, 2001, 19(4):323-327.
    82.廖祥兵,王军,朱会田,汤尚水.汽油/液化石油气双燃料在Santana2000发动机上的应用.内燃机工程, 2002, 23(2):77-80.
    83.姚毅,孟昭昕,李艳春.汽油/液化石油气(LPG)两用燃料发动机性能的试验研究及分析[J].内燃机, 2005, 2:26-29.
    84.阎文兵,姜绍忠.液化石油气/汽油双燃料汽车改装及其技术分析[J].华北工学院学报,2001, 22(3):190-193.
    85.俞忠新,黄畴,朱焱.液化石油气与汽油发动机燃烧特性对比[J].武汉汽车工业大学学报, 2000, 22(2):62-64.
    86.刘生全,司利增,张春化,边耀璋.液化石油气在汽油机上的应用研究[J].西安公路交通大学学报, 1999, 19(1):77-80.
    87.陈勇,叶艳,鲁建厦,蒋美仙,兰秀菊.汽油-液化石油气双燃料发动机点火系统的优化[J].小型内燃机与摩托车, 2001, 30(6):19-22.
    88.杨敬群.汽油/液化石油气两用燃料汽车改装匹配时燃气系统中文氏管式混合器的开发[J].天津汽车, 2000, 2:17-19.
    89.李辉,张树军.液化石油气(LPG)-汽油双燃料汽车的气量调节[J].节能技术, 2002, 115(5):32-34.
    90.熊树生,金晖,陈勇. JV481Q发动机燃用液化石油气的燃烧特性与功率恢复[J].内燃机工程, 2001,(1):82-85.
    91.周文铸,丁一鸣,钱利民.汽油-液化石油气双燃料输配系统的分析与研究[J].能源研究与信息, 2001, 17(3):144-147.
    92.宋培刚,梁荣光,翁仪壁,张吉忠. LPG—柴油双燃料发动机排放及动力特性的研究[J].内燃机2004,(2):5-7.
    93.蒋卫东,申立中,沈颖刚,颜文胜. LPG/柴油双燃料发动机动力性的试验研究[J].小型内燃机与摩托车,2006, 35(1):54-56.
    94. S. Ganesan, A. Ramesn. Experimental investigations on a LPG-diesel dual fuel engine[J]. Journal of the Institution of Engineers: Mechanical Engineering Division, 2002, 83(2):105-111.
    95.高国珍,陈光敏,晁云.柴油/液化石油气(LPG)发动机燃烧放热规律的计算与分析[J].内燃机, 2006, 2:44-46.
    96. V. Sethi, K. Salariya. Exhaust analysis and performance of a single cylinder diesel engine run on dual fuels[J]. Journal of the Institution of Engineers: Mechanical Engineering Division, 2004, 85(1):1-7.
    97.王忠俊,张新塘,潘志翔. LPG/柴油双燃料发动机燃烧特性研究[J].武汉理工大学学报(交通科学与工程版), 2002, 26(4):460-462.
    98. J. Cao, Y. Bian, D. Qi, Q. Cheng, et al. Comparative investigation of diesel and mixed liquefied petroleum gas/diesel injection engines[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2004, 218(5):557-565.
    99.沈辉,袁银南. R175A柴油发动机掺燃LPG的试验研究[J].小型内燃机与摩托车, 2007, 36(4):58-61.
    100. D. Qi, Y. Bian, Z. Ma, C. Zhang, S. Liu. Combustion and exhaust emission characteristics of a compression ignition engine using liquefied petroleum gas–diesel blended fuel[J]. Energy Conversion and Management, 2007,48(2):500-509.
    101.沈辉,袁银南,梅德清,高晓宏. LPG/柴油双燃料发动机放热规律的试验研究[J].江苏大学学报(自然科学版), 2002, 23(2):26-29.
    102.高国珍,陈光敏,晁云.柴油/液化石油气(LPG)发动机燃烧放热规律的计算与分析[J].内燃机, 2006, 2:47-49.
    103. Y. Bian, Y. Zhang, M. Zhang, C. Liu. Combustion and exhaust emission characteristics of a compression ignition engine using liquefied petroleum gas-diesel blended fuel[J]. Energy Conversion and Management, 2007, 48(2):510-519.
    104.董健,高孝洪.柴油/LPG发动机的双燃料供给系统[J].内燃机工程, 2001, 22(1):31-33.
    105. M. Haiyan, M. Brian. Numerical simulation of the gas/diesel dual-fuel engine in-cylinder combustion process[J]. Numerical Heat Transfer; Part A: Applications, 20005, 47(6):523-547.
    106.蒋卫东,颜文盛,申立中,沈颖刚. LPG/柴油双燃料发动机燃烧分析实验[J].内燃机,2005(3):33-35.
    107. C. Zhang, Y. Bian, L. Si, J. Liao, et al. A study on an electronically controlled liquefied petroleum gas-diesel dual-fuel automobile[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2005, 219(2):207-213.
    108. D. Qi, L. Zhou, S. Liu. Experimental studies on the combustion characteristics and performance of a naturally aspirated, direct injection engine fuelled with a liquid petroleum gas/diesel blend[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2005, 219(2):253-261.
    109. S. Mohamed. Effect of engine parameters and gaseous fuel type on the cyclic variability of dual fuel engines[J]. Fuel, 2005, 84(7-8):961-971.
    110.王建,刘胜吉.单缸直喷柴油机燃用液化石油气的研究[J].内燃机工程, 2005, 26(3):82-84.
    111.陈振天,张振东,方毅博,尹丛勃.电控液化石油气单缸发动机试验研究[J].上海理工大学学报, 2006, 28(4):363-366.
    112. Y. Lee, C. Kim, S. Oh, K. Kang. Effects of injection timing on mixture distribution in a liquid-phase LPG injection engine for a heavy-duty vehicle[J]. JSME International Journal, Series B: Fluids and Thermal Engineering, 2004, 47(2):410-415.
    113. S. Lee, D. Yasuhiro. Simulation for high efficiency liquefied petroleum gas engine development[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal ofAutomobile Engineering, 2004, 218(10):1201-1208.
    114. K. Cha, P. Simsoo. Experimental investigation on the time resolved THC emission characteristics of liquid phase LPG injection (LPLi) engine during cold start[J]. Fuel, 2007, 86(10-11):1475-1482.
    115. G. Li, G. Li, X. Qiao, G. Xiao, et al. Oxygen-enriched combustion of the first cycle during cold start in a liquefied petroleum gas spark-ignition engine[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2006, 220(9):1265-1274.
    116. Z. Liu, L. Li, B. Deng. Cold start characteristics at low temperatures based on the first firing cycle in an LPG engine[J]. Energy Conversion and Management, 2007, 48(2):395-404.
    117. O. Hakan, M. Soylemez. Thermal balance of a LPG fuelled, four stroke SI engine with water addition[J]. Energy Conversion and Management, 2006, 47(5):570-581.
    118. O. Hakan, M. Soylemez. Experimental investigation of the effects of water addition on the exhaust emissions of a naturally aspirated, liquefied-petroleum-gas-fueled engine[J]. Energy and Fuels, 2005, 19(4):1468-1472.
    119. Y. Shinya, I. Mitsunori, T. Satoru, T. Masayoshi, et al. Research and development of an LPG liquid-phase fuel injection system -overview and performance of a prototype vehicle fitted with the LPG liquid-phase fuel injection system[J]. Review of Automotive Engineering, 2005, 26(4):525-531.
    120. H. Sim, K. Lee, N. Chung. Experimental analysis of a liquid-phase liquefied petroleum gas injector for a heavy-duty engine[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2004, 218(7):719-727.
    121. S. Cho, K. Min. Injector control logic for a liquid-phase liquid petroleum gas injection engine[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2004, 218, (1):71-79.
    122. Oh, S. C. Bae. Mixture distribution and flame propagation in a heavy-duty liquid petroleum gas engine with liquid phase injection[J] International Journal of Engine Research, 2004, 5(6):513-524.
    123. K. Lee, J. Ryu. An experimental study of the flame propagation and combustion characteristics of LPG fuel[J]. Fuel, 2005, 84(9):1116-1127.
    124.王辉,朱建新,曹茉莉. LPG—柴油混烧中液化气流量的智能控制[J].江苏理工大学学报(自然科学版), 2001, 22(1):40-44.
    125.袁银男,郭晓亮,聂春飞,赵会军. LPG-柴油双燃料发动机电控喷气系统设计[J].内燃机工程, 2004, 25(2):225-228.
    126.聂春飞,袁银南.电控LPG-柴油双燃料发动机排放烟度分析[J].江苏大学学报(自然科学版), 2002, 23(6):6-9.
    127.朱义伦,周校平,何方正,刘国庆等.电控液化石油气发动机动力性能研究[J].车用发动机, 2000, 128(4):13-15.
    128.程宏斌.煤层气热电联产技术[J].中国煤层气, 2005, 2(1):40-43.
    129.张文波,程宏斌.煤层气发电与机型选择[J].洁净煤技术, 2004, 2(1):21-24.
    130.郭娟彦,蒋东翔,赵钢.煤层气发电技术现状及我国煤层气发电存在的问题[J].中国煤层气, 2004, 1(2):39-43.
    131.陈宜亮.低浓度煤层气发电机组技术及应用[J].山东理工大学学报(自然科学版), 2003, 17(4):108-110.
    132.乔安平.一种新颖的瓦斯气内燃机空燃自动混合控制装置[J].天然气工业, 2002, 22(3):99-102.
    133.张晓青,郑国璋,杨庆佛,王爱卿等.低浓度煤层气发电用发动机混合器的设计[J].煤炭转化, 2001, 24(1):40-43.
    134.杨立平,李君,王立媛,高莹.氢在车用发动机上的应用[J].汽车技术, 2006,12:1-5.
    135.孙宁,马凡华.氢内燃机的发展现状和动向[J].车用发动机, 2006, 162(2):1-5.
    136.郭志东.汽车用氢燃料系统的研究动向[J].天津汽车, 2002, 1:3-9.
    137.马捷,王亚丛,苏永康,陆景放等.氢气机循环的热力学分析及其变化特征[J].上海交通大学学报, 2001, 35(5):787-790.
    138.马捷,陆景放,苏永康,周玉成.涡轮增压氢气机工作过程的特征和变化[J].吉林工业大学自然科学学报, 2001, 31(2):65-70.
    139.马捷,周玉成,苏永康,张忠利.涡轮增压氢发动机加速特性的分析和改进[J].合肥工业大学学报, 2001, 24(5):940-945.
    140.张国强,郭巍,曲延涛.氢内燃机的热力学性能分析[J].车用发动机, 2005, 160(6):22-24.
    141. A. Drew, J. David, J. William. A simulation and design tool for hydrogen SI engine systems—Validation of the intake hydrogen flow model[J]. International Journal of Hydrogen Energy, 2007, 32(14):3084-3092.
    142. J. Yamina, H. Guptaa, B. Bansala, O. Srivastava. Effect of combustion duration on the performance and emission characteristics of a spark ignition engine using hydrogen as a fuel[J]. International Journal of Hydrogen Energy, 2000, 25(6):581-589.
    143. M. Baghdadi. Effect of compression ratio, equivalence ratio and engine speed on the performance and emission characteristics of a spark ignition engine using hydrogen as a fuel[J]. Renewable Energy, 2004, 29(15):2245-2260.
    144. L. Das. Hydrogen engine: research and development (R&D) programs in Indian Institute of Technology (IIT), Delhi[J]. International Journal of Hydrogen Energy, 2002, 7(9):953-965.
    145. C. White, R. Steeper, A. Lutz. The hydrogen-fueled internal combustion engine: a technical review[J]. International Journal of Hydrogen Energy, 2006, 31(15):1292-1305.
    146. S. Lee, H. Yi, E. Kim. Combustion characteristics of intake port injection type hydrogen fuelled engine[J]. International journal of hydrogen Energy, 1995, 20(4):317-322.
    147. V. Subramanian, J. Mallikarjuna, A. Ramesh. Effect of water injection and spark timing on the nitric oxide emission and combustion parameters of a hydrogen fuelled spark ignition engine[J]. International Journal of Hydrogen Energy, 2007, 32(9):1159-1173.
    148. E. Kahramana, S. Ozcanlb, B. Ozerdemb. An experimental study on performance and emission characteristics of a hydrogen fuelled spark ignition engine[J]. International Journal of Hydrogen Energy, 2007, 32(12):2066-2072.
    149. Z. Yang, Z. Wei, Z. Fang, J. Li. An investigation of optimum control of ignition timing and injection system in an in-cylinder injection type hydrogen fueled engine[J]. International Journal of Hydrogen Energy, 2002 27(2):213-217.
    150. M. Ali, S. Masahiro, N. Yasuyuki, I. Wataru, et al. Performance and combustion characteristics of a direct injection SI hydrogen engine[J]. International Journal of Hydrogen Energy, 2007, 32(4):296-304.
    151. H. Yi, S. Lee, S. Kim. Performance evaluation and emission characteristics of in-cylinder injection type hydrogen fueled engine[J]. International Journal Hydrogen Energy, 1996, 21(1):617-624.
    152. S. Verhelst, R. Sierens. A quasi-dimensional model for the power cycle of a hydrogen-fuelled ICE[J]. International Journal of Hydrogen Energy, 2007, 32(15):3545-3554.
    153. W. James. NOx emission and performance data for a hydrogen fueled internal combustion engine at 1500 rpm using exhaust gas recirculation[J]. International Journal of Hydrogen Energy, 2003, 28(9):901-908.
    154. V. Subramanian, J. Mallikarjuna, A. Ramesh. Intake charge dilution effects on control of nitric oxide emission in a hydrogen fueled SI engine[J]. International Journal of Hydrogen Energy, 2007, 32(12):2043-2056.
    155. M. Baghdadi, H. Janabi. A prediction study of a spark ignition supercharged hydrogen engine[J]. Energy Conversion and Management, 2003, 44(20):3143-3150.
    156.张勇,黄佐华,廖世勇,王倩等.天然气-氢气-空气混合气的层流燃烧速度测定[J].内燃机学报, 2006, 24(2):97-103.
    157.张勇,黄佐华,王倩,王金华等.天然气—氢气—空气混合气火焰传播特性研究[J].内燃机学报, 2006, 24(6):481-488.
    158.王金华,黄佐华,刘兵,曾科等.直喷发动机燃用天然气掺氢混合燃料的性能与排放[J].西安交通大学学报, 2006, 40(5:521-525.
    159.马凡华,孙宁.天然气掺氢燃烧及排放性能的元素势能法分析[J].车用发动机, 2005, 159(5):28-31.
    160.殷勇,马凡华.天然气掺氢发动机试验用混合气配比系统研制[J].车用发动机, 2006, 162(2):49-53.
    161.徐正好,杨宗栋,郑康元,常健等.氢-汽油双燃料发动机性能实验研究[J].内燃机工程, 2003, 24(3):59-61.
    162.杜天申,许沧粟,王振子,李径定.氢/汽油双燃料燃烧过程中有害排放物生成机理研究[J].浙江大学学报, 1996, 30(1):42-48.
    163.谭宏伟,史守华,刘永智,郝俊英.氢油混燃在汽油机中的试验研究[J].稀土, 2000, 21(5):31-34.
    164. H. Janabi and M. Baghdadi. A prediction study of the effect of hydrogen blending on the performance and pollutants emission of a four stroke spark ignition engine[J]. International Journal of Hydrogen Energy, 1999, 24(6):363-375.
    165. M. Baghdadi, H. Janabi. Improvement of performance and reduction of pollutant emission of a four stroke spark ignition engine fueled with hydrogen/gasoline fuel mixture[J]. Energy Conversion and Management, 2000, 41(2):77-91.
    166. M. Minutillo. On-board fuel processor modeling for hydrogen-enriched gasoline fuelled engine[J]. International Journal of Hydrogen Energy, 2005, 30(13-14):1483-1490.
    167. E. Galloni, M. Minutillo. Performance of a spark ignition engine fuelled with reformate gas produced on-board vehicle[J]. International Journal of Hydrogen Energy, 2007, 32(13):2532-2538.
    168. F. Yuksel, M. Ceviz. Thermal balance of a four stroke SI engine operating on hydrogen as a supplementary fuel[J]. Energy, 2003, 28(10):1069-1080.
    169. T. Andrea, P. Henshaw, D. Ting. The addition of hydrogen to a gasoline-fuelled SI engine[J]. International Journal of Hydrogen Energy, 2004, 29(15):1541-1552.
    170.张波,傅维标,武向辉.氢气对柴油机油耗的影响[J].燃烧科学与技术, 2006, 12(3):238-242。
    171.石鲁民,刘明树,王志中,刘清起,邵名东. S195柴油机掺氢燃烧的试验研究[J].拖拉机, 1993, 2:23-26.
    172.崔可润,高孝洪.柴油机加氢降低燃油消耗的研究[J].武汉水运工程学院学报, 1992, 16(3):253-259.
    173.徐挺,石鲁民,王志中,张友坤.传统柴油机的排放情况及掺氢燃烧后的排放预测[J].吉林工业大学学报, 1996, 28(2):93-97.
    174. M. Masood, M. Ishrat, A. Reddy. Computational combustion and emission analysis of hydrogen–diesel blends with experimental verification[J]. International Journal of Hydrogen Energy, 2007, 32(13):.2539-2547.
    175. N. Saravanan, G. Nagarajan, S. Narayanasamy. An experimental investigation on DI diesel engine with hydrogen fuel[J]. Renew Energy, 2008, 33(3):415-421.
    176. M. Masood, S. Mehdi, P. Reddy. Experimental Investigations on a Hydrogen-Diesel Dual Fuel Engine at Different Compression Ratios[J]. Journal of Engineering for Gas Turbines and Power 2007, 129(4):572-578.
    177. A. Tsolakis, A. Megaritis, M. Wyszynski. Application of exhaust gas fuel reforming in compression ignition engines fueled by diesel and biodiesel fuel mixtures[J]. Energy and Fuels, 2003, 17(12):1464-1473.
    178. M. Kumar, A. Ramesh, B. Nagalingam. Use of hydrogen to enhance the performance of a vegetable oil fuelled compression ignition engine[J]. International Journal of Hydrogen Energy, 2003, 28(10):1143-1154.
    179.程伟,黄荣华,代称程,顾善愚.天然气成分对发动机性能及排放影响的试验研究[J].内燃机工程, 2005, 26(5):24-26.
    180.张惠明,龚英利,赵奎翰,刘雄,高建东,李宗立.天然气发动机预燃室式燃烧系统的研究[J].农业机械学报, 2004, 35(1):34-38.
    181.李书泽,张武高,黄震.天然气发动机燃料供给系统研究现状[J].农业机械学报, 2005, 36(2):127-131.
    182.郭威.火花点火是发动机燃用变组分煤层气发动机的研究[D].合肥工业大学硕士论文, 2003, 30-50.
    183. R. Benson. A simulation codel including intake and exhaust systems for a single cylinder four stroke cycle spark ignition engine[J]. International Journal of Mechanical Science, 1975, 17(2):97-124.
    184.顾红兰.火花点火发动机燃用变组分煤层气的燃烧模型和主要排放模型研究[D].合肥工业大学硕士论文, 2003, 20-34.
    185. M. Methalchi. Laminar burning velocity of propane- air mixtures at high temperature[J]. Combustion and Flame, 1980, 38(2):551-560.
    186.左承基.火花点火式天然气发动机燃烧系统的研究[D].天津大学博士研究生论文, 1999, 50-55.
    187.刘伯棠,朱梅林,鄢立阳.主副燃烧室分层燃烧湍流强度模拟新方法[J].华中理工大学学报, 1993, 21(5):60-65.
    188.马凡华,李国伟,蒋德明.一种建立通用的汽油机燃烧室几何模型的新方法—随机点法[J].内燃机学报, 1994, 12(4):304-309
    189.陈泽智.火花点火沼气发动机燃烧过程模拟与工作性能的研究[D].浙江大学博士研究生论文, 1999, 20-60.
    190.崔心存,金国栋.内燃机排气净化[M].华中理工大学出版社, 1991, 200-210.
    191.杜宝国,许锋,高希彦,鲍镇.在直喷式柴油机上进行HCCI新概念燃烧的探索研究[J].热科学与技术, 2007, 6(1):80-84.
    192.贺泓,翁端,资新运.柴油车尾气排放污染控制技术综述[J].环境科学, 2007, 28(6):1169-1177.
    193. G. Ulrich, B. Schumann. Engines and exhaust after treatment systems for future automotive applications[J]. Solid State Ionics, 2006, 177(26-32):2291-2296.
    194. A. Tsolakis, A. Megaritis. Partially premixed charge compression ignition engine with on-board H2 production by exhaust gas fuel reforming of diesel and biodiesel[J]. International Journal of Hydrogen Energy, 2005, 30(7):731-745.
    195. M. Kim, C. Lee. Effect of a narrow fuel spray angle and a dual injection configuration on the improvement of exhaust emissions in a HCCI diesel engine[J]. Fuel, 2007, 86(17-18):2871-2880.
    196.庄兵,罗福强,李占成,黄贤龙.内燃机废气再循环(EGR)率评价方法研究[J].农机化研究, 2006, 8:203-205.
    197.纪常伟,韩爱民,赵勇,马慧.内燃机废气再循环率评价方法的试验研究[J].北京工业大学学报, 2004, 30(3):338-341.
    198.冉然.烷烃催化转化制氢气/合成气的研究[D].中国科学院研究生院博士论文, 2003, 20-50.
    199.朱文良.液态烃类在透氧膜反应器中混合重整制氢/合成气[D].中国科学院研究生院博士论文, 2005, 30-75.
    200.张保才.生物质乙醇水蒸气重整制氢反应的研究[D].中国科学院研究生院博士论文, 2006, 20-60.
    201.龚娟,苏庆泉,米万良,李志远等.入口气体组成对天然气重整工作温度的影响[J].化工学报, 2008, 59(3): 687-693.
    202.银华强.高温堆甲烷蒸汽重整制氢系统的研究[D].清华大学工学博士学位论文, 2006, 32-45.
    203.王锋,辛明道,崔文智,李隆键等.微型燃料重整制氢技术[J].太阳能学报, 2007, 28(7):783-792.
    204.宋凌,李兴虎,李聪,黄敏.二甲醚部分氧化重整制氢的实验研究[J].燃料化学学报, 2008, 36(1):79-82.
    205.李振山,蔡宁生.吸收增强式甲烷水蒸气重整制氢循环反应模拟[J].燃料化学学报, 2008, 36(1):99-103.
    206.王锋,李隆键,漆波,崔文智等.微型反应器中甲醇水蒸气重整制氢研究[J].西安交通大学学报, 2008, 42(4):509-514.
    207.卢红.膜反应器中甲烷蒸汽重整制氢的研究与模拟[D].四川大学博士论文, 2002, 35-54.
    208.沈颖刚,王宇琳,郑伟,申立中等.内燃机燃烧过程数值模拟技术发展概况[J].拖拉机与农用运输车, 2004, 31(4):7-9.
    209.许元默,帅石金,王燕军,孙勇.发动机缸内数值模拟现状及发展方向[J].小型内燃机与摩托车, 2002, 31(15):36-41.
    210.周重光. LPG发动机三维燃烧模拟计算与试验研究[D].浙江大学博士学位论文, 2003,
    22-53.
    211.文华.基于CFD的柴油机喷雾混合过程的多维数值模拟[D].华中科技大学博士学位论文, 2004, 32-45.
    212.赵骆伟.基于化学反应动力学的天然气-柴油电控双燃料发动机燃烧模型的研究[D].浙江大学博士学位论文, 2001,10-56.
    213.王忠恕.边界条件对柴油机瞬态工况下燃烧的影响及数值模拟[D].吉林大学博士论文, 2006, 15-56.
    214.虞育松,李国岫,刘建英.燃烧室形状对直喷柴油机燃烧性能影响的三维数值模拟[J].北京交通大学学报, 2007, 31(4):115-119.
    215.魏强,尹必峰,刘胜吉,徐毅等.小缸径直喷柴油机喷雾与燃烧三维数值模拟[J].拖拉机与农用运输车, 2007, 34(3):46-49.
    216. R. Reitz. Mechanism of atomization process in high-pressure vaporizing sprays[J]. Atomization and Spray Technology, 1987, 3(10):309-337.
    217. P. Rourke. Collective drop effects on vaporizing liquid sprays[D]. Princeton: New Jersey Princeton University, 1981.
    218. O. Hardenburg, F. Hase. An empirical formula for computing the pressure rise delay of a fuel from its cetane number and from the relevant parameters of direct injection diesel engine[C].SAE Paper 790493, 1979.
    219. V. Yakhot, S. Orszag. Renormalization group analysis of turbulence: basic theory[J]. Journal of Scientific Computing, 1986, 1(1):1-51.
    220. W. Tang, R. Reitz. Three dimensional computations of combustion in premixed charge and direct injection two-stroke engines[C]. SAE Paper 920425, 1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700