用户名: 密码: 验证码:
磁性薄膜、超薄膜及图形薄膜的磁性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Studies of Magnetic Properties on Unpatterned and Patterned Magnetic Thin and Ultrathin Films
  • 作者:翟亚
  • 论文级别:博士
  • 学科专业名称:生物电子学
  • 学位年度:2003
  • 导师:陆祖宏
  • 学科代码:071011
  • 学位授予单位:东南大学
  • 论文提交日期:2003-03-01
摘要
随着在磁性随机存储器和超高密度存储技术中应用的不断拓展,近二十年来,磁性薄膜
    和超薄膜的结构、基本磁性、层间耦合、界面状况及其相关效应一直是人们研究的熟点和难
    点之一。尤其是光刻成微米、亚微米尺寸的磁性单元阵列的图形薄膜,由于和应用的尺度直
    接相关,且具有不寻常的磁特性,最近吸引了越来越多的兴趣。本论文以铁磁共振为主要研
    究手段,辅助以磁性和磁光测量,对外延于GaAs及InAs上的不同厚度的单晶Fe超薄膜、
    不同厚度的NiFe多晶薄膜和电子束光刻的多晶NiFe和NiFeCo单层利三明治结构的微米及
    亚微米矩形单元阵列图形薄膜的磁性,特别是磁各向异性进行了较为系统的研究。主要结果
    如下:
    一、半导体衬底上外延生长Fe单晶超薄膜的磁性的研究
    1. 对衬底为GaAs外延生长的4. 1-33原子层厚度(monolayer,简称ML)的Fe单晶超薄膜
    进行了铁磁共振(FMR)和磁光研究,建立了理论模型对铁磁共振实验结果进行了模拟,
    重现了不同厚度的超薄膜,从纳米团簇到两相共存的过度阶段直至连续薄膜结构与磁性的
    变化,特别是磁各向异性从单轴各向异性向立方各向异性转变的演化过程。并计算出了薄
    膜各生长阶段的有效磁化强度,回旋磁比及各向异性常数。主要有如下发现:
    (1) 膜厚在4. IML时,未形成连续薄膜,而是超顺磁性的团簇,具有很大的单轴的垂直
    各向异性和平面单轴各向异性,色散关系曲线是对称的正弦类曲线。
    (2) 当膜厚增加到5. 2 ML时,薄膜的FMR显示出双共振峰,其中之一与厚度为4. 1ML
    的薄膜共振场一致,说明此时是连续薄膜与超顺磁团簇共存。这是首次利用铁磁共振
    获得的结果。当厚度大于8. 4ML后,薄膜形成连续膜,垂直利平面的单轴各向异性
    随膜厚的增加而减小,并出现了四度对称的成份。色散关系曲线在8. 4-12. 7ML的厚
    度范围内产生不对称,经过拟合,发现原因除了外磁场和磁化强度的取向差之外主要
    是因为出现了高阶各向异性及立方对称各向异性。
    (3) 薄膜中存在的面内单轴各向异性可能来源于磁弹性相互作用,这是由于薄膜在生长过
    程中,与衬底的品格错配而产生的应力各向异性导致的。
    (4) 朗道因子g约为2. 08,这与块材铁单品的g因子接近。
    2. 对于外延生长在InAs衬底上、厚度为8-25ML的超薄Fe单晶膜进行了铁磁共振和磁光
    研究,获得以下几点结果:
    (1) 膜厚在8-25ML之间时,薄膜面内的磁晶各向异性为四度对称各向异性,垂直单轴
    各向异性比同厚度的Fe/GaAs系统小许多,而立方各向异性则比Fe/GaAs系统更接
    近bcc结构的Fe。与Fe/GaAs系统的平面单轴各向异性相比,Fe/InAs系统的平面
    单轴各向异性消失得较快,这可能是Fe/InAs系统各向异性的应力弛豫比Fe/GaAs
    系统快所致。
    (2) 色散关系曲线同样出现不对称现象,但原因与Fe/GaAs系统不同,土要是由于磁场
    和磁化强度的取向差较大所致。
    (3) 朗道因子g约为2. 08,这与以GaAs为衬底Fe单晶超薄膜的g因子接近。
    (4) 首次用FMR定量地验证了前人原位测量的定性结果,并对FMR共振场角度依赖性
    的非对称性给出两种解释。
    二、多晶单层薄膜及图形化薄膜磁性的研究
    1. 当多晶单层坡莫合金薄膜的厚度小于4nm时,薄膜的磁性发生异常,g因子增大、FMR
    
    
     博士论文:磁性薄膜、超薄膜及图形菏膜的磁性研穴
     线宽出现峰值以及磁化强度锐减等都说明在簿膜的界面可能存在着低磁性的合金池合
     层NIFe-Ta k分层引起的不均匀性。并利用FMR线宽得到磁化进动的阻尼系数,其隘
     厚度变化的趋势与以前研究开关时间随厚度的变化趋势一致。这是非常有意义的发现。
    2.NIFe单层膜中存在反走向磁滞回线,这是在薄膜边界形成合金混合层的一个可能的百接
     证据,我们用反铁磁模型模拟了磁滞回线,与实验中观测到的磁滞回线有较虹的符合。
    3.对NIFe矩形单元阵列图形薄膜进行的FMR研究发现,在矩形单元阵列图形簿膜中确实
     存在平面内形状各向异性,在连续簿膜中,由于其横向尺寸远大于厚度,平面内形状各
     向异性很小,可略去:但在微米及亚微米单元中,出现了平面形状各向异性,其易磁化
     方向沿薄膜的矩形单元长边方向(正方单元为正方边),难磁化方向沿薄膜的矩形单元
     的短边方向。
    4.对于 NIFeCo/CuMIFeCo三层矩形单元阵列图形膜,当矩形单元的矩形比一定时,随着
     单元尺寸的减小,其共振场随磁场在面内的取向变化的振幅增大,这是由于平面形状各
     向异性增大的缘故,与单层图形簿膜的情况有所不同。
    5.对于 NIFe和 NIFeCo矩形单元阵列图形单层薄腴,首次利川 FMR对微米和亚微米单元
     中退磁场及磁化强度不均匀性进行了研究,提出非椭球型单元的退磁场可由准均匀与非
     均匀两部分织成,用均匀磁化的类椭球处理来表示准均匀磁化分量的各向异性能,而川
     高次硕来代表非均匀磁化分量的各向异性能,给出了矩形阵列中的磁各向异性能的不同
     来源的数学表式,并对FMR数据作山了棋拟,结果与实验数据吻合得很杠。并且,来
     囱准均匀磁化的各?
In the last twenty years, extensive studies have been made on the structure, basic magnetic properties, interlayer coupling, interfacial structures and its relative effects in magnetic thin and ultrathin films due to their potential application in magnetic random access memory ( MRAM) and ultrahigh-density data storage. In addition, patterned thin films with micron and submicron array, close to the sizes in applications, have recently attracted increasing interest because of their different behaviors from the continuous thin films. In this thesis, mainly by FMR, combined with MOKE and magnetic measurement, systematical studies have been made on the magnetic properties, especially magnetic anisotropy in epitaxial single crystalline Fe ultathin films on GaAs and InAs substrates in polycrystalline thin films and in polycrystalline NiFe and NiFeCo patterned films of micron and submicron rectangular elements arrays. The major results are summariaed as follows:
    I. An investigations of magnetic properties in epitaxial single crystalline Fe ultathin films.
    1. MOKE and FMR studies were performed on single crystalline Fe ultathin films epitaxially grown on III-V semiconductor GaAs substrate with thickness 4.1-33 monolayer (ML). A theoretical mode for fitting FMR experimental data was established. The results demonstrated the structures and reproduced the evolution of the magnetic properties of ultrathin films with various thickness from the state of superparamagnetic nano-cluster through coexistence of two magnetic phases to continuous film, especially the change of magnetic crystalline anisotropy from unixial to cubic. The parameters such as effective magnetization, gyromagnetic ratio, g value and various anisotropy constant were determined by theoretical fitting. The major findings are listed below:
    (1) The film of 4.1 ML consists of superparamagnetic nano-cluster with large perpendicular anisotropy and in-plane uniaxial anisotropy. The oscillatory curve of is symmetrical which can be described by a function of sin square.
    (2) FMR data show that the film of 5.2 ML has two magnetic phases, implying a transition state from superparamagnetic nano-cluster structure to continuous film.
    (3) Films thicker than 8.4 ML form continuous films. The perpendicular anisotropy and in-plane uniaxial anisotropy decrease with increasing film thickness. The oscillatory curve of Hres is asymmetrical, which requires an additional term of anisotropy with four-fold symmetry to fit. The anisotropy of four-fold symmetry indicates the appearance of cubic anisotropy.
    (4) The in-plane unixial anisotropy existed in films originates probably from magneto-elastic interaction due to the anisotropic strain caused by lattice mismatch at the interface.
    (5) g value of films keeps approximately a constant value 2.08 similar to bulk Fe. 2. MOKE and FMR studies were performed on epitaxial single crystalline Fe
    
    
    
    Ph.D Thesis; Investigations of magnetic properties on magnetic thin, ultrathin and patterned films
    ultathin films on III-V semiconductor InAs substrate with thickness of 8-25monolayer (ML). The major findings are listed below:
    (1) The in-plane magnetic crystalline anisotropy of film with 8-25 ML thick are four-fold anisotropy, and the in-plane unixial anisotropy of Fe/InAs films decreses faster with thickness than that in Fe/GaAs films. It could be explained that the stain relaxation of Fe/InAs films is also faster than that in Fe/GaAs films as indicated by LEED.
    (2) The oscillatory curve of Hres is asymmetrical for films. It originates mainly from the lower resonance field Hres comparing with anisotropy field, which causes deviation of the direction of magnetic field from that of magnetization.
    (3) By fitting, g value of films keeps approximately a constant value 2.08 similar to that of Fe/GaAs films and bulk Fe.
    II. Investigations of magnetic properties in polycrystalline NiFe single-layer and NiFeCo sandwich unpatterned and patterned films.
    1. There are abnormal changes in the magne
引文
[1] A.H.Morrish,The physical principles of magnetism,John Wiley & Sons,Inc.(1965)
    [2] 宋德生,李国栋,电磁学发展史,广西人民出版社(1987)
    [3] J.H.Van Vleck,The Theory of Electric and Magnetic Susceptibilities,Oxford University Press(1932)
    [4] J.Smit and H.P.J.Wijn,Ferrites,Philips Technical Library(1959)
    [5] 钟文定,铁磁学,人民教育出版社,中册,423,(1987)
    [6] S.Madar and A.Nowick,Appl.Phys.Lett.,17,57,(1965)
    [7] M.Mansuripur, Physical Principles of Magneto-optical Recordings,Cambridge University Press(1993)
    [8] G.Prinz, Science,282,1660(1998)
    [9] S.A.Wolfe et al.,IEEE MAG.36(5) ,2748,(2000)
    [10] M.Farle,Rep.Prog.Phys.61,755,(1998)
    [11] Jing Shi et al.,Appl.Phys.Lett.,74(17) ,2525,(1999)
    [12] W.Platow et al,Phys.Rep.B58(9) ,1,(1998)
    [13] 郭贻诚,铁磁学,人民教育出版社,36,(1965)
    [14] 戴道生、钱昆明,铁磁学,科学出版社,121,(1992)
    [15] W Heisenberg,Z.Physik,19,619,(1928)
    [16] C.Zener Phys.Rev.,82 403,(1951)
    [17] D.H.Martin,Magnetism in Solids,London lliffe Book Ltd.(1967)
    [18] 冯端等,金属物理学,第四卷,超导电性与磁性,科学出版社,460,(1998)
    [19] L.Neel,J.Phys.Radium,15,376,(1954)
    [20] H.J.G.Draaissna,et al.,J.Mag.Mag.Mat.,66,351,(1987)
    [21] U.Gradmann,Phys.Stat.Sol.,27,313,(1968)
    [22] P.F.Carcia,et al.,J.Supperlattices & Microstructures,1,101,(1985)
    [23] B.Heinrich and J.F.Coahran,Advances in Physics,42,523,(1993)
    
    
    [24] W.H.Meiklejohn,and C.P.Bean,Phys.Rev.,102,1413,(1956) ,105,904,(1957)
    [25] Dieny et al.,J.Appl.Phys.,69,4774,(1991)
    [26] R.I.Joseph and E.Schlomann,J.Appl.Phys.,36(5) ,1579(1965)
    [27] V.P.Shcherbakov,et al.,Phys.of the Earth and Planetary Interiors,65,15(1990)
    [28] L.Landau and L.Lifshitz,Physick Z.Sowjet,8,153,(1935)
    [29] T.L.Gilbert,Phys.Rev.100,1243,(1955)
    [30] F.Bloch,Z.Physik,74,295,(1932) ;61,206,(1931)
    [31] C.Kittel,Phys.Rev.,110,1259,(1958)
    [32] M.H.Seavey and P.E.Tannenwald,Phys.Rev.Lett.,1,168,(1958)
    [33] A.H.Morrish,The Physical Principle of Magnetism,John Wiley & Sons,Inc.,591,(1965)
    [34] H.Pauszkarski,Prog.In Surface Science,9,191,(1979)
    [35] P.E.Wigen,et al.,Phys.Rev.Lett.,9,206,(1962)
    [36] A.M.Portis,Appl.Phys.Lett.,2,69,(1963)
    [37] C.F.Kooi,et al.,J.Appl.Phys.,35,791,(1964)
    [38] J.T.Davies,J.Appl.Phys.,35,804,(1964)
    [39] M.Sparks,Solid State comm..,8,659,(1970)
    [40] E.Hirota,J.Phys.Soc.Japan,19,1,(1964)
    [41] D.P.Mitra,et al.,J.Phys.F, 8,2401,(1978)
    [42] 钱昆明,戴道生等,物理学报,32(12) ,1557,(1983)
    [43] 钱昆明,戴道生等,物理学报,32(12) ,1547,(1983)
    [44] W.Doring,Z.Nature f(a),16,1146(1961)
    [45] J.Mathon,Phys.Rev.B,24,6588(1981)
    [46] 彭兵初博士论文
    [47] L.N.Liebermann,D.R.Fredkin and H.B.Shore,Phys.Rev.Lett.,22,539,(1969)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700