用户名: 密码: 验证码:
氧化锌纳米线力学性能的实验和理论纳米力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
力学性能是材料最基本的物理性能之一,对纳米材料力学性能及其尺寸效应的研究不仅有助于揭示小尺度下结构-性能的内在关联,也对微纳机电器件的发展具有指导意义,而定量化的表征和测量技术是认识尺寸效应规律的前提。本文完善了扫描电子显微镜(SEM)中的原位单轴拉伸方法,保证了纳米线轴向的良好对中和应力-应变曲线的准确测量。以轴向为[0001]的,高质量的氧化锌(ZnO)单晶纳米线为研究对象,获得了拉伸模量、断裂强度、断裂应变等性能参数的可靠的实验结果。在此基础上,建立了弹性模量和强度性能尺寸效应的理论模型。
     对于一系列直径为18~204nm的ZnO纳米线测量的拉伸模量表现随直径减小而增大的尺寸效应。直径小于120nm左右时,拉伸模量的增大趋势起初弱于本研究组此前测量的弯曲模量;当直径继续减小到30nm以下时,拉伸模量很快增大并与弯曲模量趋近。基于包含自由表面和应变梯度项的能量方法,本文求解了纳米线径向的弛豫应变函数,并首次阐明了“芯-壳”复合结构模型中的表面层厚度的物理意义。弛豫应变函数的形态随纳米线直径的变化很好地解释了实验中加载方式对尺寸效应行为的影响。
     虽然表面弛豫是弹性模量的尺寸效应最基础的机制,弛豫表面的原子结构的直接观察目前仍有相当的挑战性。本文结合球差校正的高分辨透射电子显微术和基于密度泛函理论的模拟,首次直接观察并在亚埃尺度测量了ZnO{1010}表面的弛豫应变特征及其在表面以下的分布,从而证实了有关ZnO表面原子结构的普遍预测,并支持了上述弛豫应变函数的模型。本文还在ZnO{1010}表面首次观察到了一种重构现象,展现了表面丰富的结构行为。
     对于一系列直径为18~114nm的ZnO单晶纳米线,原位SEM实验测量的断裂强度和断裂应变表现显著的分散性,同时,强度的下限随直径减小而显著增加,改进形式的指数标度律很好描述了这一尺寸效应。基于原位阴极荧光光谱实验和单轴拉伸过程的分子动力学模拟,本文证实ZnO纳米线中存在的原子空位(点缺陷)的数量与直径有关,并且点缺陷的数量和空间构型都会影响强度性能。从而本文最终提出,Griffith的经典断裂力学仍然适用于单晶纳米线,而“关键缺陷”尺寸的核心概念对应于点缺陷的有效数量。这个简单的模型可能成为理解纳米尺度的强度性能的基础。
Mechanical properties are amongst the most basic properties in materials, andinvestigations on the size effects of mechanical properties in nano-sized specimens notonly manifest the intrinsic structure-property relationships, but also play essential rolesin the progress of micro-and nano-electromechanical devices.
     In this dissertation, methodologies for in situ uniaxial tensile testing in scanningelectron microscope (SEM) are completed. Axial alignment of nanowires (NWs) aremaintained throughout testing, and stress-strain curves are accurately measured, basedon which the tensile moduli, fracture strengths, and fracture strains in [0001]-orientedsingle-crystalline zinc oxide (ZnO) NWs are quantitatively determined, and theoreticalmodels are developed for their diameter (D) dependences.
     Measured in ZnO NWs with D ranging from18to204nm, the tensile moduliincrease as D decreases; meanwhile, behaviors of size effect are affected by the loadingmode. Tensile moduli are lower than the previously measured bending moduli, andincrease slower than the latter with decreasing D. However, they get close rapidly to thebending moduli as D decreasing below about30nm. Based on an energy minimizationapproach including the surface-related and strain-gradient terms, the radial-distributedrelaxation function in nanowires are analytically derived, the diameter dependence ofwhich well explains our experimental findings. Moreover, physical meaning of the shellthickness in the widely-interested core-shell model is clarified for the first time.
     Although surface relaxation works as the basic mechanism for elasticity size effect,direct observation of the atomic structures in relaxed surfaces remains challenging. Inthis dissertation, the characteristic quantities of ZnO{1010} surface relaxation, as wellas their in-depth distributions, are directly measured with a sub-angstrom resolution,based on combining aberration-corrected transmission electron microscopy with abinitio calculations, the well-predicted surface structure in ZnO is thus verified. Thisstudy also supports the conception of relaxation function. Moreover, a novel mechanismfor surface reconstruction in ZnO{1010} is revealed for the first time.
     Diameter dependence of fracture strengths and fracture strains in single-crystallineZnO NWs with D ranging from18to114nm is experimentally revealed by in situ SEM.The strength properties are remarkably scattered, with their lower-bound following a modified power-form scaling law. Based on in situ cathodoluminescence measurementsand molecular dynamics simulations of the uniaxial tensile stress-strain curves, theattendance of point defects are confirmed, the diameter-dependent quantities of which,as well as their stochastic spatial configurations, dominate the NW strengths. Therefore,the Griffith’s classic fracture mechanics still works well in single-crystalline NWs, aslong as the critical defect sizes are attributed to the effective quantities of point defects.Our studies provide a simple, but basic, understanding for the size effect of strengths insingle crystalline NWs.
引文
[1] Presidential Address: Caltech,1/21/2000. http://pr.caltech.edu/events/presidential_speech/.
    [2] Iijima S. Helical Microtubules of graphite carbon. Nature1991,354:56-58.
    [3] Yakobson B I, Smalley R E. Fullerene nanotubes: C-1000000and beyond. American Scientist1997,85:324-337.
    [4] Feynman’s Talk. http://www.zyvex.com/nanotech/feynman.html.
    [5]朱静,等.纳米材料和器件.北京:清华大学出版社,2003.
    [6] Griffith A A. The phenomena of rupture and flow in solids. Philosophical Transactions of theRoyal Society of London1921, A221:163-198.
    [7] Levitt A P. Whisker Technology. New York: Wiley,1970.
    [8] Gao H J, Ji B H, J ger I L, et al. Materials become insensitive to flaws at nanoscale: Lessonsfrom nature. Proceedings of the National Academy of Sciences of the United States ofAmerica2003,100:5597-5600.
    [9] Streitz F H, Cammarata R C, Sieradzki K. Surface-stress effects on elastic properties: I. Thinmetal films. Physical Review B1994,49:10699-10706.
    [10] Miller R E, Shenoy V B. Size-dependent elastic properties of nanosized structural elements.Nanotechnology2000,11:139-147.
    [11] Sun C Q, Tay B K, Zeng X T, et al. Bond-order-bond-length-bond-strength (bond-OLS)correlation mechanism for the shape-and-size dependence of a nanosolid. Journal of Physics:Condensed Matter2002,14:7781-7795.
    [12] Lam D C C, Yang F, Chong A C M, et al. Experiments and theory in strain gradient elasticity.Journal of the Mechanics and Physics of Solids2003,51:1477-1508.
    [13] Pugno N M, Ruoff R S. Quantized fracture mechanics. Philosophical Magazine2004,84:2829-2845.
    [14] Afanasyev K A, Sansoz F. Strengthening in gold nanopillars with nanoscale twins. NanoLetters2007,7:2056-2062.
    [15] Weinberger C R, Cai W. Surface-controlled dislocation multiplication in metal micropillars.Proceedings of the National Academy of Sciences of the United States of America2008,105:14304-14307.
    [16] Li W, Kalia R K, Vashishta P. Amorphization and fracture in silicon diselenide nanowires: Amolecular dynamics study. Physical Review Letters1996,77,2241-2244.
    [17] Kulkarni A J, Zhou M, Sarasamak K, et al. Novel phase transformation in ZnO nanowiresunder tensile loading. Physical Review Letters2006,97,105502.
    [18] Meyer B, Marx D. Density-functional study of the structure and stability of ZnO surfaces.Physical Review B2003,67:035403.
    [19] Kobiakov I B. Elastic, piezoelectric and dielectric properties of ZnO and CdS single crystalsin a wide range of temperatures. Solid State Communications1980,35:305-310.
    [20] Wang Z L. Zinc oxide nanostructures: growth, properties and applications. Journal of Physics:Condensed Matter2004,16: R829-R858.
    [21] Zhou J, Xu N S, Wang Z L. Dissolving behavior and stability of ZnO wires in biofluids: Astudy on biodegradability and biocompatibility of ZnO nanostructures. Advanced Materials2006,18:2432-2435.
    [22] Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides. Science2001,291:1947-1949.
    [23] Kong X Y, Wang Z L. Spontaneous polarization-induced nanohelixes, nanosprings, andnanorings of piezoelectric nanobelts. Nano Letters2003,3:1625-1631.
    [24] Kong X Y, Ding Y, Yang R S, et al. Single-crystal nanorings formed by epitaxial self-coilingof polar nanobelts. Science2004,303:1348-1351.
    [25] Qin Y, Yang R S, Wang Z L. Growth of horizontal ZnO nanowire arrays on any substrate.The Journal of Physical Chemistry C2008,112:18734-18736.
    [26] Wang X D, Zhou J, Song J H, et al. Piezoelectric field effect transistor and nanoforce sensorbased on a single ZnO nanowire. Nano Letters2006,6:2768-2772.
    [27] Bai X D, Gao P X, Wang Z L, et al. Dual-mode mechanical resonance of individual ZnOnanobelts. Applied Physics Letters2003,82:4806-4808.
    [28] Wang Z L, Song J H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays.Science2006,312:242-246.
    [29] Qin Y, Wang X D, Wang Z L. Microfibre-nanowire hybrid structure for energy scavenging.Nature2008,451:809-813.
    [30] Zhang Y S, Wang L S, Liu X H, et al. Synthesis of nano/micro zinc oxide rods and arrays bythermal evaporation approach on cylindrical shape substrate. The Journal of PhysicalChemistry B2005,109:13091-13093.
    [31] Treacy M M J, Ebbesen T W, Gibson J M. Exceptionally high Young’s modulus observed forindividual carbon nanotubes. Nature1996,381:678-680.
    [32] Krishnan A, Dujardin E, Ebbesen T W, et al. Young’s modulus of single-walled nanotubes.Physical Review B1998,58:14013-14019.
    [33] Poncharal P, Wang Z L, Ugarte D, et al. Electrostatic deflections and electromechanicalresonances of carbon nanotubes. Science1999,283:1513-1516.
    [34] Wang Z L, Poncharal P, de Heer W A. Nanomeasurements of individual carbon nanotubes byin situ TEM. Pure and Applied Chemistry2000,72:209-219.
    [35] Yum K, Wang Z Y, Suryavanshi A P, et al. Experimental measurement and model analysis ofdamping effect in nanoscale mechanical beam resonators in air. Journal of Applied Physics2004,96:3933-3938.
    [36] Chen C Q, Shi Y, Zhang Y S, et al. Size Dependence of Young’s modulus in ZnO nanowires.Physical Review Letters2006,96:075505.
    [37] Nam C Y, Jaroenapibal P, Tham D, et al. Diameter-dependent electromechanical properties ofGaN nanowires. Nano Letters2006,6:153-158.
    [38] Henry T, Kim K K, Ren Z Y, et al. Directed growth of horizontally aligned gallium nitridenanowires for nanoelectromechanical resonator arrays. Nano Letters2007,7:3315-3319.
    [39] Liu K H, Wang W L, Xu Z, et al. In situ probing mechanical properties of individual tungstenoxide nanowires directly grown on tungsten tips inside transmission electron microscope.Applied Physics Letters2006,89:221908.
    [40] Li X X, Ono T, Wang Y L, et al. Ultrathin single-crystalline-silicon cantilever resonators:Fabrication technology and significant specimen size effect on Young’s modulus. AppliedPhysics Letters2003,83:3081-3083.
    [41] Smith D A, Holmberg V C, Lee D C, et al. Young’s modulus and size-dependent mechanicalquality factor of nanoelectromechanical germanium nanowire resonators. The Journal ofPhysical Chemistry C2008,112:10725-10729.
    [42] Timoshenko S P, Goodier J N. Theory of Elasticity,3rded. New York: McGraw-Hill,1970.
    [43] Wei X L, Chen Q, Liu Y, et al. Cutting and sharpening carbon nanotubes using a carbonnanotube ‘nanoknife’. Nanotechnology2007,18:185503.
    [44] Wei X L, Liu Y, Chen Q, et al. The very low shear modulus of multi-walled carbon nanotubesdetermined simultaneously with the axial Young’s modulus via in situ experiments. AdvancedFunctional Materials2008,18:1555-1562.
    [45]闫允杰,张友生,彭奎庆,等.一种扫描电镜下纳米操纵台的设计.电子显微学报2004,23:484.
    [46]张友生,闫允杰,朱静,等.两种纳米级针尖的制作和应用.电子显微学报2004,23:483.
    [47] Shi Y, Chen C Q, Zhang Y S, et al. Determination of the fundamental natural frequency of acantilevered ZnO nanowire resonantly excited by a sinusoidal electric field. Nanotechnology2007,18:075709.
    [48] Zeng D J, Zheng Q S. Resonant frequency-based method for measuring the Young’s moduliof nanowires. Physical Review B2007,76:075417.
    [49] Ilic B, Craighead H G, Krylov S, et al. Attogram detection using nanoelectromechanicaloscillators. Journal of Applied Physics2004,95:3694-3703.
    [50] Gil-Santos E, Ramos D, Martínez J, et al. Nanomechanical mass sensing and stiffnessspectrometry based on two-dimensional vibrations of resonant nanowires. NatureNanotechnology2010,5:641-645.
    [51] Jensen K, Kim K P, Zettl A. An atomic-resolution nanomechanical mass sensor. NatureNanotechnology2008,3:533-537.
    [52] Jensen L, Weldon J, Garcia H, et al. Nanotube Radio. Nano Letters2007,7:3508-3511.
    [53]白春礼,田芳,罗克.扫描力显微术.北京:科学出版社,2000.
    [54] Wong E W, Sheehan P E, Lieber C M. Nanobeam mechanics: Elasticity, strength, andtoughness of nanorods and nanotubes. Science1997,277:1971-1975.
    [55] San Paulo A, Bokor J, Howe R T, et al. Mechanical elasticity of single and double clampedsilicon nanobeams fabricated by the vapor-liquid-solid method. Applied Physics Letters2005,87:053111.
    [56] Gordon M J, Baron T, Dhalluin F, et al. Size effects in mechanical deformation and fractureof cantilevered silicon nanowires. Nano Letters2009,9:525-529.
    [57] Hoffmann S, Utke I, Moser B, et al. Measurement of the bending strength ofvapor-liquid-solid grown silicon nanowires. Nano Letters2006,6:622-625.
    [58] Chen C Q, Zhu J. Bending strength and flexibility of ZnO nanowires. Applied Physics Letters2007,90:043105.
    [59] Hoffmann S, stlund F, Michler J, et al. Fracture strength and Young’s modulus of ZnOnanowires. Nanotechnology2007,18:205503.
    [60] Lu C S, Danzer R, Fischer F D. Fracture statistics of brittle materials: Weibull or normaldistribution. Physical Review E2002,65:067102.
    [61] Zhang Y J, Wang N L, He R R, et al. Reversible bending of Si3N4nanowire. Journal ofMaterials Research2000,15:1048-1051.
    [62] Zhang Y J, Liu J, He R R, et al. Synthesis of aluminum nitride nanowires from carbonnanotubes. Chemistry of Materials2001,13:3899-3905.
    [63] Salvetat J P, Kulik A J, Bonard J M, et al. Elastic modulus of ordered and disorderedmultiwalled carbon nanotubes. Advanced Materials1999,11:161-165.
    [64] Salvetat J P, Briggs G A D, Bonard J M, et al. Elastic and shear moduli of single-walledcarbon nanotube ropes. Physical Review Letters1999,82:944-947.
    [65] Kaplan-Ashiri I, Cohen S R, Apter N, et al. Microscopic investigation of shear in multiwallednanotube deformation. The Journal of Physical Chemistry C2007,111,8432-8436.
    [66] Cuenot S, Frétigny C, Demoustier-Champagne S, et al. Surface tension effect on themechanical properties of nanomaterials measured by atomic force microscopy. PhysicalReview B2004,69:165410.
    [67] Jing G Y, Duan H L, Sun X M, et al. Surface effects on elastic properties of silver nanowires:Contact atomic-force microscopy. Physical Review B2006,73:235409.
    [68] Wu B, Heidelberg A, Boland J J. Mechanical properties of ultrahigh-strength gold nanowires.Nature Materials2005,4:525-529.
    [69] Ni H, Li X D. Young’s modulus of ZnO nanobelts measured using atomic force microscopyand nanoindentation techniques. Nanotechnology2006,17:3591-3597.
    [70] Tan E P S, Lim C T. Physical properties of a single polymeric nanofiber. Applied PhysicsLetters2004,84:1603-1605.
    [71] Shin M K, Kim S I, Kim S J, et al. Size-dependent elastic modulus of single electroactivepolymer nanofibers. Applied Physics Letters2006,89:231929.
    [72] Lee C G, Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsicstrength of monolayer graphene. Science2008,321:385-388.
    [73] Mai W J, Wang Z L. Quantifying the elastic deformation behavior of bridged nanobelts.Applied Physics Letters2006,89:073112.
    [74] Xiong Q H, Duarte N, Tadigadapa S, et al. Force-deflection spectroscopy: A new method todetermine the Young's modulus of nanofilaments. Nano Letters2006,6:1904-1909.
    [75] Heidelberg A, Ngo L T, Wu B, et al. A generalized description of the elastic properties ofnanowires. Nano Letters2006,6:1101-1106.
    [76] Ngo L T, Almecija D, Sader J E, et al. Ultimate-strength germanium nanowires. Nano Letters2006,6:2964-2968.
    [77] Wu B, Heidelberg A, Boland J J, et al. Microstructure-hardened silver nanowires. NanoLetters2006,6:468-472.
    [78] Wen B M, Sader J E, Boland J J. Mechanical properties of ZnO nanowires. Physical ReviewLetters2008,101:175502.
    [79] Varghese B, Zhang Y S, Dai L, et al. Structure-mechanical property of individual cobalt oxidenanowires. Nano Letters2008,8:3226-3232.
    [80] Varghese B, Zhang Y S, Feng Y P, et al. Probing the size-structure-property correlation ofindividual nanowires. Physical Review B2009,79:115419.
    [81] Brick R M, Pense A W, Gordon R B. Structure and Properties of Engineering Materials,4thed.New York: McGraw-Hill,1977.
    [82] Zhao M H, Ye Z Z, Mao S X. Photoinduced stiffening in ZnO nanobelts. Physical ReviewLetters2009,102:045502.
    [83] Tao X Y, Wang X N, Li X D. Nanomechanical characterization of one-step combustionsynthesized Al4B2O9and Al18B4O33nanowires. Nano Letters2007,7:3172-3176.
    [84] Tao X Y, Li X D. Catalyst-free synthesis, structural, and mechanical characterization oftwinned Mg2B2O5nanowires. Nano Letters2008,8:505-510.
    [85] Stan G, Ciobanu C V, Parthangal P M, et al. Diameter-dependent radial and tangential elasticmoduli of ZnO nanowires. Nano Letters2007,7:3691-3697.
    [86] Stan G, Krylyuk S, Davydov A V, et al. Surface effects on the elastic modulus of Tenanowires. Applied Physics Letters2008,92:241908.
    [87] Rabe U, Janser K, Arnold W. Vibrations of free and surface-coupled atomic force microscopecantilevers: Theory and experiment. Review of Scientific Instruments1996,67:3281-3293.
    [88] Schreiber E, Anderson O L, Soga N. Elastic Constants and Their Measurement. New York:McGraw-Hill,1973.
    [89]施雨. ZnO纳米线力学性能的原位扫描电子显微镜研究[硕士学位论文].北京:清华大学材料系,2007.
    [90] Yu M F, Lourie O, Dyer M J, et al. Strength and breaking mechanism of multiwalled carbonnanotubes under tensile load. Science2000,287:637-640.
    [91] Yu M F, Dyer M J, Skidmore G D, et al. Three-dimensional manipulation of carbonnanotubes under a scanning electron microscope. Nanotechnology1999,10:244-252.
    [92] Ding W Q, Calabri L, Kohlhaas K M, et al. Modulus, Fracture strength, and brittle vs. plasticresponse of the outer shell of arc-grown multi-walled carbon nanotubes. ExperimentalMechanics2007,47:25-36.
    [93] Ding W Q, Dikin D A, Chen X Q, et al. Mechanics of hydrogenated amorphous carbondeposits from electron-beam-induced deposition of a paraffin precursor. Journal of AppliedPhysics2005,98:014905.
    [94] Ding W Q, Calabri L, Chen X Q, et al. Mechanics of crystalline boron nanowires. CompositesScience and Technology2006,66:1112-1124.
    [95] Yu M F, Files B S, Arepalli S, et al. Tensile loading of ropes of single wall carbon nanotubesand their mechanical properties. Physical Review Letters2000,84:5552-5555.
    [96] Kaplan-Ashiri I, Cohen S R, Gartsman K, et al. On the mechanical behavior of WS2nanotubes under axial tension and compression. Proceedings of the National Academy ofSciences of the United States of America2006,103:523-528.
    [97] Liu L Q, Tasis D, Prato M, et al. Tensile mechanics of electrospun multiwalled nanotube/poly(methyl methacrylate) nanofibers. Advanced Materials2007,19:1228-1233.
    [98] Arinstein A, Burman M, Gendelman O, et al. Effect of supramolecular structure on polymernanofibre elasticity. Nature Nanotechnology2007,2:59-62.
    [99] Richter G, Hillerich K, Gianola D S, et al. Ultrahigh strength single crystalline nanowhiskersgrown by physical vapor deposition. Nano Letters2009,9:3048-3052.
    [100] Zhu Y, Xu F, Qin Q Q, et al. Mechanical properties of vapor-liquid-solid synthesized siliconnanowires. Nano Letters2009,9:3934-3939.
    [101] Xu F, Qin Q Q, Mishra A, et al. Mechanical properties of ZnO nanowires under differentloading modes. Nano Research2010,3:271-280.
    [102] Lu S N, Dikin D A, Zhang S L, et al. Realization of nanoscale resolution with amicromachined thermally actuated testing stage. Review of Scientific Instruments2004,75:2154-2162.
    [103] Desai A V, Haque M A. Mechanical properties of ZnO nanowires. Sensors and Actuators A2007,134:169-176.
    [104] Zhang D F, Breguet J-M, Clavel R, et al. In situ tensile testing of individual Co nanowiresinside a scanning electron microscope. Nanotechnology2009,20:365706.
    [105] Zhu Y, Moldovan N, Espinosa H D. A microelectromechanical load sensor for in situ electronand x-ray microscopy tensile testing of nanostructures. Applied Physics Letters2004,86:013506.
    [106] Zhu Y, Espinosa H D. An electromechanical material testing system for in situ electronmicroscopy and applications. Proceedings of the National Academy of Sciences of the UnitedStates of America2005,102:14503-14508.
    [107] Agrawal R, Peng B, Gdoutos E E, et al. Elasticity size effects in ZnO nanowires-A combinedexperimental-computational approach. Nano Letters2008,8:3668-3674.
    [108] Agrawal R, Peng B, Espinosa H D. Experimental-computational investigation of ZnOnanowires strength and fracture. Nano Letters2009,9:4177-4183.
    [109] Peng B, Locascio M, Zapol P, et al. Measurements of near-ultimate strength for multiwalledcarbon nanotubes and irradiation-induced crosslinking improvements. NatureNanotechnology2008,3:626-631.
    [110] http://www.nanofactory.com/Page.asp?nav=Nanomaterials&id=1.
    [111] http://www.hysitron.com/products/pi-series/pi-95-tem-picoindenter.
    [112] Jang D C, Greer J R. Transition from a strong-yet-brittle to a stronger-and-ductile state by sizereduction of metallic glasses. Nature Materials2010,9:215-219.
    [113] Lu Y, Huang J Y, Wang C, et al. Cold welding of ultrathin gold nanowires. NatureNanotechnology2010,5:218-224.
    [114] Okamoto H, Chen D M. An ultrahigh vacuum dual-tip scanning tunneling microscopeoperating at4.2K. Review of Scientific Instruments2001,72:4398-4403.
    [115]周武.扫描电镜内纳米压电马达的设计与制作[本科学位论文].北京:清华大学材料系,2006.
    [116]陈家炜.扫描电子显微镜下纳米操作台的设计与制作[本科学位论文].北京:清华大学材料系,2007.
    [117] Minor A M, Asif S A S, Shan Z W, et al. A new view of the onset of plasticity during thenanoindentation of aluminium. Nature Materials2006,5:697-702.
    [118] Shan Z W, Li J, Cheng Y Q, et al. Plastic flow and failure resistance of metallic glass: Insightfrom in situ compression of nanopillars. Physical Review B2008,77:155419.
    [119] Shan Z W, Mishra R K, Asif S A S, et al. Mechanical annealing and source-limiteddeformation in submicrometre-diameter Ni crystals. Nature Materials2008,7:115-119.
    [120] Landau L D, Lifshitz E M. Theory of Elasticity: Volume7of Course of Theoretical Physics,2nded. Oxford: Pergamon,1970.
    [121] Green D J. An Introduction to the Mechanical Properties of Ceramics,1sted. New York:Cambridge,1998.
    [122] Song J H, Wang X D, Riedo E, et al. Elastic property of vertically aligned nanowires. NanoLetters2005,5:1954-1958.
    [123] Lucas M, Mai W J, Yang R S, et al. Aspect ratio dependence of the elastic properties of ZnOnanobelts. Nano Letters2007,7:1314-1317.
    [124] Bernal R A, Agrawal R, Peng B, et al. Effect of growth orientation and diameter on theelasticity of GaN nanowires. A combined in situ TEM and atomistic modeling investigation.Nano Letters2011,11:548-555.
    [125] McDowell M T, Leach A M, Gall K. On the elastic modulus of metallic nanowires. NanoLetters2008,8:3613-3618.
    [126] Filippetti A, Fiorentini V, Cappellini G, et al. Anomalous relaxations and chemical trends atIII-V semiconductor nitride nonpolar surfaces. Physical Review B1999,59:8026-8031.
    [127] Müller P, Saúl A. Elastic effects on surface physics. Surface Science Reports2004,54:157-258.
    [128] Dingreville R, Qu J M, Cherkaoui M. Surface free energy and its effect on the elastic behaviorof nano-sized particles, wires and films. Journal of the Mechanics and Physics of Solids2005,53,1827-1854.
    [129] Shenoy V B. Atomistic calculations of elastic properties of metallic fcc crystal surfaces.Physical Review B2005,71:094104.
    [130] Liang H Y, Upmanyu M, Huang H C. Size-dependent elasticity of nanowires: Nonlineareffects. Physical Review B2005,71:241403R.
    [131] Lee B C, Rudd R E. First-principles calculation of mechanical properties of Si<001>nanowires and comparison to nanomechanical theory. Physical Review B2007,75:195328.
    [132] Zhang T Y, Luo M, Chan W K. Size-dependent surface stress, surface stiffness, and Young’smodulus of hexagonal prism [111] β-SiC nanowires. Journal of Applied Physics2008,103:104308.
    [133] Needs R J. Calculations of surface stress tensor at aluminum (111) and (110) surfaces.Physical Review Letters1987,58:53-56.
    [134] Leach A R. Molecular Modeling: Principles and Applications,2nded. Edinburgh Gate:Harlow,2001.
    [135] Duke C B, Meyer R J, Paton A, et al. Calculation of low-energy-electron-diffractionintensities from ZnO{1010}. II. Influence of calculational procedure, model potential, andsecond-layer structural distortions. Physical Review B1978,18:4225-4240.
    [136] G pel W, Pollmann J, Ivanov I, et al. Angle-resolved photoemission from polar and nonpolarzinc oxide surfaces. Physical Review B1982,26:3144-3150.
    [137] Diao J K, Gall K, Dunn M L. Atomistic simulation of the structure and elastic properties ofgold nanowires. Journal of the Mechanics and Physics of Solids2004,52:1935-1962.
    [138] Wen Y H, Zhang Y, Zhu Z Z. Size-dependent effects on equilibrium stress and strain in nickelnanowires. Physical Review B2007,76:125423.
    [139] Guo J G, Zhao Y P. The size-dependent elastic properties of nanofilms with surface effects.Journal of Applied Physics2005,98:074306.
    [140] Ouyang G, Li X L, Tan X, et al. Size-induced strain and stiffness of nanocrystals. AppliedPhysics Letters2006,89:031904.
    [141] Zhou L G, Huang H C. Are surfaces elastically softer or stiffer? Applied Physics Letters2004,84:1940-1942.
    [142] Zhang L X, Huang H C. Young’s moduli of ZnO nanoplates: Ab initio determinations.Applied Physics Letters2006,89:183111.
    [143] Kermode J R, Albaret T, Sherman D, et al. Low-speed fracture instabilities in a brittle crystal.Nature2008,455:1224-1227.
    [144] Fernandez-Torre D, Albaret T, De Vita A. Role of surface reconstructions in (111) SiliconFracture. Physical Review Letters2010,105:185502.
    [145] Warner D H, Curtin W A, Qu S. Rate dependence of crack-tip processes predicts twinningtrends in f.c.c. metals. Nature Materials2007,6:876-881.
    [146] Broberg K B. Cracks and Fracture. San Diego: Academic,1999.
    [147] Orowan E. Fracture and strength of solids. Reports on Progress in Physics1949,12:185-232.
    [148] Weibull W. A statistical distribution function of wide applicability. Journal of AppliedMechanics1951,18:293-297.
    [149] Weibull W. A Statistical Representation of fatigue failure in solids. Transactions on the RoyalInstitute of Technology1949,27:1-55.
    [150] Dumitrica T, Hua M, Yakobson B I. Symmetry-, time-, and temperature-dependent strengthof carbon nanotubes. Proceedings of the National Academy of Sciences of the United Statesof America2006,103:6105-6109.
    [151] Zhang S L, Mielke S L, Khare R, et al. Mechanics of defects in carbon nanotubes: Atomisticand multiscale simulations. Physical Review B2005,71:115403.
    [152] Byrne E M, McCarthy M A, Xia Z, et al. Multiwall nanotubes can be stronger than singlewallnanotubes and implications for nanocomposite design. Physical Review Letters2009,103:045502.
    [153] Uchic M D, Dimiduk D M, Florando J N, et al. Sample dimensions influence strength andcrystal plasticity. Science2004,305:986-989.
    [154] Brinckmann S, Kim J Y, Greer J R. Fundamental differences in mechanical behavior betweentwo types of crystals at the nanoscale. Physical Review Letters2008,100:155502.
    [155] Smith D A, Holmberg V C, Korgel B A. Flexible germanium nanowires: Ideal strength, roomtemperature plasticity, and bendable semiconductor fabric. ACS Nano2010,4:2356-2362.
    [156] Pugno N M, Ruoff R S. Nanoscale Weibull statistics. Journal of Applied Physics2006,99:024301.
    [157] Wang J, Kulkarni A J, Sarasamak K, et al. Molecular dynamics and density functional studiesof a body-centered-tetragonal polymorph of ZnO. Physical Review B2007,76:172103.
    [158] Wang J, Kulkarni A J, Ke F J, et al. Novel mechanical behavior of ZnO nanorods. ComputerMethods in Applied Mechanics and Engineering2008,197:3182-3189.
    [159] Nowak R, Chrobak D, Nagao S, et al. An electric current spike linked to nanoscale plasticity.Nature Nanotechnology2009,4:287-291.
    [160] Wang Y J, Zhang J Z, Wu J, et al. Phase transition and compressibility in silicon nanowires.Nano Letters2008,8:2891-2895.
    [161] Li X D, Wang X N, Chang W C, et al. Effect of tensile offset angles on micro/nanoscaletensile testing. Review of Scientific Instruments2005,76:033904.
    [162] Li C Y, Ruoff R S, Chou T W. Modeling of carbon nanotube clamping in tensile tests.Composites Science and Technology2005,65:2407-2415.
    [163] He M R, Shi Y, Zhou W, et al. Diameter dependence of modulus in zinc oxide nanowires andthe effect of loading mode: In situ experiments and universal core-shell approach. AppliedPhysics Letters2009,95:091912.
    [164] Sader J E, Chon J W M, Mulvaney P. Calibration of rectangular atomic force microscopecantilevers. Review of Scientific Instruments1999,70:3967-3969.
    [165] Chon J W M, Mulvaney P, Sader J E. Experimental validation of theoretical models for thefrequency response of atomic force microscope cantilever beams immersed in fluids. Journalof Applied Physics2000,87:3978-3988.
    [166] Sader J E. Frequency response of cantilever beams immersed in viscous fluids withapplications to the atomic force microscope. Journal of Applied Physics1998,84:64-76.
    [167] Ohler B. Practical advice on the determination of cantilever spring constants:[Technicalreport], Veeco Instruments Inc.,2007.
    [168] Mindlin R D. Second gradient of strain and surface tension in linear elasticity. InternationalJournal of Solids and Structures1965,1:417-438.
    [169] Maranganti R, Sharma P. Length scales at which classical elasticity breaks down for variousmaterials. Physical Review Letters2007,98:195504.
    [170] DiVincenzo D P. Dispersive corrections to continuum elastic theory in cubic crystals.Physical Review B1986,34:5450-5465.
    [171] Kogan S M. Piezoelectric effect during inhomogeneous deformation and acoustic scatteringof carriers in crystals. Soviet Physics-Solid State1964,5:2069-2070.
    [172] Maranganti R, Sharma N D, Sharma P. Electromechanical coupling in nonpiezoelectricmaterials due to nanoscale nonlocal size effects: Green’s function solutions and embeddedinclusions. Physical Review B2006,74:014110.
    [173] Cross L E. Flexoelectric effects: Charge separation in insulating solids subjected to elasticstrain gradients. Journal of Materials Science2006,41:53-63.
    [174]陈纲,廖理几.晶体物理学基础.北京:科学出版社,1992.
    [175] Sun C Q. Thermo-mechanical behavior of low-dimensional systems: The local bond averageapproach. Progress in Materials Science2009,54:179-307.
    [176] Liu X J, Li J W, Zhou Z F, et al. Size-induced elastic stiffening of ZnO nanostructures:Skin-depth energy pinning. Applied Physics Letters2009,94:131902.
    [177] Yuan Q Z, Zhao Y P, Li L M, et al. Ab initio study of ZnO-based gas-sensing mechanisms:Surface reconstruction and charge transfer. The Journal of Physical Chemistry C2009,113:6107-6113.
    [178] W ll C. The chemistry and physics of zinc oxide surfaces. Progress in Surface Science2007,82:55-120.
    [179] Wander A, Harrison N M. An ab initio study of hydrogen adsorption on ZnO{1010}. TheJournal of Physical Chemistry B2001,105:6191-6193.
    [180] Meyer B, Rabaa H, Marx D. Water adsorption on ZnO{1010}: from single molecules topartially dissociated monolayers. Physical Chemistry Chemical Physics2006,8:1513-1520.
    [181] Ertl G, Kn zinger H, Schüth F, et al. Handbook of Heterogeneous Catalysis,2nded.Weinheim: Wiley,2008.
    [182] Wang Y R, Duke C B. Surface reconstructions of ZnO cleavage faces. Surface Science1987,192:309-32.
    [183] Jaffe J E, Harrison N M, Hess A C. Ab initio study of ZnO(1010) surface relaxation. PhysicalReview B1994,49:11153-11158.
    [184] Whitmore L, Sokol A A, Catlow C R A. Surface structure of zinc oxide (1010), using anatomistic, semi-infinite treatment. Surface Science2002,498:135-146.
    [185] Fan W, Xu H, Rosa A L, et al. First-principles calculations of reconstructed [0001] ZnOnanowires. Physica Review B2007,76:073302.
    [186] Jedrecy N, Gallini S, Sauvage-Simkin M, et al. The ZnO non-polar (1010) surface: an X-raystructural investigation. Surface Science2000,460:136-143.
    [187] Dulub O, Boatner L A, Diebold U. STM study of the geometric and electronic structure ofZnO(0001)-Zn,(0001)-O,(1010), and (1120) surfaces. Surface Science2002,519:201-217.
    [188] Tasker P W. The stability of ionic crystal surfaces. Journal of Physics C: Solid State Physics1979,12:4977-4984.
    [189] Wander A, Schedin F, Steadman P, et al. Stability of polar oxide surfaces. Physical ReviewLetters2001,86:3811-3814.
    [190] Jedrecy N, Sauvage-Simkin M, Pinchaux R. The hexagonal polar ZnO(0001)-1×1surfaces:structural features as stemming from X-ray diffraction. Applied Surface Science2000,162-163:69-73.
    [191] Dulub O, Diebold U, Kresse G. Novel stabilization mechanism on polar surfaces:ZnO(0001)-Zn. Physical Review Letters2003,90:016102.
    [192] Marks L D, Smith D J. Direct surface imaging in small metal particles. Nature1983,303:316-317.
    [193] Lu P, Smith D J. Direct imaging of surface reconstructions on CdTe by high-resolutionelectron microscopy. Physical Review Letters1987,59:2177-2179.
    [194] Zandbergen H W, van Dyck D. Exit wave reconstructions using through focus series ofHREM images. Microscopy Research and Technique2000,49:301-323.
    [195] Wang R M, Dmitrieva O, Farle M, et al. Layer resolved structural relaxation at the surface ofmagnetic FePt icosahedral nanoparticles. Physical Review Letters2008,100,017205.
    [196] Ding Y, Wang Z L. Profile imaging of reconstructed polar and non-polar surfaces of ZnO.Surface Science2007,601:425-433.
    [197] Cowley J M. Diffraction Physics,1sted. New York: North-Holland,1975.
    [198] Lentzen M, Jahnen B, Jia C L, et al. High-resolution imaging with an aberration-correctedtransmission electron microscope. Ultramicroscopy2002,92:233-242.
    [199] Haider M, Rose H, Uhlemann S, et al. Electron microscopy image enhanced. Nature1998,392,768-769.
    [200] Jia C L, Lentzen M, Urban K W. Atomic-resolution imaging of oxygen in perovskiteceramics. Science2003,299:870-873.
    [201] Urban K W. Studying atomic structures by aberration-corrected transmission electronmicroscopy. Science2008,321:506-510
    [202] Su D S, Jacob T, Hansen T W, et al. Surface chemistry of Ag particles: Identification of oxidespecies by aberration-corrected TEM and by DFT calculations. Angewandte ChemieInternational Edition2008,47:5005-5008.
    [203] Chang L Y, Barnard A S, Gontard L C, et al. Resolving the structure of active sites onplatinum catalytic nanoparticles. Nano Letters2010,10:3073-3076.
    [204] Yu R, Hu L H, Cheng Z Y, et al. Direct subangstrom measurement of surfaces of oxideparticles. Physical Review Letters2010,105:226101.
    [205] Shi L, Xu Y M, Li Q, et al. Single crystalline ZnS nanotubes and their structural degradationunder electron beam irradiation. Applied Physics Letters2007,90:211910.
    [206] Krasheninnikov A V, Nordlund K. Ion and electron irradiation-induced effects innanostructured materials. Journal of Applied Physics2010,107:071301.
    [207] Han X D, Zheng K, Zhang Y F, et al. Low-temperature in situ large-strain plasticity of siliconnanowires. Advanced Materials2007,19:2112-2118.
    [208] Wang L H, Han X D, Zhang Y F, et al. Asymmetrical quantum dot growth on tensile andcompressive-strained ZnO nanowire surfaces. Acta Materialia2011,59:651-657.
    [209] Zewail A H. Four-dimensional electron microscopy. Science2010,328:187-193.
    [210] Béré A, Serra A. Atomic structures of twin boundaries in GaN. Physical Review B2003,68:033305.
    [211] Northrup J E, Neugebauer J, Romano L T. Inversion domain and stacking mismatchboundaries in GaN. Physical Review Letters1996,77:103-106.
    [212] Yan Y F, Al-Jassim M M. Inversion domain boundaries in ZnO: First-principles total-energycalculations. Physical Review B2004,69:085204
    [213] Potin V, Nouet G, Ruterana P. The {1010} inversion domains in GaN/sapphire layers: anelectron microscopy analysis of the atomic structure of the boundaries. PhilosophicalMagazine A1999,79:2899-2919.
    [214] Liu F D, Collazo R, Mita S, et al. Direct observation of inversion domain boundaries of GaNon c-sapphire at sub-ngstrom resolution. Advanced Materials2008,20:2162-2165.
    [215] Xiao P, Wang X, Wang Jun, et al. Surface transformation and inversion domain boundaries ingallium nitride nanorods. Applied Physics Letters2009,95:211907.
    [216] He M R, Zhu J. Defect-dominated diameter dependence of fracture strength insingle-crystalline ZnO nanowires: In situ experiments. Physical Review B2011,83:161302R.
    [217] He M R, Xiao P, Zhao J, et al. Quantifying the defect-dominated size effect of fracture strainin single crystalline ZnO nanowires. Journal of Applied Physics2011, accepted.
    [218] Ba ant Z P. Size effect in blunt fracture: concrete, rock, metal. Journal of EngineeringMechanics1984,110:518-535.
    [219] Ba ant Z P. Scaling theory for quasibrittle structural failure. Proceedings of the NationalAcademy of Sciences of the United States of America2004,101:13400-13407.
    [220] Morel S. Size effect in quasibrittle fracture: derivation of the energetic Size Effect Law fromequivalent LEFM and asymptotic analysis. International Journal of Fracture2008,154:15-26.
    [221] Luo J H, Wu F F, Huang J Y, et al. Superelongation and atomic chain formation in nanosizedmetallic glass. Physical Review Letters2010,104:215503.
    [222] Moore N W, Luo J H, Huang J Y, et al. Superplastic nanowires pulled from the surface ofcommon salt. Nano Letters2009,9:2295-2299.
    [223] Zheng K, Wang C C, Cheng Y Q, et al. Electron-beam-assisted superplastic shaping ofnanoscale amorphous silica. Nature Communications2010,1:24, doi:10.1038/1021.
    [224] Agullo-Lopez F, Catlow C R A, Townsend P D. Point Defects in Materials,1sted. New York:Academic,1988.
    [225] Zhan J H, Bando Y, Hu J Q, et al. Nanofabrication on ZnO nanowires. Applied PhysicsLetters2006,89:243111.
    [226] Kohan A F, Ceder G, Morgan D, et al. First-principles study of native point defects in ZnO.Physical Review B2000,61:15019-15027.
    [227] Erhart P, Albe K, Klein A. First-principles study of intrinsic point defects in ZnO: Role ofband structure, volume relaxation, and finite-size effects. Physical Review B2006,73:205203.
    [228] Kim Y S, Park C H. Rich variety of defects in ZnO via an attractive interaction between Ovacancies and Zn interstitials: Origin of n-type doping. Physical Review Letters2009,102:086403.
    [229] Vanheusden K, Warren W L, Seager C H, et al. Mechanisms behind green photoluminescencein ZnO phosphor powders. Journal of Applied Physics1996,79:7983-7990.
    [230] Liao Z M, Zhang H Z, Zhou Y B, et al. Surface effects on photoluminescence of single ZnOnanowires. Physics Letters A2008,372:4505-4509.
    [231] van Dijken A, Meulenkamp E A, Vanmaekelbergh D, et al. Identification of the transitionresponsible for the visible emission in ZnO using quantum size effects. Journal ofLuminescence2000,90:123-128.
    [232] Wu X L, Siu G G, Fu C L, et al. Photoluminescence and cathodoluminescence studies ofstoichiometric and oxygen-deficient ZnO films. Applied Physics Letters2001,78,2285-2287.
    [233] Yacobi B G, Holt D B. Cathodoluminescence Microscopy of Inorganic Solids,1sted. NewYork: Plenum,1990.
    [234] Goldstein J I. Scanning Electron Microscopy and X-Ray Microanalysis,2nded. New York:Plenum,1992.
    [235] Han X B, Kou L Z, Lang X L, et al. Electronic and mechanical coupling in bent ZnOnanowires. Advanced Materials2009,21:4937-4941.
    [236] Fujimura N, Nishihara T, Goto S, et al. Control of preferred orientation for ZnOxfilms:Control of self-texture. Journal of Crystal Growth1993,130:269-279.
    [237]潘金生,仝健民,田民波.材料科学基础.北京:清华大学出版社,2002.
    [238] Shalish I, Temkin H, Narayanamurti V. Size-dependent surface luminescence in ZnOnanowires. Physical Review B2004,69:245401.
    [239] Pan N, Wang X P, Li M, et al. Strong surface effect on cathodoluminescence of an individualtapered ZnO nanorod. The Journal of Physical Chemistry C2007,111,17265-17267.
    [240] Xue H Z, Pan N, Zeng R G, et al. Probing the surface effect on deep-level emissions of anindividual ZnO nanowire via spatially resolved cathodoluminescence. The Journal of PhysicalChemistry C2009,113,12715-12718.
    [241] Lucas M, Wang Z L, Riedo E. Combined polarized Raman and atomic force microscopy: Insitu study of point defects and mechanical properties in individual ZnO nanobelts. AppliedPhysics Letters2009,95:051904.
    [242] Plimpton S J. Fast parallel algorithms for short-range molecular dynamics. Journal ofComputational Physics1995,117:1-19.
    [243] LAMMPS Molecular Dynamics Simulator. http://lammps.sandia.gov.
    [244] Dai L, Sow C H, Lim C T, et al. Numerical investigations into the tensile behavior of TiO2nanowires: Structural deformation, mechanical properties, and size effects. Nano Letters2009,9:576-582.
    [245] Lagos M J, Sato F, Bettini J, et al. Observation of the smallest metal nanotube with a squarecross-section. Nature Nanotechnology2009,4:149-152.
    [246] Agrawal R, Paci J T, Espinosa H D. Large-scale density functional theory investigation offailure modes in ZnO nanowires. Nano Letters2010,10:3432-3438.
    [247] Wang J, Xiao P, Zhou M, et al. Wurtzite-to-tetragonal structure phase transformation and sizeeffect in ZnO nanorods. Journal of Applied Physics2010,107:023512.
    [248] Staab T E M, Sieck A, Haugk M, et al. Stability of large vacancy clusters in silicon. PhysicalReview B2002,65:115210.
    [249] Hounsome L S, Jones R, Martineau P M, et al. Optical properties of vacancy related defects indiamond. Physica Status Solidi A2005,202:2182-2187.
    [250] Zhou W F, Fei G T, Li X F, et al. In situ X-ray diffraction study on the orientation-dependentthermal expansion of Cu nanowires. The Journal of Physical Chemistry C2009,113:9568-9572.
    [251] Fan Y, Kushima A, Yip S, et al. Mechanism of void nucleation and growth in bcc Fe:Atomistic simulations at experimental time scales. Physical Review Letters2011,106:125501.
    [252] Vinogradov O G. Effect of vacancy diffusion on crack initiation and propagation in theLennard-Jones crystal subjected to tension. International Journal of Fracture2011, doi:10.1007/s10704-010-9561-y.
    [253] Adnan A, Sun C T. Evolution of nanoscale defects to planar cracks in a brittle solid. Journalof the Mechanics and Physics of Solids2010,58:983-1000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700