用户名: 密码: 验证码:
电去离子技术浓缩与脱除水中重金属离子和营养盐研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重金属和营养盐是当前最受关注的水体污染物之一,同时也是宝贵的资源。重金属废水和营养盐废水的大量排放,不仅造成严重的环境污染,也导致了资源的极大浪费。传统的重金属废水处理方法和脱氮除磷工艺各有优势,但仍不同程度地存在投资大、产水水质偏低、易产生二次污染等缺点。特别是当废水浓度较低时,传统处理工艺在技术、经济等方面受到很多限制而很难做到净化和回收兼顾,难以满足废水资源化的要求。
     电去离子(Electrodeionization,EDI)是一种清洁高效的新型分离技术,可深度去除并回收废水中的离子态物质。现有的研究虽然证明了EDI处理低浓度重金属废水的可行性,但无法彻底避免过程中普遍存在的重金属氢氧化物沉淀,装置运行的长期稳定性有待提高,关于EDI处理含多种重金属离子废水和营养盐废水的研究更少有报道。由此,本论文对EDI技术处理低浓度重金属废水和营养盐废水进行了较为系统的研究。
     以Ni~(2+)离子为模型离子与树脂进行静态吸附交换,考察了EDI装置对失效树脂的电再生特性。结果表明,增大电极液导电性、升高电压及提高树脂预载离子量可显著提高树脂再生效果。电极液中加入的少量Na_2SO_4电解质是电极反应的引发剂,可促使电极反应快速进行,产生大量的H~+对树脂进行再生。离子交换树脂的持续再生由电极反应产生的H~+和OH~-离子来实现。阴、阳离子交换树脂的分别填充及电性相同的离子交换膜靠近排列使得树脂电再生过程中EDI装置的浓室溶液始终呈酸性,pH值低至3左右,抑制了Ni(OH)_2沉淀在阴膜表面产生,树脂表面亦未有Ni(OH)_2沉淀附着,避免了传统EDI过程容易出现的金属氢氧化物沉淀现象,有望实现长期运行和重金属废水的连续处理。
     考察了不同实验条件下EDI过程对Ni~(2+)离子的脱除和浓缩性能。过程的主要影响因素包括离子交换树脂、离子交换膜、膜堆电压和原水Ni~(2+)离子浓度等。在优化的操作条件下,对含Ni~(2+)离子浓度50 mg/L的原水进行EDI处理,Ni~(2+)离子浓缩倍数8.5~14.7,脱除率大于98%,出水Ni~(2+)离子浓度低于1.0mg/L,电流效率23.6~37.9%,长时间运行稳定性能良好。表明EDI能够在不需要化学再生树脂的情况下,实现对重金属离子的深度脱除和浓缩。
     探讨了水中共存Ni~(2+)、Cu~(2+)、Zn~(2+)离子在EDI膜堆中的行为差异及选择分离性,结合Nernst-Planck方程对EDI过程的离子传递机理进行的分析表明,树脂对离子的亲合力和选择性顺序为Ni~(2+)>Cu~(2+)>Zn~(2+),离子在EDI膜堆中的迁移能力顺序和浓缩倍数顺序为Zn~(2+)>Cu~(2+)>Ni~(2+)。说明树脂对不同离子的亲合力有差别,树脂将优先选择混合液中亲合力大的离子进行吸附交换,但是亲合力越大,离子从树脂解吸即树脂电再生的阻力也越大,树脂对离子选择性的提高必然导致离子在树脂内迁移能力的降低及浓缩倍数的下降。
     离子传递机理描述表明,分离系数β实质上是混合离子在树脂中的电迁移率或者扩散系数之比,β值越大,离子之间的电迁移率差别越大,从而可分离性越高。混合离子的分离系数大小顺序为β_((Zn2+-Ni2+))>β_((Zn2+-Cu2+))>β_((Cu2+-Ni2+)),说明在定向迁移过程中共存离子之间产生竞争。Zn~(2+)的竞争力最强,因此其电迁移率最大,由于Zn~(2+)的竞争,Cu~(2+)和Ni~(2+)的迁移速率下降,与Cu~(2+)相比,Ni~(2+)受Zn~(2+)竞争的影响较大,因此Cu~(2+)的电迁移率次之,Ni~(2+)的最小。
     探索了营养盐阴离子在EDI膜堆中的迁移与浓缩的基本特性。装置运行4h后NO_3~-、PO_4~(3-)的浓缩倍数即分别达到4.8~6.8和2.7~4.0,出水离子浓度均低于0.1mg/L,去除率大于97%。表明EDI能够对水中营养盐离子进行浓缩和深度去除。不同实验条件下树脂对PO_4~(3-)的亲合力均大于对NO_3~-的亲合力,NO_3~-通过阴树脂床层的电迁移率是PO_4~(3-)的3.6倍左右,这直接导致了PO_4~(3-)浓缩倍数的降低。
     上述结果表明,采用改进的EDI装置,不仅能浓缩和脱除低浓度重金属阳离子,而且对低浓度营养盐阴离子亦能进行浓缩和深度去除,这对资源回收利用及环境保护意义重大。
As two kinds of the most primary pollutants in the water, Heavy metals and nutritivesalts are also valuable and useful resources. Discharge of wastewater containing heavy metalions or nutritive salts leads to not only serious environmental pollution, but prodigiousresource waste. Traditional technologies for the correlative wastewater treatment have theirown advantages, however, their disadvantages, such as high cost, low efficiency andsecondary pollution, are outstanding. There are many technological and economic limitationsand it is difficult for them to realize both wastewater purify and resource recycle, especiallyfor dilute solutions.
     Electrodeionization (EDI) is a clean, efficient and neotype separative technology. It canrealize deep desalination and ions recycle. Though current studies on the treatment ofwastewater containing low concentration of heavy metal ions by EDI prove the processfeasibility, they cannot avoid the precipitation of bivalent metal hydroxide commonlyhappened in the EDI membrane stack, and the long-time stability of EDI has been greatlylimited by this drawback. As for treatment of wastewater containing multiple heavy metalions and wastewater containing nutritive salts, the reports are rare. Therefore, treatment ofdilute wastewater containing heavy metal ions and wastewater containing nutritive salts werestudied respectively in this paper.
     The electro-regeneration effect of cation exchange resins loaded with nickel ions wasinvestigated in the EDI stack. It was found that Electrode solution, applied voltage and initialmetal ion concentration had remarkable influence on the electro-regeneration of cationexchange resin. Addition of a small amount of Na_2SO_4 into the electrode solution, moderateincrease of applied voltage and initial metal ion concentration could get better regenerationeffect. Na_2SO_4 introduced into the electrode compartments was an initiating reagent of theelectrode reactions, and it could accelerate the anode reaction to generate H~+ ions. Continuouselectro-regeneration of ion exchange resin were achieved by H~+ ions produced from the anodereaction and OH~- ions generated form the cathode reaction. Separative fill of anion exchange resins and cation exchange resins and closer arrangement of ion exchange membrane with thesame electric property kept the solution in the concentrate compartment of EDI acid enoughduring the process of electro-regeneration, and the pH value was as low as about 3. Thisacidic environment was very favorable for avoiding Ni(OH)_2 precipitation in the concentratecompartment. It was accordingly hopeful to realize long-time EDI running and continuouswastewater treatment.
     Effects of different operating conditions on the removal and concentration performanceof nickel ions by the EDI process were investigated. It was found that type of the resin, typeof the membrane, applied voltage and concentration of nickel ion in the wastewater werecrucial to the process. Under the optimized operational condition, simulated wastewatercontaining 50mg/L Ni~(2+) was treated.A steady and continuous process of wastewater treatmentcould be achieved with enrichment factor of 8.5~14.7, removal efficiency of at least 98% andcurrent efficiency of 23.6~37.9%, and concentration of nicked ion in purified water wasbelow 1.0 mg/L. This demonstrated the applicability of deep removal and concentration ofheavy metal ions by EDI without additional chemical regeneration of resins.
     Behavior difference and selective separation of co-exist nickel, copper and zinc ions inthe EDI membrane stack were discussed, and the ion transport mechanism was analysedcombining Nernat-Planck equation. It showed that the affinity and selectivity sequence wasNi~(2+)>CU~(2+)>Zn~(2+), while transport ability and enrichment factor was Zn~(2+)>Cu~(2+)>Ni~(2+).When the affinity of the ions to resin was different, resins would select and adsorb the ionwith strong affinity. However, the stronger the affinity was, the stronger the desorptionresistance. Improve of selectivity of resins to ions must lead to reduction of transport abilityand drop of enrichment factor.
     It showed from the description of ion transport mechanism that, the separative coefficientβwas virtually the ratio of ion electromigration rate or ion diffusion coefficient. The larger thevalue ofβwas, the larger the difference of electromigration rate between ions, accordingly thebetter the separative performance. The sequence ofβwasβ_((Zn2+-Ni2+))>β_((Zn2+-Cu2+))>β_((Cu2+-Ni2+))·It could be seen that ions were competitive with each other in mixed solutions. Zinc ion wasthe most competitive, thus its electromigration rate was the highest, and due to thecompetition of zinc, electromigration rates of nickel and copper decreased. Nickel ion was influenced by zinc ion more than copper ion, therefore, electromigration rates of copper ionwas lower and that of nickel was the lowest.
     Emigration and concentration characteristics of nutritive salt anions were explored.Enrichment factor of NO_3~- and PO_4~(3-) achieved 4.8~6.8 and 2.7~4.0, respectively, after theEDI running of 4 hours. Concentrations of both ions in purified water were below 0. 1mg/L,and the removal rate was more than 97%. This demonstrated the applicability of deep removaland concentration of nutritive salt anions by EDI without additional chemical regeneration ofresins. It was found that the affinity of resin to PO_4~(3-) ion was larger than that to NO_3~- ion, andthe electromigration rate of NO_3~- ion was about 3.6 times that of PO_4~(3-) ion. This causeddirectly the decrease of PO_4~(3-) ion enrichment factor.
     All the results showed that, it was feasible and applicable to remove deeply andconcentrate both heavy metal cations and nutritive salt anions by the improved EDI process.This was important and significant to to resource recycle and environmental protection.
引文
[1]章非娟.工业废水污染防治.上海:同济大学出版社,2001.
    [2]K. J(u|¨)ttner, U. Galla, H. Schmieder. Electrochemical approaches to environmental problems in the process industry. Electrochim. Acta, 2000, 45(15-16): 2575-2594.
    [3]L. J. J. Janssen, L. Koene. The role of electrochemistry and electrochemical technology in environmental protection. Chem. Eng. J., 2002, 85(2-3): 137-146.
    [4]孟祥和,胡国飞.重金属废水处理.北京:化学工业出版社,2000.
    [5]王绍文,姜风有.重金属废水治理技术.北京:冶金工业出版社,1993.
    [6]黄瑞光.21世纪电镀废水治理的发展趋势.电镀与精饰,2000,22(3):1-2.
    [7]国家环保局.中国环境状况公报.环境保护,1987,(3):3-9.
    [8]陈坚,堵国成.环境友好材料的生产与应用.北京:化学工业出版社,2002.
    [9]梅光泉.重金属废水的危害及治理.微量元素与健康研究,2004,21(4):54-56.
    [10]惠秀娟.环境毒理学.北京:化学工业出版社,2003.
    [11]周怀东,彭文启.水环境与水环境修复.北京:化学工业出版社,2005.
    [12]赵璇,吴天宝,叶裕才.我国饮用水源的重金属污染及治理技术深化问题.给水排水,1998,24(10):22-25.
    [13]胡必彬.我国十大流域片水污染现状及主要特征.重庆环境科学,2003,25(6):15-17.
    [14]王金辉,沈庆红,雒伟民.关于黄浦江水系表层沉积物的现状研究.上海环境科学,2001,20(1):11-15.
    [15]王宁,朱颜明.松花湖水源地重金属非点源污染调查.中国环境科学,2000,20(5):419-421.
    [16]徐清,邓冠强.长江三峡库区江段沉积物的重金属污染特征.水生生物学报,1999,23(1):1-9.
    [17]徐小清,丘昌强.三峡库区汞污染的化学生态效应.水生生物学报,1999,23(3):197-203.
    [18]朱圣清,藏小平.长江主要城市江段重金属污染状况及特征.人民长江,2001,32(7):23-25.
    [19]付川,潘杰,牟新利等.长江(万州段)沉积物中重金属污染生态风险评价.长江流域资源与环境,2007,16(2):236-239.
    [20]W. Zhang, L. Yu, S. M. Hutchinson, et al. Chinaps Yangtze Estuary : Ⅰ. Geomorphic influence on heavy metal accumulation in intertidal sediments. Geomorphology, 2001, 41(2, 3): 195-205.
    [21]弓晓峰,陈春丽,周文斌等.鄱阳湖底泥中重金属污染现状评价.环境科学,2006,27(4):732-736.
    [22]戴秀丽,孙成.太湖沉积物中重金属污染状况及分布特征探讨.上海环境科学,2001,20(2):71-74.
    [23]陈守莉,王平祖,秦明周等.太湖流域典型湖泊沉积物中重金属污染的分布特征.江苏农业学报,2007,23(2):124-130.
    [24]李春晖,杨志峰,郑小康等.黄河干流主要重金属污染特征及其与流量关系.水资源与水工程学报,2007,18(6):1-3.
    [25]牛红义,吴群河,陈新庚.珠江(广州河段)表层沉积物中的重金属污染调查与评价.环境监测管理与技术,2007,19(2):23-25.
    [26]干爱华,于斌,刘军等.海河干流、大沽排污河沉积物中重金属污染及潜在生态风险评价.安全与环境学报,2006,6(5):39-41.
    [27]朱兰保,盛蒂,周开胜等.淮河安徽段沉积物中重金属污染及其潜在生态风险评价.环境与健康杂志,2007,24(10):784-786.
    [28]中国近岸海域环境质量公报(2001年).国家环境保护总局,2002年11月.
    [29]陈祖军,谭显英.论我国海洋资源与环境的可持续发展.水资源保护,2001,(1):7-10.
    [30]李建军,冯慕华,喻龙.辽东湾浅水区水环境质量现状评价.海洋环境科学,2001,20(3):42-45.
    [31]J. Weber. Wastewater Treatment. Metal Finishing, 1999, 97(1): 801-818.
    [32]G. J. P. Thornton, P. D. Walsh. Heavy metals in the waters of the Nanty Fendrod: change in pollution levels and dynamics associated with the redevelopment of the Lower Swansea Valley, South Wales, UK. The Science of the Total Environment, 2001, 278(1-3): 45-55.
    [33]V. A. Helle, K. Jesper, P. Christian, et al. Environmental risk assessment of surface water and sediments in Copenhagen harbour. Water Science and Technology, 1998, 37(6, 7):263-272.
    [34]E. H. Rybicka. Environmental impact of mining and smelting industries in Poland. Fuel and Energy Abstracts, 1997, 38(3): 186.
    [35]G. D. Agrawal. Diffuse agricultural water pollution in India. Water Science and Technology, 1999, 39(3): 33-47.
    [36]M. N. Rashed. Monitoring of environmental heavy metals in fish from Nasser Lake. Environment International, 2001, 27(1): 27-33.
    [37]国家环境保护总局和国家质量监督检验检疫总局.铜、镍、钴工业污染物排放标准(征求意见稿).2007.12.
    [38]国家环境保护总局.污水综合排放标准(GB8978-1996).
    [39]安成强.电镀三废处理技术.北京:国防工业出版社,2002.
    [40]Ann. N. Clare, D. J. Wilson. Gas flotation process separating. Separation and Purification Methods, 1998, 8(2): 45-52.
    [41]N. Kongsricharoern, C. Polprasert. Electrochemical precipitation of chromium (Cr~(6+)) from an electroplating wastewater. Water Science and Technology, 1995, 31(9): 109-117.
    [42]N. Kongsricharoern, C. Polprasert. Chromium removal by a bipolar electro-chemical precipitation process. Water Science and Technology, 1996, 34(9): 109-116.
    [43]吴昊,张盼月,蒋剑虹等.反渗透技术在重金属废水处理与回用中的应用.工业水处理,2007,27(6):6-9.
    [44]J. J. Qin, M. N. Wai, M. H. Oo, et al. A feasibility study on the treatment and recycling of a wastewater from metal plating. Journal of Membrane Science, 2002, 208: 213-221.
    [45]Y. Benito, M. L. Ruiz. Reverse osmosis applied to metal finishing wastewater. Desalination, 2002, 142: 229-234.
    [46]M. Ajmal, R. A. K. Rao, R. Ahmad, et al. Removal and recovery of heavy metals from electroplating wastewater by using Kyanite as an adsorbent. Journal of Hazardous Materials, 2001, B8: 127-137.
    [47]H. Katsumata, S. Kaneco, K. Inomata, et al. Removal of heavy metals in rinsing wastewater from plating factory by adsorption with economical viable materials. Journal of Environmental Management, 2003, 69:187-191.
    [48]M. Sciban, M. Klasnja. Wood sawdust and wood originate materials as adsorbents for heavy metal ions. HOLZ ALS ROH-UND WERKSTOFF, 2004, 62(1): 69-73.
    [49]M. Sciban, B. Radetic, D. Kevresan, et al. Adsorption of heavy metals from electroplating wastewater by wood sawdust. Bioresource Technology, 2007, 98(2): 402-409.
    [50]F. Pagnanelli, L. Toro, F. Veglio. Olive mill solid residues as heavy metal sorbent material. A preliminary study. Waste Management, 2002, 22(8): 901-907.
    [51]J. G. Parsons, M. Hejazi, K. J. Tiemann, et al. An XAS study of the binding of copper (Ⅱ), zinc (Ⅱ), chromium (Ⅲ) and chromium (Ⅳ) to hops biomass. Microchemical Journal, 2002, 71(2-3): 211-219.
    [52]G. H. Pino, L. M. S. de Mesquita, M. L. Torem, et al. Biosorption of cadmium by green coconut shell powder. Minerals Engineering, 2006, 19(5):380-387.
    [53]M. Ajmal, R. A. K. Rao, R. Ahmad, et al. Adsorption studies on Citrus reticulata (fruit peel of orange): removal and recovery of Ni(Ⅱ) from electroplating wastewater. Journal of Hazardous Materials, 2000, B79:117-131.
    [54]K. Periasamy, C. Namasivayam. Removal of copper (Ⅱ) by adsorption onto peanut hull carbon from water and copper plating industry wastewater. Chemosphere, 1996, 32(4): 769-789.
    [55]K. K. Wong, C. K. Lee, K. S. Low, et al. Removal of Cu and Pb from electroplating wastewater using tartaric acid modified rice husk. Process Biochemistry, 2003, 39: 437-445.
    [56]R. Kiefer, W. H. H(o|¨)ll. Sorption of heavy metals onto selective ion-exchange resins with aminophosphonate functional groups. Ind. Eng. Chem. Res., 2001, 40: 4570-4576.
    [57]J. Lehto, K. Vaaramaa, H. Leinonen. Ion exchange of zinc by an aminophosphonate resin. React. Funct. Polym., 1997, 33: 13-18.
    [58]S. Nasiman, I. Azni, H. Noor, A. Hamid. Total removal of heavy metal from mixed plating rinse wastewater. Desalination, 1996, 106: 419-422.
    [59]T. H. Eom, C. H. Lee, J. H. Kim, et al. Development of an ion exchange system for plating wastewater treatment. Desalination, 2005, 180(1-3): 163-172.
    [60]刘茉娥.膜分离技术应用手册.北京:化学工业出版社,2001.
    [6I]V. A. Shaposhnik, K. Kesore. Early history of electrodialysis with permselective membranes. Journal of Membrane Science, 1997, 136(1-2): 35-39.
    [62]O. Kedem, G. Tanny, Y. Maoz. A simple electrodialysis stack. Desalination, 1978, (24): 313-319.
    [63]A. R. Reising, E. D. Schroeder. Denitrification incorporating microporous membranes. Journal of Environmental Engineering, 1996, 122(7): 599-604.
    [64]J. Audran, P. Baticle, M. M. Letord. Recycling of chromic acid by electro-electrodialysis. 5th World Filtration Congress. Nice, France, 1990.
    [65]T. Cohen, F. Duclert. Recovery of acid and metal with novel ion exchange membrane. Rev. g(?)n. (?)lectr., 1992, 3: 17-19.
    [66]L. Marder, A. M. Bernardes, J. Z. Ferreira. Cadmium electroplating wastewater treatment using a laboratory-scale electrodialysis system. Separation and Purification Technology, 2004, 37: 247-255.
    [67]康建雄,吴磊,朱杰等.生物絮凝剂絮凝Pb~(2+)的性能研究.中国给水排水,2006, 22(19):62-64.
    [68]J. T. Matheickal, Q. M. Yu, G. M. Woodburn. Biosorption of cadmium (Ⅱ) from aqueous solutions by pre-treated biomass of marine alga Durvillaea potatorum.Water Research, 1999, 33(2): 335-342.
    [69]赵力,张利,孔德领等.明胶包埋黑根霉菌丝体对水中Pb~(2+)吸附性能的研究.离子交换与吸附,1996,12(5):418-424.
    [70]I. Z. Anastasios, G. R. Elen, E. Kostas, et al. Removal of toxic metals from aqueous mixtures Part Ⅰ: Biosorption. J. Chem. Technol. Biotechnol., 1999, 74: 429-436.
    [71]赵晓红,张敏,李福的.SRV菌去除电镀废水中铜的研究.中国环境科学,1996,16(4):288-292.
    [72]陈英旭.环境学.北京:中国环境科学出版社,2001.
    [73]王焕校.污染生态学.北京:高等教育出版社,2000.
    [74]王家玲.环境微生物学.北京:高等教育出版社,1998.
    [75]高俊发.水环境工程学.北京:化学工业出版社,2003.
    [76]李红山,黎松强.赤潮形成与富营养化及生化防治机理.海洋技术,2002,21(2):69-73
    [77]R. A. Vollenwcider. Scientific fundmentals of the cutrophication of lakes and flowing water with particular reference to N and P as factors in cutrophication, Organ Econ Coop Del Paris Technical Rep, No. DAS/CSI/68-27159PP.
    [78]舒金华.我国湖泊富营养化程度评价方法的探讨.环境污染与防治,1990,12(5):2-5.
    [79]T. J. Smayda. Primary production and the global epidemic of phytoplankton blooms in the sea: A linkage? In Cosper E M, Bricelj V M, and Carpenter E J eds. Novel Phytoplankton Blooms, Coastal and Estuarine Studies Number 35. NewYork: Springer-Verlag, 1989.
    [80]T. J. Smayda. Novel and nuisance phytoplankton blooms in the sea: Evidence for a global epidemic. In Graneli E, Sundstrom B, Edler L, et al. eds. Toxic Marine Phytoplankton. NewYork: Elsevier, 1990.
    [81]Marchetti. The influence of nutrients input on the red tide occurrence. Marine Environmental Science, 2004, 23(2): 20-24.
    [82]林泽新.太湖流域水环境变化及缘由分析.湖泊科学,2002,14(2):97-103.
    [83]秦伯强,王小冬,汤祥明等.太湖富营养化与蓝藻水华引起的饮用水危机--原因与对策.地球科学进展,2007,22(9):896-906.
    [84]国家海洋局.20世纪末中国海洋环境质量公报.北京:国家海洋局,2000.
    [85]国家海洋局.2002年中国海洋环境质量公报.北京:国家海洋局,2003.
    [86]R G. Piekema, S. B. Gaastra. Upgrading of a wastewater treatment plant in the Netherlands: combination of weveral nutrient removal processes. European Water Pollution Control, 1993, 3(3): 21-26.
    [87]S. S. Mirvish. N-nitroso compounds, nitrate, and nitrite: possible implications for the causation of human cancer. Prog. Wat. Technol., 1977, 8: 195-204.
    [88]Y. Sakakibara, K. Araki, T. Watanabe, et al. The denitriftcation and neutralization performance of an electrochemically activated biofilm reactor used to treat nitrate-conaminated groundwater. Wat. Sci. Tech., 1997, 36(1): 61-68.
    [89]G Gulis, M. A. Czompolyov, J. R. Cerhan. An ecologic study of nitrate in municipal drinking water and cancer incidence in Tmava district, Slovakia. Environ. Res., 2002, 88(3): 182-187.
    [90]J. Sandor, I. Kiss, O. Farkas, et al. Association between gastric cancer mortality and nitrate content of drinking water: Ecological study on small area inequalities. Eur. J. Epidemiol., 2001, 17(5): 443-447.
    [91]J. M. Flere, T. C. Zhang. Nitrate removal with sulfur-limestone autotrophic denitrification processes. Journal of Environmental Engineering, 1999, 125(8): 721-729.
    [92]M. Kurt, I. J. Dunn, J. R. Bourne. Biological denitrification of drinking water using autotrophic organisms with H2 in a fluidized-bed biofilm reactor. Biotechnology and Bioengineering, 1987, 29: 493-501.
    [93]S. Szilvia. Hydrogen-dependedt denitrfication in a two-reactor bio-electrochemical system. Water Research, 2001, 35(3): 715-719.
    [94]曲久辉.电解产氢自养反硝化去除地下水中硝酸盐氮的研究.环境科学,2001,22(6):711-715.
    [95]T. J. Sorg. Treatment technology to meet the interim primary drinking water regulationsforinorganics. J. AWWA, 1987, 70(2): 105-118.
    [96]F. Cheng. Reduction of nitrate to ammonia by zero-valent iron. Chemosphere, 1997, 35(11): 2689-2696.
    [97]S. Choe. Kinetics of reductive denitrification by nanoscale zero-valent iron. Chemosphere, 2000, 41: 1307-1314.
    [98]A. P. Murphy. Chemical removal of nitrate from water. Nature, 1991, 350: 223-229.
    [99]G. K. Luk, W. C. Au-Yeung. Experimental investigation on the chemical reduction of nitrate from groundwate. Advances in Environmental Research, 2002, 6(4): 441-453.
    [100]Y. Yuase. JP08 192 169[96, 192, 169]JPN. Kokai Tokyo Koho[P]. 1996-06-30.
    [101]A. Pintar, M. Setine, J. Levee. Hardness and salt effects on catalytic hydrogenation of aqueous nitrate solutions. J. Catalysis, 1998, 174: 72-87.
    [102]K. Daub, G. Emig, M. J. Chollier, et al. Studies on the use of catalytic membranes for reduction of nitrate in drinking water. Chemical Engineering Science, 1999, 54: 1577-1582.
    [103]Y. X. Chen, Y. Zhang, G. Chen, et al. Appropriate conditions or maximizing catalytic reduction efficiency of nitrate into introgen gas in groundwater. Water Research, 2003, 37: 2489-2495.
    [104]W. A. M. Hagen. The CARⅨ (r) process for removing nitrate, sulfate and hardness from water. Aqua. 1980, 5: 275-278.
    [105]W. T. Dorshelmer, C. B. Drewry, D. P. Fritsch, et al. Removing nitrate from groundwater. Water / Engineering & Management, 1997, (12): 20-24.
    [106]A. Elmidaoui, F. I. Elhannoun, M. Sahli, et al. Pollution of nitrate in Moroccan ground water: removal by electrodialysis. Desalination, 2001, 136: 325-332.
    [107]上海市环境保护局.废水生化处理.上海:同济大学出版社,1999.
    [108]R. L. Irvine, et al. Organic loading study of full-scale sequencing batch reactors. JWPCF. 1985, 57: 847.
    [109]T. Kuba, M. C. M. van Loosdrecht, et al. Occurrence of denitrifying phosphorus removing bacteria in modified UCT-type wastewate treatment plants. Water Research, 1997, 31(4): 777-786.
    [110]J. L. Barnard. Cut P and N without chemicals. Water and Wastes Eng., 1974, 11(7): 33- 38.
    [111]G. J. Stander, G. G. Cillie, E. J. Hall, et al. Wastewater technologies in south Africa: research and application. Water Science and Technology, 1982, 14: 465-480.
    [112]D. J. J. Potgieter, B. W. Evans. Biochemical changes associated with luxury phosphate uptake in a modified phoredox activated sludge system. Water Science and Technology, 1982, 15: 105-115.
    [113]P. H. Jones, L. Tasfi. Effect of applied direct current on biological phosphorus uptake. Water Research, 1987, 25(6): 723-729.
    [114]P. Janssen, H. van der Roest. Winning combination. Wat. Sci. Tech., 1996, (9/10): 12-15.) ge method and apparatus. US Patent 2788319, 1957-04-09.
    [115]M. Henze. Biological phosphorus removal from wastewater: processes and technologies.Water Quality International (WQI), 1996, (7/8): 32-36.
    [116]王立立,刘焕彬,胡勇友等.生活污水二级生物处理后的铁盐混凝除磷试验研究.环境污染与防治,2002,24(6):361-364.
    [117]王建友,龚承元.离子交换树脂与膜结合的电去离子过程.医疗卫生设备,1997,(5):16-19.
    [118]O. Kedem. Reduction of polarization in electrodialysis by ion-conducting spacers. Desalination, 1975, (16): 105-118.
    [119]R. Kunin, R. J. Myers. Ion Exchange Resins. New York: John Wiley& Sons. 1950.
    [120]W. R. Walters, D. W. Weiser, L. J. Marek. Concentration of radioactive aqueous wastes. Industrial and Engineering Chemistry, 1955, 47(1): 61-67.
    [121]E. Glueckauf. Electro-deionization through a packed bed. British Chemical Engineering, 1959,646-651.
    [122] P. Kollsman. Electrodialytic apparatus. US Patent 2689826, 1954-09-21
    [123] R.G Pearson. Ion exchange method and apparatus. US Patent 2788319, 1957-04-09.
    [124] R.G Pearson. Electrolytic Deionization, US Patent 2794777,1957-06-04.
    [125] P. Kollsman. Apparatus for transferringe lectrolytes from one solution into another. US Patent 2799644, 1957-07-16.
    [126] P. Kollsman. Method and Apparatus for Treating Ionic Fluids by Dialysis. US Patent 2815320, 1957-12-03.
    [127] T. R. E. Kressman. Process for the removal of dissolved solids from liquids. US Patent 2923674,1960-02-02.
    [128] E. J. Parsi. Removal of dissolved salts and silica from liquids. US Patent 3149061, 1964-09-15.
    [129] E. J. Parsi. Removal of weakly basic substances from solution by electrodeionization. US Patent 3291713,1966-12-13.
    [130] G J. Gittens. The application of electrodialysis to demineralization. AICHE Symp. Ser., 1965, 9: 79-83.
    [131] E. Korngold. Electrodialysis process using ion-exchange resins between membranes. Desalination, 1975, (16): 225-233.
    [132] E. Korngold. Electrodialysis in water desalination and the influence of ion exchange resin introduction into the apparatus. Proc. Int. Symp. Brackish Water Factor. Dev., 1976: 209-216.
    [133] E. Konrgold, E. Selegny. Method of Separation of Ions from a Solution. US Patent 3686089, 1972-08-22.
    [134] A. R. Tejeda. System for demineralizing water by electrodialysis. US Patent 3869376, 1973-5-14.
    [135] D. Thomas. Electrically regenerated ion exchange system. US Patent 4032452, 1977-06-28.
    [136] O. Kedem, A. Kedem. Electrodialysis device. US Patent 4038550, 1977-07-05.
    [137] I. V. Borisovsky, et al. Device for producing deeply desalted water. US Patent 4165273, 1979-08-21.
    [138]A. J. Giuffrida. Electordialysis process for silica removal. US Patent 4298442, 1981-11-3.
    [139]H. M. O'hare. Method and apparatus for the purification of water. US Patent 4465573, 1984-08-14.
    [140]O. Kedem. Reduction of Polarization in Electrodialysis by Ion-Conducting Spacers. Desalination, 1975, (16): 105-118.
    [141]O. Kedem, Y. Maoz. Ion Conducting Spacer for Improved Electrodialysis. Desalination, 1976, (19): 465-470.
    [142]O. Kedem, G. Tanny. A simple Electrodialysis Stack. Desalination, 1978, (24): 313-319.
    [143]O. Kedem, I.Cohen. EDS-Sealed Cell Electrodialysis. Desalination, 1983, (46): 291-299.
    [144]K. P. Govindan, P. K. Narayanan. Demineralization by electrodialysis using ampholytic ion-conducting spacers. Desalination, 1981, (38): 517-527.
    [145]V. I. Demkin, Y. A. Tubashov, V. I. Panteleev, et al. Cleaning low mineral water by electrodialysis. Desalination, 1987, (64): 367-374.
    [146]A. J. Giuffrida, A. D. Jha, G C. Ganzi. Elecrtodeionization Apparatus. US Patent 4632745, 1 986-12-30.
    [147]G. C. Ganzi, Y. Egozy, A. J. Giuffrida. High Purity water by elecrtodeionization: performance of the Ionpure continuous deionization systems. Ultrapure water, 1987, 4(3): 43-50.
    [148]G. C. Ganzi. The Ionpuer TM Continuous deionization process: Effect of electrical current distribution on performance. Proceedings of the 80th Annual AICHE meeting on Nov. 28, 1988.
    [149]A. J. Giuffrida, G C. Ganzi, O. Yoram. Electrodeionization apparatus and module. US Patent 4956071, 1990-09-11.
    [150]四机部七四二厂等.高纯电渗析试验概况.电渗析技术资料选编。第1版.北京:中国建筑工业出版社,1977.
    [151]黄奕普,陈朝.树脂填充床电渗析制高纯水的脱盐机理.水处理技术,1981,(2):17-21.
    [152]陈祯详,杨洪渊.填充床电渗析及其在处理堆工低放废液中的应用研究.水处理技术,1981,(4):8-11.
    [153]中科院原子核研究所.填充床电渗析及其在处理低放废水中的应用.水处理技术,1981(增刊):1-6.
    [154]杨洪渊.用填充床电渗析直接处理废水同时制取纯水.水处理技术,1985,(5):53-57.
    [155]王方.电去离子过程的反应叠加的实用模型.清华大学学报(自然科学版),1998,38(71:107-110.
    [156]王建友,刘红斌,龚承元等.电去离子过程水解离影响因素的研究.膜科学与技术,2000,20(5):1-9.
    [157]刘红斌,龚承元,马军等.电去离子过程水解离的基本特征.膜科学与技术,2003,23(4):30-33.
    [158]王建友,王世昌.电去离子(EDI)过程的水解离动力学分析.膜科学与技术,2006,26(2):9-12.
    [159]孟洪,彭昌盛,卢寿慈.离子交换膜的选择透过性机理.北京科技大学学报,2002,24(6):656-660.
    [160]孟洪,彭昌盛,卢寿慈等.电渗析过程中的浓差极化及水解离机理.膜科学与技术,2003,23(1):7-11.
    [161]闻瑞梅,范伟,邓守权等.杂质离子在EDI中的传质模型.净水技术,2003,22(1):1-4.
    [162]李志军,夏中明,周柏青等.EDI连续脱盐机理的研究.工业用水与废水,2004,35(4):15-17.
    [163]王方.等孔隙填充床电渗析器.ZL 97221361.7,1997-07-22.
    [164]龚承元,刘红斌,苏建勇等.一种制药用水的生产工艺及设备.ZL 99111578.3,2003-06-04.
    [165]王方.电去离子软水方法及所用装置.ZL 97116340.5,2003-08-13.
    [166]王建友,王世昌.一种浓水室隔板嵌入式膜对结构的一级多段型电去离子装置.ZL02252816.4,2003-08-20.
    [167]黄宝能,吴国锋,张必功等.一种电去离子装置.ZL 03230478.1,2004-05-26.
    [168]王建友,王世昌,任延等.一种电子级水的集成膜过程生产工艺与过程.ZL02131276.1.2004-11-17.
    [169]马军,刘红斌,龚承元等.分段填充式电去离子装置.ZL 200520000747.3,2006-03- 01.
    [170]彭昌盛,孟洪,卢寿慈.连续电去离子制纯水的方法及设备.ZL 02153843.3,2006-08-02.
    [171]李福勤,闫书宏,马计中等.一种电去离子高纯水装置.ZL 200520135540.7,2006-11-15.
    [172]管山.一种用凹凸面和垫片进行密封的电去离子装置.ZL 200620025176.3,2007-06-13.
    [173]张贵清.一种分床电去离子制取超纯水的方法及其设备.ZL 200510032149.9,2007-09-05.
    [174]李光辉.连续电去离子装置.ZL 200610076262.1,2008-03-05.)
    [175]F. R. Wilkins, P. A. Mcconnelee. Continuous deionization in the preparation ofmicroelectronics-grade water. Solid State Technol., 1988, 31 (8): 87-92.
    [176]P. L. Parise. Demineralization: the use of Ionpure continuous Deionization for the production of pharmaceutical and semiconductor grades of water. Ultrapure water,1990, 7(8): 14-28.
    [177]J. Weems, K. Pandya. Lessons learned: the installation of a 300 to 600 GPM semiconductor high-purity water system. Ultrapure Water, 1999, 16(7): 26-32.
    [178]Eighth Supplement, US Pharmacopoeia. 1995.4320-4321.
    [179]G. C. Ganzi, P. L. Parise. The production of pharmaceutical grades of water using continuous deionization post-reverse osmosis. J. Parenter. Sci. Technol., 1990, 44(4): 231-241.
    [180]J. M. Finlay. A novel approach to a pharmaceutical R&D high purity water system. Pharmaceutical Engng., 1995, May/June, 88-96.
    [181]L. S. Liang, J. Wood, W. Hess. Design and Performance of Electrodeionization System in Power Plant Applications. Ultrapure water, 1992, 9(7): 41-2,44-6,48
    [182]G. Coker, T. Williamson, K. Sims, et al. Makeup water treatment incorporating electrodeionization along with triple membrane treatment at grand gulf nuclear station. Annual Meeting- International Water Conference Oct. 19-21, 1992, 249-254.
    [183]P. Cartwright. Prepared discussion: makeup water treatment incorporation electrodeionization (alongwith triple membrane treatment at grand gulf nuclear station). Annual Meeting - International Water Confeernce Oct. 19-21, 1992, 255-256.
    [184]D. S. Strauss. Optimize water-treatment economics at your power plant. Power, 1995, 139(2):29-34.)
    [185]管山,王建友,王世昌.Purification and concentration of acid copper electroplating rensewater by continuous electrodeionization process.化工学报,2004,55(1):166-167.
    [186]S. Guan, S. C. Wang. Experimental studies on electrodeionization for the removal of copper ions from dilute solutions. Sep. Sci. Technol., 2007, 42(5): 949-961 .)
    [187]卢会霞,王建友,傅学起等.特种分离EDI过程处理模拟电镀镍漂洗水的研究.西安石油大学学报(自然科学版),2007,22(3):96-100.
    [188]Y. Q. Xing, X. M. Chen, D. H. Wang. Electrically regenerated ion exchange for removal and recovery of Cr(Ⅵ) from wastewater. Environ. Sci. Technol., 2007, 41, 1439-1443.
    [189]J. Johann, G. Eigenberger. Electrodialytic regeneration of ion exchange resin. Chem. Ing. Tech., 1993, 65(1): 75-78.
    [190]F. Kuppinger, W. Neubrand, H. Rapp, et al. Electromembrane process. Part 2. Applications. Chem. Ing. Tech., 1995, 67(6): 731-739.)
    [191]S. Sung. Recycling of copper from metal finishing wastewate using electrodialysis ion exchange. Ph.D. Thesis, University of Conneticut, 1997.
    [192]C. D. Dillon. In-line copper recovery technology. M.Sc.Thesis, University of Minnesota, 1998.
    [193]M. J. Semmens, C. D. Dillon, C. Riley. An evaluation of continuous electrodeionization as an in-line process for plating rinsewater recovery. Environ. Prog., 2001, (4): 251-260.
    [194]A. Mahmoud, L. Muhr, S. Vasiluk, et al. Investigation of transport phenomena in a hybrid ion exchange-electrodialysis system for the removal of copper ions. J. Appl. Electrochem., 2003, 33(10): 875-884.
    [195]P. B. Spoor, W. R. ter Veen, L. J. J. Janssen. Electrodeionization 1: Migration of nickel ions absorbed in a rigid, macroporous cation-exchange resin. J. Appl. Electrochem., 2001, 31(5): 523-530.
    [196]P. B. Spoor, W. R. ter Veen, L. J. J. Janssen. Electrodeionization 2: The migration of nickel ions absorbed in a flexible ion-exchange resin. J. Appl. Electrochem., 2001, 31(10): 1071-1077.
    [197] P. B. Spoor, W. R. ter Veen, L. J. J. Janssen. Electrodeionization 3: The removal of nickel ions from dilute solutions. J. Appl. Electrochem., 2002, 32(1): 1-10.
    [198] P. B. Spoor, L. Koene, L. J. J. Janssen. Potential and concentration gradients in a hybrid ion-exchange/electrodialysis cell. J. Appl. Electrochem., 2002, 32(4): 369-377.
    [199] P. B. Spoor, L. Koene, W. R. ter Veen, et al. Continuous deionization of a dilute nickel solution. Chem. Eng. J., 2002, 85: 127-135.
    [200] P. B. Spoor, L. Grabovska, L. Koene, et al. Pilot scale deionization of a galvanic nickel solution using a hybrid ion-exchange/electrodialysis system. Chem. Eng. J., 2002, 89 (1-3): 193-202.
    [201] Y. S. Dzyazko, V. N. Belyakov. Purification of a diluted nickel solution containing nickel by a process combining ion exchange and electrodialysis. Desalination, 2004, 162: 179-189.
    [202] L. M. Rozhdestvenska, Y. S. Dzyazko, V. N. Belyakov. Electrodeionization of a Ni2+ solution using highly hydrated zirconium hydrophosphate. Desalination, 2006, 198: 247-255.
    [203] Y. S. Dzyazko. Purification of a diluted solution containing nickel using electrodeionization. Desalination, 2006, 198: 47-55.
    [204] G C. Ganzi, J. H. Wood, C. Griffin. Water purification and recycling using the CDI process. Environmental Progress, 1992, (11): 49-53.
    [205] R. Klischenko, B. Kornilovich, R. Chebotaryova, et al. Purification of galvanic sewage from metals by electrodialysis. Desalination, 1999, 126: 159-162.
    [206] V. D. Grebenyuk, R. D. Chebotaerva, N. A. Linkov, et al. Electromembrane extraction of Zn from Na-containing solutions using hybrid electrodialysis-ion exchange method. Desalination, 1998, 115: 255-263.
    [207] K. Basta, A. Aliane, A. Lounis, et al. Electroextraction of Pb2+ ions from dilute solutions by a process combining ion-exchange textiles and membranes. Desalination, 1998, 120(3): 175-184.
    [208] S. Abdelaziz, D. Rachid, C. Eric, et al. Removal of heavy metals from diluted mixtures by a hybrid ion-exchange/electrodialysisprocess. Sep. Purif. Technol., 2007, 57(1): 103-110.
    [209] R. B. St-Legier, M. C. La Tour-De-Peilz. Demineralization of sweet whey by electrodeionization. US Patent 5980961, 1999-11-09.
    [210] R. B. St-Legier, M. C. La Tour-De-Peilz. Demineralization of milk and milk-derived products by electordeionization. US Patent 6033700, 2000-03-07.
    [211] I. N. Widiasa, P. D. Sutrisna, I. G. Wenten. Performance of a novel electrodeionization technique during citric acid recovery. Separation and Purification Technology, 2004, (39): 89-97.
    [212] M. E. Haddock. Multi-stage engine coolant recycling apparatus and process. WO 00024683A1.
    [213] M. E. Haddock, E. R. Eaton. Recycling used engine coolant using high-volume stationary, multiple technology equipment. ASTM Spec. Tech. Publ., STP 1335(Engine Coolant Testing: Fourth Volume), 1999, 251-260.
    [214] K. Salem, J. Sandeaux, J. Mol(?)nat, et al. Elimination of nitrate from drinking water by electrochemical membrane process. Desalination, 1995, (101): 123-131.
    [215] E. F. Spiegel, P. M. Thompson, D. J. Helden, et al. Investigation of an Electrodeionization system for the removal of low concentrations of ammonium ions. Desalination, 1999, (123): 85-92.
    [216] E. J. Parsi, M. Lexington. Apparatus and process for the removal of acidic and basic gases from fluid mictuers using bipolar membranes. US Patent 4969983.
    [217] G. C. Ganzi, M. Lexington. Purified ion exchange resins and process. US Patent 5259936,1993-11-09.
    [218] A. J. Giuffrida, G. C. Ganzi, O. Yoram. Electrodeionization apparatus and module. EP0379116, 1990-07-25.
    [219] E. K. William, I. D. Elyanow, K. J. Sims. Eelectrodeionization polarity reversal apparatus and process. US Patent 5026465, 1991-06-25.
    [220] C. J. Gallagher, F. Wilkins, G. C. Ganzi. Polarity reversal and double reversal electrodeionization apparatus and method. US Patent 5558753, 1996-09-24.
    [221] N. M. Krishnamurity, R. N. J. Basking. Desalting aqueous streams via filled cell electrodialysis. US Patent 6017433, 2000-01-25.
    [222] N. M. Krishnamurity, et al. Desalting aqueous streams via filled cell electrodialysis. EP0916620, 1999-05-19.
    [223]D. F. Tessier, et al. Method and apparatus for reducing scaling in electrodeionization systems and for improving efficiency thereof. US Patent 6056878, 2000-05-02.
    [224]D. F. Tessier, R. Glegg, J. H. Barber. Method and apparatus for preventing scaling in electrodeionization units. US Patent 6149788, 2000-11-21.
    [225]L. Mir. Electrodeionization apparatus with scaling control. US Patent 6187162, 2001-02-13.
    [226]L. Mir. Electrodeionization apparatus with scaling control. US Patent 6296751, 2001-10-02.
    [227]侯晋,陈国松,王镇浦.分光光度法结合化学计量学方法同时测定谷物中痕量锰、铁、铜、锌.分析仪器,2002,(1):23-26.
    [228]H. Meng, C. S. Peng, S. X. Song, et al. Electro-regeneration mechanism of ion-exchange resins in electrodeionization. Surface Review and Letters, 2004, 11 (6): 599-605.
    [229]F. G. Helfferich. Ion Exchange. Mcgraw Hill book company, New York, 1962.
    [230]钱庭宝.离子交换剂应用技术.第1版.天津:天津科学技术出版社,1984.
    [231]G. C. Ganzi. IonpureTM CDI electrodeionization systems. New product and process development for high purity water production. Proceeding of the International Conference on Ion Exchange, ICIE'91, Oct.2-4, 1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700