用户名: 密码: 验证码:
越西盆地活动构造研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活动构造具体是指,晚第四纪100-120ka以来发生过的,现在正在活动并且未来一定时期内仍可能发生活动的构造。活动构造主要研究的是活动断裂、活动盆地、活动褶皱、活动火山以及被它们所围限的地壳和岩石圈块体变形和运动等多种类型的构造活动。
     存在于川滇地区的一个突出的科学问题是:由北西向鲜水河断裂左旋走滑运动产生的变形,在石棉以南几条近南北向的断裂之间是如何分配的。对这一问题的理解,不仅对认识该地区构造变形有重要意义,也对科学地评价该地区地震危险性有积极的作用。定量化构造地貌研究不仅对于认识盆地本身的演化历史,而且对于认识青藏高原南东边界带活动构造的运动学特征都具有重要的意义。位于小相岭和大凉山之间的越西盆地为一构造成因盆地,发育于大凉山断裂带的越西断裂西侧并受该断层控制,呈南北长轴椭圆状展布,越西河白南向北贯穿盆地。
     本文试图通过对越西盆地构造地貌的定量化研究,深入分析越西盆地新生代以来的构造演化,为进一步认识鲜水河一小江断裂带的活动性以及青藏高原的地壳运动和构造变形,为理解鲜水河断裂左旋走滑运动产生的变形,在石棉以南是如何分配的提供依据。
     论文完成的主要工作:
     (1)通过对越西盆地航片解译和相关地形图的分析,编制了研究区地貌分区图;
     (2)选择四条横跨大凉山断裂的地质剖面,进行平衡剖面分析,估计出大凉山地区新生代的地壳缩短量及缩短速率;
     (3)对重要的构造变形进行地形测量,并在对比得出越西河两岸T2阶地高差的基础上,结合地貌面释光测年结果得出越西断裂垂直位移速率;
     (4)根据越西盆地及普雄断裂的运动速率,分析了鲜水河-小江断裂带中段滑动速率的部分分配方式;
     (5)综合分析了越西盆地的构造演化历史及其对于认识青藏高原活动构造运动学特征的意义。
     论文的主要结论:
     (1)越西盆地在地貌上具有明显的不对称性。盆地尔侧可以识别出5个地貌单元:河漫滩、冲洪积扇和三级阶地,而西侧仅有河漫滩和二级阶地三个地貌单元。越西断裂沿着盆地的东边缘展布,它控制着盆地的构造演化过程;
     (2)通过对盆地东缘跨断层陡坎的测量以及年代学研究,得出越西断裂平均垂直位移速率为:1.30 mm/a;
     (3)利用平衡剖面方法结合误差分析得出研究区的地壳平均缩短量为10.9±1.6km,缩短率为17.8±2.2%。研究区发生缩短变形的时间段主要集中在中新世和上新世(12-3.4Ma),据此估算出研究区地壳缩短速率为1.3±0.2mm/a。对比沿大凉山断裂带的左旋滑动量,可以看出这种褶皱形式的地壳缩短在沿鲜水河-小江断裂系向南东方向传递左旋位移的过程中起着重要的作用;
     (4)大凉山断裂带在越西盆地的滑动速率约为3.1mm/a,在一定程度上弥补了鲜水河-小江断裂带中间段滑动速率的缺失;
Active tectonics refers to all structures which have been active since the late Pleistocene, 100-120 ka, are still active recently, and will be active in a certain time period in the future. It includes active faults, active folds, active basins, active volcanoes, and the crustal-lithospheric blocks confined by them.
     A prominent scientific problem in the Sichuan-Yunnan Region is: How to allocate the deformation caused by the sinistral strike-slip motion of the NW trending Xianshuihe fault among several NS trending faults southward of Shimian. Understanding this problem is not only important to recognize the tectonic deformation of the Sichuan-Yunnan region, but also important to estimate the seismic risk of the Sichuan-Yunnan region. Finely quantitative research on the landforms in the Yuexi basin is important to recognize the evolution of the Yuexi basin and the kinematic features of the active tectonics in the southeastern Tibetan Plateau. The Yuexi basin, having an ellipse shape, lying in the western of Sichuan Province between Xiaoxiangling and Daliangshan, is a basin of tectonic origin, and is controlled by the Yuexi reverse fault which belonging to the the Daliangshan fault. The Yuexi river is running through the basin from south to north.
     This thesis tries to deep analysis the tectonic evolution of the Yuexi basin by quantitative research the tectonic landforms in the Yuexi basin, in order to further understand the activity of the Xianshui-Xiaojiang faults, the crust motion and tectonic deformation of the Tibetan Plateau, then we can provide proof to understand the deformation caused by the sinistral strike-slip motion of the Xianshuihe fault and how to allocated the deformation among several NS trending faults southward of Shimian.
     Based on the ideas for topic selection, the study contents and the used approach of this work are summarized as follows:
     (1)By aerial image interpretation and analysis of the topographic map and geological map, I compile the map of the geomorphologic division of regions.
     (2)Four balanced geological sections are drwan, i.e. two profiles in the Yuexi basin and two in the southern of the basin, then the crustal shortening amount and shortening rate in the basin and the Daliangshan zone are obtained.
     (3) I get the vertical displacement rate by making measurements on typical tectonic deformation, comparing the height of terrace (T2) on both side of the Yuexi river and combining the results of the luminescence dating.
     (4) By calculation the movement rate of the Yuexi fault and Puxiong fault, I analyze the important part of the study of active tectonics in Yuexi Basin in resolving the question about the missing of slip rate in the middle part of the Xianshuihe-Xiaojiang fault system.
     (5) The thesis makes a comprehensive analysis of evolution history of the Yuexi basin and its important implication in recognition of the kinematic features of active tectonic of the Tibet Plateau.
     The main conclusions of the work are as follows:
     (1) The development of landform in the basin show obviously asymmetric, which is mainly distributed in the eastern part of the basin. The Yuexi thrust strikes along the east boundary of the Yuexi basin. Field survey and aerial image interpretation, suggested that there are at least five geomorphic units in the east part of the basin: floodplain, alluvial fan and three terraces. In western basin, there are only three geomorphic units: floodplain and two terraces. TheYuexi basin is a fault-bounded basin, which is controlled by the Yuexi reverse fault which lies in the east boundary of the Yuexi basin.
     (2) Based on surveying of geomorphology ,combined with analyzing and contrasting of sample ages, the thrusting rate of the Yuexi reverse fault is estimated to be 1.30mm/a.
     (3) It is estimated that the average crust shortening in the Daliangshan zone is 10.9±1.6 km and the crust shortening rate is 17.8±2.2 % by using balanced cross-sections. The crustal shortening by folding occurred mainly in the Miocene and the Pliocene, lasting no more than 8.6 Ma. Then, the crustal shortening velocity of 1.3±0.2 mm/a can be estimated. Comparing with the left offset along the Daliangshan fault zone, it is recognized that the crustal shortening by folding plays an important part in transferring crust deformation southeastward along the Xianshuihe-Xiaojiang fault system.
     (4)The slip rate of Daliangshan fault zone in the Yuexi Basin is 3.1 mm/a, which is important to resolve the miss of slip rate in the middle part of the Xianshuihe-Xiaojiang fault system.
引文
常承法,郑锡澜.1973.中国西藏南部珠穆朗玛峰地区的构造特征[J].地质科学,1.
    常丕兴,王亨方.1992.渭河盆地地貌特征水系格局与新构造活动[J].西安地质学院学报,14(2):34-41.
    常隆庆.1938.四川叠溪地震调查记[J]地质论评3(4):1-4.
    陈桂华.2006.川滇块体北东边界活动构造带的构造转换与变形分解作用[D][学位论文].北京:中国地震局地质研究所.
    陈国达.1938.民同25年4月1日广东灵山地震记略.地质论评,3(4):427-447.
    陈杰、Scharer.k.m等.2005.利用河流阶地限定活动褶皱的类型和生长机制:运动学模型[J].地震地质,27(4):513-529.
    陈天长,崛内茂木,郑斯华.2001.利用P波初动和短周期P,S波振幅测定川滇地区地震震源机制解和应力场[J].地震学报,23(3):436-440.
    陈社发,邓起东,赵小麟等.1994.龙门山中段推覆构造带及相关构造的演化历史和变形机制[J].地震地质,16:413-421.
    成尔林.1981.四川及其邻区现代构造应力场和现代构造运动特征[J].地震学报,3(3):231-241.
    程万正,刁桂苓,吕戈培,等.2003.四川滇地块的震源力学机制、运动速率和活动方式[J].地震学报,25(3):71-87.
    崔效峰,谢富仁,张红艳.2006.川滇地区现代构造应力场分区及动力学意义[J].地震学报,28(5):451-461.
    邓起东.1996.中国活动构造研究[J].地质论评,42(4):295-299.
    邓起东.2002.中国活动构造研究的进展与展望[J].地震地质,48(2):168-177.
    邓起东,张培震,冉勇康等.2003.中国活动构造与地震活动[J].地学前缘,10:66-73.
    邓起东,陈立春,冉勇康.2004.活动构造定量研究与应用[J].地学前缘,11(4):383-391.
    邓起东.2005.活动构造研究及其应用[J].大地构造与成矿学,29(1):17-23.
    丁祥焕,王耀东,叶盛基等.1999.福建东南沿海活动断裂与地震[M].福州:福建科学技术出版社.
    高名修.1996.青藏高原东南缘现今地球动力学研究[J].地震地质,18(2):129-142
    国家地震局.1976.中国活动性断裂和强震震中分布图.北京:国家地震局出版.
    国家地震局地质研究所.1979.中华人民共和国地震构造图和简要说明.北京:地图出版社.
    国家地震局震害防御司.1995.中国历史强震目录(公元前23世纪-公元1911年).北京:地震出版社,514.
    虢顺民,计凤桔,向宏发等.2001.红河活动断裂带[M].北京:海洋出版社,2001.
    何宏林,池田安隆.2007.安宁河断裂带晚第四纪运动特征及模式的讨论[J].地震学报,20:571-583.
    何宏林,池田安隆,何玉林,东乡正美,陈杰,陈长云,田力正好,越後智雄,冈田真,2008.新生的大凉山断裂带—鲜水河—小江断裂系中段的裁弯取直.中国科学D辑(待刊)
    黄汲清.论地槽褶皱带的多旋迴发展.中国科学A辑:数学;1979 22(04):ISSN:1006-9232 CN:11-1786/N
    蒋复初,吴锡浩,肖华国等.1999.四川泸定昔格达组时代及其新构造意义.地质学报,73(1):1-6.
    阚荣举,张四昌,晏风桐,等.1977.我国西南地区现代构造应力场与现代构造活动特征的探讨[J].地球物理学报,20(2):96-108.
    阚荣举.1980.西南地区现代构造应力场与板内强震活动[J].地震研究,3:45-59.
    李国和,王思敬,尚彦军等.2000.川滇交界地区地壳结构及现代地壳活动模式[J].地质力学学报,6(2):82-91.
    李国和.2006.川滇交界地区地壳结构及现代地壳活动模式[J].地质力学学报,6:82-91.
    李玶,主编.1993.鲜水河-小江断裂带[M].北京:地震出版社
    李玶.1994.三峡、丹江口地区地震地质研究[M].北京:地震出版社.
    李玶,汪良谋.1975.云南川西地区地震地质基本特征的探讨[J].地质科学,4.
    李天祒,杜其方,游泽李等.1997.鲜水河活动断裂带及强震危险性评估.成都:成都地图出版社.
    卢华复,王胜利,Suppe J等.2002.天山中段南麓第四纪褶皱作用[J].科学通报,47(21):1675-1679.
    潘桂堂,王培生,徐耀荣等.1990.青藏高原新生代构造演化[M].北京:地质出版社.
    潘秋叶等.1977.西南地区现代构造应力场与地震活动性的试验研究[J].地质科学,3.
    钱宁,张仁,周志德.1987.河床演变学[M].北京:科学出版社.
    任金卫,李玶.1989.则木河断裂北段地震地貌及古地震研究[J].地震地质,1989,11(1):27-34.
    沈军,汪一鹏,任金卫,曹忠权.2003.青藏高原东南部第四纪右旋剪切运动[J].新疆地质,第21卷,第1期.
    申旭辉,陈正位,许任德,等.2000.凉山活动构造带晚新生代变形特征与位移规模[J].地震地质,22(3):232-238.
    史兴民,杨景春.2003.河流地貌对活动构造的响应[J].水土保持研究,10(3):48-51&108.
    陕西省地震局.1996.秦岭北缘活动断裂带[M].北京:地震出版社.
    宋方敏,汪一鹏,俞维贤等.1998.小江活动断裂带[M].北京:地震出版社.
    宋方敏,李如成,徐锡伟.2002.四川大凉山断裂带古地震研究初步结果[J].地震地质,24(1):27-34.
    四川省地震资料汇编编辑组.1980.四川省地震资料汇编[M].成都:四川人民出版社.
    四川省地质局.1965.中华人民共和国区域地质调查报告石棉幅(H-48-ⅩⅩⅤ;1:200000).
    四川省地质局.1967.中华人民共和国区域地质调查报告冕宁幅(H-48-ⅩⅩⅪ;1:200000).
    四川省地质局.1974.中华人民共和国区域地质调查报告西昌幅(G-48-Ⅰ;1:200000).
    唐荣昌,黄祖智,文德华等.1989.试论安宁河断裂带新活动的分段性与地震活动[J].地震研究,12(4):337-347.
    王汝植,徐星琪,赵裕亭,等.1988.西昌-滇中地区沉积盖层及其地史演化[M].重庆:重庆出版社
    王绳祖,张流.2002.塑性流动网络控制T JII滇菱形块体及邻区构造应力场与地震构造[J].地震地质,24(3):324-334.
    王运生,李云岗.1996.西昌盆地的形成和演化[J].成都理工学院学报,23(1):85-90.
    闻学泽,白兰香.1985.鲜水河断裂带的形变组合及运动特征研究[J].中国地震,1(4):53-59.
    翁文灏.1922.民国九年十二月六日甘肃的地震[J].科学,7(2):105-114.
    谢富仁,祝景忠,舒赛兵.1995.鲜水河断裂带区域第四纪构造应力场分期研究[J].地震地质,17(1):35-43.
    谢富仁,苏刚,崔效锋,等.2001.滇西南地区现代构造应力场分析[J].地震学报,23(1):17-23.
    谢富仁,崔效锋,赵建涛,等.2004.中国大陆及邻区现代构造应力场分区[J].地球物理学报,47(4):654-662.
    徐锡伟,闻学泽,郑荣章,马文涛,宋方敏,于贵华.2003.川滇地区活动块体最新构造变动样式及其动力来源.中国科学(D辑),33(增刊):151-162.
    许忠淮,素云,雨蕊.1987.由多个小震推断的青甘和川滇地区地壳应力场的方向特征[J].地球物理学报,30(5):476-486.
    杨景春,李有利.2005.地貌学原理[M].北京:北京大学出版社.
    尹克坚.1995.广西地区的水系展布与活动断裂及新构造应力场的关系[J].华南地震,15(1):62-67.
    袁道阳,张培震.2001.青藏高原新生代构造和第四纪研究的进展及问题讨论[J].西北地震学报,23(2):199-205.
    张国民,张培震.2004.大陆强震机理与预测研究综述[J].中国基础科学,3.
    张国民,马宏生,王辉等.2004.中国大陆活动地块与强震活动关系[J].中国科学(D辑)地球科学,34(7):591-599.
    张国民,马宏生,等.2005.中国大陆活动地块边界带与强震活动[J].国际地震动态,5.
    张培震、邓起东等.1994.天山北麓玛纳斯活动逆断裂-褶皱带的变形特征和构造演化[M].活动断裂研究,3.
    张培震,毛凤英.1996.活动断裂定量研究与中长期强地震危险性概率评价[A].见:《活动断裂研究》编委会,国家地震局地质研究所编.《活动断裂研究》(5)[c].北京:地震出版社,12-31.
    张培震,邓起东,张国民等.2003.中国大陆的强震活动与活动地块[J].中国科学(D辑),33(增刊),12-20.
    张培震,甘卫军,沈正康,等.2005.中国大陆现今构造作用的地块运动和连续变形藕合模型[J].地质学报,79(6):748-756.
    张树铭,邓志明,纪尚文.1985.应用遥感方法对攀西地区某些地质构造特征的研究[J].中国攀西裂谷文集 [张云湘,北京:地质出版社],No.1:57-67.
    张岳桥,杨农,孟晖,等.2004.叫川攀西地区晚新生代构造变形与隆升过程的初步研究[J].中国地质,31(1):23-33.
    郑荣章.2005.阿尔金构造系晚更新世中晚期以来的构造降升及其变形机制[D][学位论文].北京:中国地震局地质研究所.
    中国地震局灾害防御司.1999.中国近代地震目录.北京:中国科学技术出版社.
    中国科学院地学部.1957.中国科学院第一次新构造座淡告发言记录.北京,科学出版社.
    周荣军,何玉林,黄祖智等.2001.鲜水河断裂带乾宁-康定段的滑动速率与强震复发间隔[J].地震学报,23(3),250-261.
    周荣军,黎小刚,黄祖智,等.2003.四川大凉山断裂带的晚第四纪平均滑动速率[J].地震研究,26:191-196.
    朱爱澜.2006.川滇地区主干活动断裂间震期滑动习性与运动状态的地震学研究[D][学位论文].北京:中国地震局地质研究所.
    Avouac J P,Tapponnier P.1993.Kinematic model of active deformation in central Asia[J].Geophys Res L,20:895-898.
    C.R.Allen,Luo ZHouLi,Qian Hong,et a1.1991.Field study of a highly active fault zone:The Xianshuihe fault of southwestern[J]China.Geological Society of America Bulletin,v103,1178-1199.
    Clark M K and L H Royden.2000.Topographic ooze:building the eastern margin of Tibet by lower crustal flow [J].Geology,28:703-706.
    Clark.M.K,Schoenbohm.L.M,Royden.L.H,et al.2004.Surface uplift,tectonics,and erosion of eastern Tibet from large-scale drainage patterns[J].Tectonics,23:1-20.
    England P,Houseman G A.1986.Finite strain calculations of continental deformation,2,Comparison with the India-Asia collision.J Geophys Res,91:3664-3667.
    England.P.C,Housemen.G.A 1988.The mechanics of Tibetan Plateau[J].Phil Trans R soc LoudA,326:301-320.
    England.P.C,Molnar.P 1990.Right lateral shear and rotation as the explanation for strike-slip in eastern Tibet[J].Nature,344:140-142.
    England.P.C,Molnar.P.1997.The field of crustal velocity in asia calculated from Quatertmry rates of slip of faults[J].Geophys J Int,130:551-582.
    Gan W J,Zhang P Z,Freymull J T,et al.2007.Present-day crustal motion within the Tibetan inferred from GPS measurements.J Geophys Res.112,B08416.
    Gilbert,G.K.A theory of the earthquakes of the Great Basin,with a practical application,Salt Lake City Tribune, Sept. 30,1883, reprinted AM. J. Sci., 3rd sen, 1883, 27,49-53
    HE Hong-lin, RAN Hong-liu and Yasutaka Ikeda.2006. Uniform strike-slip rate along the Xianshuihe-Xiaojiang fault system abd its implication for active tectonics in southeastern Tibet[J]. 80: (3), 376-386.
    He Hong-lin, Yasutakyr IJCEDA. 2007. Fault on the Anninghe fault zone, Southwest China in Late Quaternary and its Movenent Model[J]. ATCA SEISMOLOGICA SINICA, 20(5): 571-583.
    Holt W E, L M , Haines A J.1995. Earthquake straun rates and instantaneous relative motions within central and eastern Asia[J]. J G R, 122: 569-593.
    Jenning, C W. Fault map of California with locations of volcanoes, thermal springs andthermal wells (1 :75000). California geologic data map series, California Division of Mines and Geology, 1975
    Lawson A C, et al. The California earthquake of April 18,1906-Report of the state earthquake investigation commission, 1. parts 1,2, Carnegie Institution of Washington, Publication, 1908, 87.
    Pletzer G, Tapponnier P. 1988. Formation and evolution of strike-slip faults, rifts, and basins during the India-Asia collision: an experimental approach[J]. J G R, 93(B12): 15085-15117.
    
    Price, R. A. 1981.The cordilleran foreland thrust and fold belt in the southern Canadian Rocky Mountains; in McClay, K. R. and Price,N.J., cds., Thrust and Nappe Tectonics, Geological Society of London Special Publication no.9, p. 427-448.
    RAN Yong-kang, DENG Qi-dong.1999. History, status and trend about the reearch of paleoseismology[J].Chinese Science Bulletin, 44(10) :880-889.
    Reid H F. The mechanism of the earthquake. In the California earthquake of April 18. 1906,Report of the State Earthquake Investigation Commission. 2. Washington, D. C: Carnegie Institution. 1910,1-192
    Roger F, Calassou S, Lancelot J. 1995. Miocene emplacement and deformation of Kongga Shan granite (Xianshuihe fault zone, west Sichuan, China)[J]. Earth and Planetary Science Letters, 130: 201-216.
    Royden LH, Burchfiel B C, King R W, et al. 1997. Surface deformation and lower crustal flow in eastern Tibet. Science, 276: 788-790
    Schoenbohm L M, Burchfiel B C, Chen Z L. 2006, Propagation of surface uplift, lower crustal flow, and Cenozoic tectonics of the southeast margin of the Tibetan Plateau. Geology, 34: 813-816.
    Schwartz, D P, Coppersmith, K J. Fault behavior and characteristic earthquake: example from the Wasatch and San Andreas fault zones. J. Geophy. Res., 1984, 89 (B7): 5681-5698
    
    Sharp,R V,J J Lienkaemper,M G Rymer et al. Surface faulting in the central Imperial Calley, California, Earthquake of October 15,1979, U.S[J]. Geoi. Surv. Prof. Pap, 1254,119-144.
    SHEN Zheng-kang, LU Jiang-ning,WANG Min, et al. 2005.Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau[J]. Journal of Geophysical Reasearch, Vol: 110, B11409, doi: 10.1029/2004JB003421.
    Sieh K E. Pre-historic large earthquake produced by slip on the San Andreas fault at Pallett Creek, California. J. Geophy. Res., 1978,83: 3907-3939
    Stein R S, King G C P. Seismic potential revealed by surface folding, 1983, Coalinga, California, Earthquake. Science, 1984, 224: 869-872
    Tapponnier P, Molnar P. 1976. Slip-line field theory and large-scale continental tectonics[J]. Nature, 264(5584): 319-324.
    Tapponnier P, Peltzer G, Le Dain A Y, et al. 1982. Propagating extrusion tectonics in Asia; new insights from simple experiments with plasticine[J]. Geology, 10: 611-616.
    Tapponnier P, Xu Z, Roger F, et al. 2001. Oblique stepwise rise and growth of the Tibet Plateau [J]. Science, 294: 1671-1677.
    WANG Erchie, Burchfiel. B. C, Royden.L.H., et al. 1998. Late Cenozoic Xianshuihe-Xiaojiang, Red River, and Dali fault systems of southwest Sichuan and central Yunnan, China. Boulder, Colorado, Geological Society of America, special paper.
    WANG Qi, Zhang Peizhen, Freymueller J, et al. 2001. Present-day crustal deformation in China constrained by Global Positioning System (GPS)measurements[J] .Science, 294: 574-577.
    
    Wood H O. The earthquake problem in the western United States. Seismol. Soc Amer. Bull. ,1916, 6: 181-217
    Woodward NB, Boyer SE, Soppe J. Balanced Geological Cross-Sections [M]. Wuhan: China. University of Geosciences Press, 1991.
    Working Group on California Earthquake Probabilities. Probabilities of large earthquakes, occurring in California on the San Andreas fault. U. S. Geological Survey Open-File Report, 1988, 88-398
    XU Gan-qing, Peter J. 2000. Tectonics and denudation adjacent to the Xianshuihe Fault eastern Tibetan Plateau: Constraints from fission track thermochronology[J]. Journal of Geophysical Research, 105 (B8): 19231-19251
    
    ZHANG Pei-zhen, Shen Zheng-kang, W ang M in, et al. 2004. Continuous deformation of the Tibetan Plateau from GPS data. Geology, 32(9): 809- 812.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700