用户名: 密码: 验证码:
几种退耕模式细根(草根)分解及其对土壤的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细根分解是森林生态系统养分和能量循环的重要环节,是贯穿淋溶粉碎等物理作用以及土壤生物参与的生物化学作用在一起的复杂过程。尽管细根埋藏于地下,给细根分解的研究带来挑战,但仍然引起了人们的广泛关注。本文选择了在四川盆地西缘洪雅县内具有显著生态、经济和社会效益的光皮桦(Betula luminifera)-扁穗牛鞭草(Hemarthria compressa)复合模式(HN)、光皮桦人工林(H)、扁穗牛鞭草牧草地(NC)、柳杉(Cryptameria fortunei)人工林林(LS)为研究对象,采用原状土芯法系统研究了这四种退耕模式的细根分解速率、影响分解的主要化学成分、养分释放及其对土壤养分的影响、与细根分解相关的主要土壤微生物功能群、土壤酶的动态,并通过室内升温模拟与野外试验相结合,研究了细根分解对土壤活性有机碳的影响以及土壤活性有机碳对升温的响应。结果表明:
     (1)在1a的研究期间内,几种退耕模式细根(草根)分解速率符合Olson单指数分解模型。分解1a后HN、H、NC、LS模式细根(草根)干重损失率分别为65.49%、60.55%、73.32%、57.51%;NC比其他三种模式细根分解都快,其次是HN、H,LS分解最慢。年分解常数(k)分别为1.06、0.93、1.32、0.86/a。四种退耕模式细根分解分为快-慢两个阶段,前90d分解较快,以后表现出缓慢趋势。在整个研究期间,各模式细根分解速率与木质素绝对含量相关性不显著(P>0.05),但分解90d以后,H、LS模式细根分解速率与木质素绝对含量呈显著负相关(P<0.05),HN模式细根分解速率与木质素含量呈较弱的负相关关系(P=0.087)。在分解较慢的阶段,木质素绝对含量影响退耕模式林木细根分解最大的指标,但扁穗牛鞭草草地除外。整个研究期间,各模式细根分解过程中的C/N与细根分解速率呈极显著负相关(P<0.01),是影响退耕模式细根分解的最大质量指标。
     (2)四种模式下细根(草根)的C、K、Mg表现为净释放,C损失符合单指数模型,其决定系数R~2>0.95(P<0.01)。HN、NC模式的N、Ca表现为净释放,H、LS模式有富集现象,P在四种模式中都有富集。养分释放量大小为C>K>P>N>Mg>Ca,但是H与LS模式的C释放量却小于K的释放量,HN模式细根的P释放与N释放量相差不大,H模式细根的P释放量要小于N释放量。分解1a后,C释放量大小顺序为:NC(80.31%)>HN(78.71%)>H(69.5%)>LS(60.53%)。HN模式的N、P释放量都大于其他模式。N初始含量最高的HN具有最高的N释放率,N初始含量最低的LS具最低的N释放速率,其释放量大小顺序为HN(70.12%)>H(56.49%)>NC(46.67%)>LS(21.86%);P释放量大小为HN(69.56%)>NC(67.42)>H(52.89%)>LS(45.67%);K释放量大小为NC(93.52%)>HN(89.20%)>H(85.97%)>LS(82.64%)。
     (3)分解1后,HN、H、NC、LS模式土壤有机质含量是分解试验开始前土壤有机质含量的1.44、1.15、1.25、1.14倍;HN模式下的土壤有机质含量分别是H、NC、LS模式下的1.34、1.29、1.48倍。土壤速效K与细根(草根)K释放量呈显著正相关关系;HN模式的细根N、P释放量与土壤全N、全P含量显著相关,LS模式下的细根P释放量也与土壤全P显著相关(P<0.05)。各退耕模式细根K的释放量对土壤速效K的贡献较大,其贡献率达到70%以上,另外HN模式下细根N、P释放量对土壤全N、全P的贡献率也分别为68.45%和77.90%,LS模式下细根P释放量对土壤全P的贡献率为73.18%。与其他模式相比,光皮桦-扁穗牛鞭草复合模式细根分解过程中N、P释放量最高,且对土壤全N和全P的贡献较大,这对于维持林地土壤肥力是有益的。
     (4)在研究期间,HN模式的好气固氮细菌、氨化细菌、硝化细菌、纤维素分解菌数量都显著大于其他三种模式(P<0.01),表明光皮桦-扁穗牛鞭草复合模式比其他模式更能促进了细根、草根含N、C化合物的分解和碳素循环,有利于提高土壤氮素水平以及土壤肥力促进林木生长;四种模式固氮细菌与氨化细菌数量呈显著正相关关系,与C/N呈显著负相关关系,氨化细菌数量与硝化细菌数量呈显著正相关,而这种养分途径却对于林草复合生态系统以及人工针叶林生态系统的养分动态具有重大意义,特别是林草复合模式实现自肥能力一个不可缺少的生态过程。HN、LS模式固氮菌数量与细根、草根全N含量呈显著正相关(P<0.05)表明生物自生固氮是细根分解期间的重要过程。
     (5)HN模式下的土壤脲酶、蔗糖酶、酸性磷酸酶都在整个研究期间其活性较大,其中脲酶、蔗糖酶活性的增量比其他模式多,其次是NC模式,NC模式的酸性磷酸酶活性增加得最多,为初始值的1.52倍;整个研究期间LS模式下土壤脲酶、酸性磷酸酶活性最小,显著低于其他模式(P<0.05)。以上结果表明了HN模式下与土壤肥力有关的酶活性比其他模式大,从土壤酶的角度也说明了光皮桦-扁穗牛鞭草复合模式比其他人工林供肥、保肥能力强,有利于地力的维持。
     HN模式下的土壤脲酶、蔗糖酶活性与细根分解速率呈显著正相关,NC模式下的土壤脲酶、土壤酸性磷酸酶活性与草根分解速率呈显著正相关,LS模式下的土壤脲酶、土壤多酚氧化酶活性与细根分解速率呈正相关(P<0.05);土壤脲酶活性与细根C/N、纤维素绝对含量呈显著负相关关系(P<0.05),但NC模式下的土壤脲酶活性与草根C/N相关性不显著,H模式下的土壤脲酶与纤维素绝对含量相关性也不显著;四种模式土壤脲酶活性与固氮细菌或与真菌数量呈显著相关关系,HN模式下的土壤蔗糖酶活性与细菌和纤维素分解菌数量正相关,另外H与NC模式下的土壤酸性磷酸酶还分别与细菌和纤维素分解菌数量正相关(P<0.05)。由分析得出,不同模式下受细根(草根)分解速率及其化学成分影响的土壤酶种类不同,但光皮桦-扁穗牛鞭草复合模式、柳杉人工林下的土壤脲酶都受到细根分解速率、细根C/N以及细根纤维素绝对含量的影响,并且还受到固氮细菌或与真菌数量的影响。
     (6)在野外分解试验中,HN模式下的土壤微生物量碳(MBC)、水溶性有机碳(WSOC)、易氧化碳(ROC)、总有机碳(TOC)都大于其他三种模式,室内分解试验表明添加光皮桦细根和扁穗牛鞭草草根混合根的处理大于其他添加单一细根的处理,两者表现出一致的结果。野外试验表明,HN、H、NC、LS模式下的土壤微生物量碳对土壤总有机碳的贡献分别是1.2-3.3%、0.7-1.5%、0.8-2.2%、0.5-0.8%;HN模式的ROC/TOC大于H、NC、LS模式,表明与其他人工林相比,HN土壤有机碳活性大、易转化;各模式土壤易氧化碳含量与土壤总有机碳呈极显著相关关系(P<0.05),说明土壤总有机碳的高低决定了易氧化碳的丰缺。
     室内模拟分解试验表明,添加细根的种类、培养温度和培养时间均对土壤MBC、WSOC、ROC、TOC的含量产生影响。120d后添加细根的处理其土壤MBC、WSOC、ROC、TOC含量都显著大于对照(P<0.05);温度对MBC、WSOC含量的影响强度依次为:30℃>20℃>10℃,对ROC和TOC含量的影响强度为:20℃>30℃>10℃(P<0.05)。添加外源细根会增加土壤MBC、WSOC、ROC、TOC含量:30℃的温度对MBC与WSOC含量的影响强度最大,而20℃对ROC和TOC含量的影响强度最大,但在考虑到野外试验结果时,应当根据细根化学成分变化的过程确定室内模拟培养时间,本研究建议室内模拟培养的时间最好延长至180d。
     综合分析表明,与其他人工林相比,光皮桦-扁穗牛鞭草复合模式中由于扁穗牛鞭草的植入改善了林下土壤的微环境,促进了林木细根分解,增加土壤有机质以及养分的积累、增加土壤微生物数量和土壤酶活性以及提高了土壤活性有机碳的含量,有利于该模式土壤养分循环以及土壤肥力的维持。
Fine root decomposition is one of the major pathways of nutrient and energy cycling in forest ecosystem,and also,a complex process including physical(leaching and fragmentation) and biochemical processes.Estimating rates of root decay is challenging because roots are hidden from view.Despite this challenge,there is a large and growing database on roots decomposition from both tropical and temperate forests.However,much less attention was paid to subtropical forests,particularly the plantations founded in the process of converting farmland to forest(grass).This study was carried out in the key scientific and experimental demonstration station of the sloping land conversion program for converting cropland to forest(grassland) of Sichuan Agricultural University,located at Liujiang town,Hongya county in southwest edge of the Sichuan basin in China.Fine root decomposition rate and its influencing factor,nutrient release and the impact on soil nutrient,major microbial functional groups(aerobic azotobacter,ammonifiers,nitrifiers, cellulolytic bacteria) and soil enzymes in relation to fine roots and grass roots decomposition were analysed in birch(Betula luminifera)-grass(Hemarthria compressa) compound model(HN),which is a successful forest and grass compound pattern in the process of converting farmland to forest(grass) is beneficial to the development of environment and economy,birch(Betula luminifera) plantation(H),grassland(Hemarthria compressa)(NC),cedar(Cryptomeriafortunei) plantation(LS) using intact core method for one year.Moreover,soil active organic carbon dynamic was also investigated using intact core method and a 120-day laboratory incubation in soil microcosm for the four plantations. After studies,the following results have been obtained.
     (1) The decomposition rate pattern showed a good fit for a single-exponential model and the decomposition constant(k) for the four plantations were 1.06、0.93、1.32、0.86 year~(-1) respectively,with an annual loss of 65.49%、60.55%、73.32%、57.51%during one year study.Decomposition pattern of fine root(grass root) was characterized by two distinct phases of weight loss in all four plantations.The initial rapid rate decay up to 90 d, and then was characterized by slower mass loss.After 90 d lignin content of fine root in H and LS was negatively correlated with fine root decomposition rate(P<0.05).As for HN, its lignin content of mixed roots showed a poorly correlation with fine roots decomposition rate(P=0.087).Lignin content controlled the decay rate at the slower phase in birch-grass compound model,birch plantation and cedar plantation except for grassland.C/N of roots was negative significantly correlated with fine roots decomposition rate for all plantations (P<0.01),and was the main factor of controlling decay rate during the one year experiment.
     (2) Net C,K Mg release from decomposing roots occurred in the course of experiment in all four plantations.The dynamics of C loss from decomposing roots in four plantations fitted to a single exponential model with R~2>0.95(P<0.01).Net N and Ca released in HN and NC,but immobilization was observed in H and LS.P was immobilized in the all plantations and showed accumulation during the course of experiment.A large amount of C and nutrients released from decomposing fine root(grass root) in four plantations,and showed this order:C>K>P=N>Mg>Ca(HN),K>C>P>N>Mg>Ca(H and LS),C>K>P>N>Mg>Ca(NC).After one year,the order of C release was NC(80.31%)>HN(78.71%)>H(69.5%)>LS(60.53%).N and P release in HN were higher than other plantations and the ranked order were HN(70.12%)>H(56.49%)>NC(46.67%)>LS(21.86%),HN(69.56%)>NC(67.42)>H(52.89%)>LS(45.67%), respectively.All the decomposing roots released most their initial K content during the period of decomposition and the order was NC(93.52%)>HN(89.20%)>H(85.97%)>LS(82.64%).
     (3) One year later soil organic matter content in FIN,H,NC and LS were 1.44,1.15, 1.25,1.14 times as much as in the initial content for the four plantation.Moreover soil organic matter content in HN was 1.34,1.29,1.48 times than that of H,NC and LS.Soil available K content was positive correlated with K release from decomposing roots(P<0.05).K release from decomposing root had the largest contributions to soil available K and accounted for more than 70%of the variance during the period of decomposition.N and P release from decomposing roots were positive correlated with soil total N and total P content in HN,and accounted for 68.45%and 77.90%of the variance,respectively. Positive correlation was found in LS for P release and soil total P content(P<0.05).P release from decomposing root in LS accounted for 73.18%of the variance for soil total P content.It was concluded that the greater amount of N and P release from decomposing root and the larger contribution to soil total N and P in HN plantation indicated that the faster turnover of nutrients,which in turn would be beneficial for maintenance of soil fertility.
     (4) Aerobic azotobacter,ammonifiers,nitrifiers and cellulolytic bacteria numbers in HN model showed the largest in the four plantations(P<0.01).Aerobic azotobacter in four models showed significant positive correlation with ammonifiers and negative correlation with C/N ratio,and ammonifiers also had positive correlation with nitrifiers.Aerobic azotobacter in HN and LS models showed positive correlation with relative nitrogen content of fine roots and grass roots.Our results showed that fine roots and grass roots decomposition were strongly influenced by synergic interaction among microbial functional groups.Moreover also suggested that biological nitrogen fixation may have an important role in self-sustaining capability for forest-grass composite ecosystem.
     (5) Soil urease,sucrase and acid phosphatase activities in HN were the highest in four plantations.Soil urease and acid phosphatase activities in LS were the lowest in the four plantations(P<0.05).In view of soil enzyme,birch-grass plantation ecosystem with high soil enzyme activities should be more nutrient supply,thus,the improvement of soil fertility would be expected for the composite ecosystem.
     Soil urease activity in HN,NC and LS was positive correlation to root decomposition rates,and also sucrase activity in HN,soil aicd phosphatase activity in NC,soil polyphenoloxidase in LS was positive correlation to root decomposition rates(P<0.05). Soil urease activity was negative correlation to C/N and absolute content of cellulose in decomposing roots.However,the correlation between soil urease and C/N in NC and the correlation between absolute content of cellulose and soil urease in LS were not significant. The correlation between soil urease activity and the number of aerobic azotobacter and soil fungi was significant.Moreover,soil surcease activity was significant positive correlation with cellulolytic bacteria numbers in HN,and also soil icd phosphatase activity in H and NC was significant positive correlation with bacteria and ceilulolytic bacteria numbers(P<0.05).It concluded that soil enzyme activity was strongly affected by root mass loss, chemistry component in root and soil microorganism.
     (6) In the field experiment,soil microbial biomass carbon(MBC),water soluble organic carbon(WSOC),readily oxidizable carbon(ROC),total organic matter(TOC) content in HN were higher than other plantations.It was consistent with the result from laboratory microcosm experiment,in which these indices in treatment with the mixture of birch fine root and grass(Hemarthria compressa) root were higher than the other treatments with single birch fine root,single grass root,and single cedar fine root.MBC in HN contributed more C to soil organic C(1.2-3.3%) than H,NC and LS plantation(0.7-1.5%,0.8-2.2%, 0.5-0.8%,respectively).ROC/TOC in HN was also the highest in the four plantations.In addition,ROC content was positive correlated with TOC content in four plantations(P<0.05).It indicated soil organic matter in HN was much easier transformed compared to other three plantations,and the content of ROC depended on the content of TOC.
     In the laboratory microcosm experiment,fine root source,incubation time and incubation temperature all influenced MBC,WSOC,ROC,TOC.After 120 d,soil MBC、WSOC、ROC、TOC content in the treatment with fine roots were higher than in the control treatment with no root added(P<0.05).The effect of incubation temperature on MBC and WSOC in four treatments showed this order:30℃>20℃>10℃,while the order of ROC and TOC was 20℃>30℃>10℃(P<0.05).Considering the results from the field experiment and variation of chemistry component,the incubation time in the microcosm experiment should be delayed.In our study the appropriate incubation time was 180 d.
     The results mentioned above implied that soil micro-environment under the birch (Betula luminifera)-grass(Hemarthria compressa) model was changed as for introduction of grass,in which fine root decomposition rate could be promoted.Furthermore soil organic matter and soil nutrients,soil microorganism and soil enzyme activity,soil active organic matter should be accumulated and increased,thus,improvement of soil fertility would be expected for forest-grass compound model.
引文
Aber J D,Melillo J M,McClaugherty C A.Predicting long term patterns of mass loss,nitrogen dynamics,and soil organic matter formation from initial fine litter chemistry in temperate forest ecosystems[J].Can J Bot,1990,68:2201-2208
    Aerts R.Climate,leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems:a triangular relationship[J].Oikos,1997,79:439-449
    Allison S D,Vitousek P M.Extracellular enzyme activities and carbon chemistry as drivers of tropical plant litter decomposition[J].Biotropica,2004,36(3):285-296
    Anderson J M.Interactions between invertebrates and microorganisms:noise or necessity for soil processes[A]? In:Anderson J M.ed.Ecology of Microbial Communities.England,Carabddge:Cambridge University Press,1987,125-145
    Arunachalam A,Arunachalam K.Influence of gap size and soil properties on microbial biomass in a subtropical humid forest of north-east India[J].Plant Soil,2000,223:185-193
    Arunachalam A,Pandey H N.Ecosystem restoration of jhum fallows in northeast India:microbial C and N along altitudinal and successional gradients[J].Restor.Ecol,2003,11:168-173
    Arunachalam A,Pandey H N,Tripathi R S et al.Fine root decomposition and nutrient mineralization patterns in asubtropical humid forest following tree cutting[J].Forest Ecology and Management,1996,86:141-151
    Barbhuiya A R,Arunachalam A,Pandey H N et al.Dynamics of soil microbial biomass C,N and P in disturbed and undisturbed stands of a tropical wet-evergreen forest[J].Soil Biology &Biochemistry,2004,40:113-121
    Bardgett R D,Wardle D A,Yeates G W.Linking above-ground and below-ground interactions:how plant responses to foliar herbivory influence soil organisms[J].Soil Biology and Biochemistry,1998,30:1867-1868
    Barry R,Taylor D P,Willian F J Parsons.Nitrogen and lignin content as predictors of litter decay rates:A microcosm test[J].Ecology,1989,70(1):97-104
    Bauhus J,Pare D C,Cote L.Effects of tree species stand age and soil type on soil microbial biomass and its activity in a southern boreal forest[J].Soil Biology & Biochemistry,1998,30(8):1077-1089
    Berg B.Decomposition of root litter and some factors regulating the process:long-term root decomposition in a Scots pine forest[J].Soil Biology & Biochemistry,1984,16:609-617
    Berg,B.,Litter decomposition and organic matter turnover in northern forest soils[J].Forest Ecology and Management,2000,133:13-22
    Berg B,Johansson M B,Meentemeyer V et al.Decomposition of tree root litter in a climatic transect of coniferous forests in northern Europe:a synthesis[J].Scand J For Res,1998,13:402-212
    Biedenbender S H,McClaran M P,Quade J et al.Landscape patterns of vegetation change indicated by soil carbon isotope composition[J].Geoderma,2004,119:69-83
    Biederbeck V O,Janzen H H,Campbell C A et al.Labile soil organic matter as influenced by cropping practices in an add environment[J].Soil Biology & Biochemistry,1994,26:1647-1656
    Bingemann C W,Varner J E,Martin W P.The effect of the addition of organic materials on the decomposition of an organic soil[J].Soil Society of America Proceedings,1953,17:34-38
    Biondini M E,Patton B D,Nyren P E.Grazing intensity and ecosystem processes in a northem mixed-grass prairie,USA[J].Ecological Applications,1998,8(2):469-479
    Blair G J,Lefroy R D B,Lisle L.Soil carbon fractions based on their degree of oxidation and the development of carbon management index for agricultural systems[J].Aust.J.Agric.Res.,1995,46:1459-1466
    Bloomfield J,Vogt K A,Vogt D J.Decay rate and substrate quality of fine root and foliage of two tropical tree species in the Luquillo experimental forest,Puerto Rico[J].Plant and Soil,1993,150:233-245
    Bohlen P J,Groffman P M,Driscoll C T,Fahey T J,Siccama T G.Plant-soil-microbial interactions in a northern hardwood forest[J].Ecology,2001,82:965-978
    Bosire J O,Dahdouh-Guebas F D,Kalro J G et al.Litter degradation and CN dynamics in reforested mangrove plantation at Gazi Bay,Kenya[J].Biological Conservation,2004,126:287-295
    Burke IC,Lauenroth WK&Miichunas DG.Biogeoehemistry of managed grasslands in central North America[A].IN:Paul EA,Paustian K,Elliott ET&Cole CV,eds.Soil Organic Matter in Temperate Agroecosystems:Long-Term Experiments in North America.Boca Raton:CRC Press,1997,85-102
    Burns R G,Dick R P.Enzymes in the Environment:Activity Ecology and Applications[M].CRC Press:Marcel Dekker,Inc.-Overdrive,2002
    Burton A J,Pregitzer K S,Hendrick R L.Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests[J].Oecologia,2000,125:389-399
    Cairns M A,Brown S,Helmer E H et al.Root biomass allocation in the world's upland forest[J].Oecologia,1997,111:1-11
    Castellano S D,Dick R P.Influence of cropping and sulfur fertilization on transformation of sulfur in soils[J].Soil Science Society of American Journal,1991,55:283-285
    Chamier A C,Dixoon P A.Pectinases in leaf degradation by aquatic hyphomycetes:The enzymes and leaf maceration[J].Journal of Genetic Microbiology,1982,128:2469-2483
    Chang N K,Yoo J H.Annual fluctuations and vertical distributions of eellulase,xylanase activity and soil microorganisms in a humus horizon of a Pinus rigida stand[J].Korean Journal of Ecology,1986,9:231-141
    Chapin Ⅲ FS,Matson PM,Mooney HA.Principles of terrestrial ecosystem ecology[M].New York:Spring Verlag,2002,pp151-175
    Chapman J A,King J,Pregitzer K S et al.Effects of elevated concentrations of atmospheric CO_2 and tropospheric O_3 on decomposition of fine roots[J].Tree Physiology,2005,25:1501-1510
    Chen H.Root decomposition in three coniferous forests:effects of substrate quality,temperature,and moisture[D].Ph.D.dissertation,Oregon State University,Corvallis,Oreg,Mfilinge,P.L.,Atta,N,1999
    Chen H,Harmon M E,Griffiths R P.Decomposition and nitrogen release from decomposing woody roots in coniferous forests of the Pacific Northwest[J].Can.J.For.Res.,2001,31:246-260
    Chen H,Harmon M E,Sexton J et al.Fine-root decomposition and N dynamics in coniferous forests of the Pacific Northwest,U.S.A[J].Can.J.For.Res,2002,32(2):320-331
    Chen H,Rygiewicz P,Jhoson M et al.Chemistry and long-term decomposition of roots from Douglas-Fir grown at elevated atmospheric CO_2 and warming conditions[R].The fourth USDA greenhouse gas conference,Baltimore,MD,2007
    Cheng W.Rhizosphere feedbacks in elevated CO_2[J].Tree Physiology,1999,19:313-320
    Christ M J,David M B.Dynamics of extractable organic carbon in Spodosol forest floors[J].Soil Biology & Biochemistry,1996,28:1171-1179
    Clein J S,Schimei J P.Reduction in microbial activity in birch litter due to drying and rewetting events [J].Soil Biology and Biochemistry,1994,26:403-406
    Cotrufo M F,Ineson P.Effects of enhanced atmospheric CO_2 and nutrient supply on the quality and subsequent decomposition of fine roots of Bebula pendula Roth.and Picea sitchensis(Bong.) Carr [J].Plant andSoil,1995,170:267-277
    Cotrufo M F,Ineson P.Elevated CO_2 reduces field decomposition rates of Betula pendula(Roth.)leaf litter[J].Oecologia,1996,106:525-530
    Couteaux M,Bottner P,Berg B.Litter decomposition,climate and litter quality[J].Tree,1995,10:63-66
    Devi N B,Yadava P S.Seasonal dynamics in soil microbial biomass C,N and Pin a mixed-oak forest ecosystem of Manipur,North-east India[J].Applied Soil Ecology,2006,31:220-227
    Diamantidis G,Eosse A,Potier P et al.Purification and characterization of the first bacterial laccase in the rhizospherie bacterium Azospirillum lipoferum[J].Soil Biology & Biochemistry,2000,32:919-927
    Dick R P,Deng S.Multivariate factor analysis of sulfur oxidation and rhodanese activity in soils[J].Biogeochemistry,1991,12:87-101
    Dick W A,Juma N G,Tabatabai M A.Effects of soils on aied phosphtase and inorganic pyrophosphatase of corn roots[J].Soil Science,1983,15:676-685
    Dilly O,Munch J C.Microbial biomass content,basal respiration and enzyme activities during the course of decomposition of leaf litter in a black alder(Alnus gluninosa(L.)Gaertn.) forest[J].Soil Biology and Biochemistry,1996,28:1073-1081
    Dornbush M E,Isenhart T M,Raich J W.Quantifying fine root decomposition:an alternative to buried litterbags[J].Ecology,2002,83:2985-2990
    Emmerling C,Liebner C,Haubold-Rosar M et al.Impact of application of organic waste materials on microbial and enzyme activities of mine soils in the Lusatian coal mining region[J].Plant and Soil,2000,220(1):129-138
    Fahey T J,Hughes J W,Mou P et al.Root decomposition and nutrient flux following whole-tree harvest of northern hardwood fores[J]t.Forest Science,1988,34:744-768
    Fahey T J,Hughes J W.Fine root dynamics in northern hardwood forest ecosystem,Hubbard Brook Experimental Forest,N H[J].Journal of Ecology,1994,82:533-548
    Fioretto A,Di Nardo C,Papa S et al.Lignin and cellulose degradation and nitrogen dynamics during decomposition of three leaf litter species in a Mediterranean ecosystem[J].Soil Biology and Biochemistry,2005,37:1083-1091
    Frankenberger W T,Dick W A.Relationship between enzyme activities and microbial growth and activity indices in soil[J].Soil Science Society of American Journal,1983,47:945-951
    Fogel R.Root turnover and productivity of coniferous forests[J].Plant and soil,1983,71:75-85
    Garten Jr C T,Post Ⅲ W M,Hanson P J et al.Forest soil carbon inventories and dynamics along an elevation gradient in the southern Appalachian Mountains[J].Biogechemistry,1999,45:115-145
    Gebauer R L E,Strain B R,Reynolds J F.The effect of elevated CO_2 and N availability on tissue concentrations and whole plant pools of carbon-based secondary compounds in lobloily pine[J].Oecologia,1998,113:29-36
    Gill R A,Jackson R B.Global patterns of root turnover for terrestrial ecosystems[J].New Phytologist,2000,147:13-31
    Gray D B,Mary K T,Julie E J.Interactions between crop residue and soil organic matter quality and the functional diversity of soil microbial communities[J].Soil Biology & Biochemistry,2002,34:1073-1082
    Grizalle G,Seastedt T R.Soil fauna and plant litter decomposition in tropical and subalpine forests[J].Ecology,2001,82:955-964
    Guo L B,Halliday M J,Gifford R M.Fine root decomposition under grass and pine seedlings in controlled environmental conditions[J].Applied Soil Ecology,2006,33:22-29
    Haynes R J.Labile organic matter as an indicator of organic matter quality in arable and pastoral soils in New Zealand[J].Soil Biology & Biochemistry,2000,32:211-219
    Heal O W,Anderson J M,Swift M J.Plant litter quality and decomposition:an history review[M].In:Cadiseh G&Giller KE,eds.Driven by Nature:Plant Litter Quality and Decomposition.Wallingford:Cab International.1997,3-32
    Hendrieks J J,Aber J D,Nadelhoffer K J et al.Nitrogen controls on fine root substrate quality in temperate forest ecosystems[J].Ecosystem s,2000,3:57-69
    Hendriek R L,Pregitzer K S.The dynamics of fine root,length,biomass and nitrogen content in two northern hardwood ecosystems[J].Can.J For.Res,1993,23:2507-2520
    Hendrick R L,Pregitzer K S.The demography of fine roots in a northern hard wood forest[J].Ecology,1992,73:1094-1104
    Hobble S H.Temperature and plant species control over litter decomposition in Alaskan Tundra[J].Ecol.Monogr,1996,66:503-522.
    Hobble S H.Interactions between litter lignin and soil nitrogen availability during leaf litter decomposition in a Hawaiian Montane forest[J].Ecosystems,2000,3:484-494
    Hodge A.The plastic plant:Root responses to heterogeneous supplies of nutrients[J].New Phytologist,2004,162:9-24
    H(o¨)fer H W,Hanagarth M C,Garcia C et al.Structure and function of soil fauna communities in Amazonian anthropogenic and natural ecosystems[J].European Journal of Soil Biology,2001,37:229-235
    Huang Z Q,Liao L P,Wang S L et al.Allelopathy of phenolics from decomposing stump-toots in replant Chinese fir woodland[J].Journal of Chemical Ecology,2000,26(9):2211-2219
    Insam H.Development in soil microbiology since the mid 1960s[J].Geoderma,2001,100:389-402
    Jagadish C T,Subhash C M,Shyam K.Influence of straw size on activity and biomass of soil microorganisms during decomposition[J].European Journal of Soil Biology,2001,37:157-160
    Joergensen R G,Anderson T H,Wolters T.Carbon and nitrogen relationships in the microbial biomass of soils in beech(Fagus sylvatica) forests[J].Biology and Fertility of Soils,1995,19:141-147
    John J D,Frank P D,Bert G D.Effects of elevated atmospheric CO_2 on root decomposition in a scrub oak ecosystem[J].Global Change Biology,2001,7:581-589
    John B,Pandey H N,Tripathi R S.Decomposition of fine roots of Pineskesiya and turnover of organic matter,N and P of coarse and fine roots and herbaceous roots and rhizomes in subtropical pine forests stands of different ages[J].Biology Fertilization Soils,2002,35(4):238-246
    Johons M M,and Skogley E O.Soil organic matter testing and labile carbon identification by carbonaceous resin capsules[J].Soil Science Society of American Journal,1994,58:751-758
    Joshi S R,Mishra R R,Sharma G D.Microbial enzyme activities related to litter decomposition near a highway in a sub-tropical forest of north east India[J].Soil Biology and Biochemistry,1993,24:1763-1770
    Kim J G,Rejmankova E.Decomposition of maerophytes and dynamics of enzyme activities in subalpine marshes in Lake Tahoe basin,U.S.A[J].Plant and soil,2004,266:303-313
    King J S,Pregitzer D R,Zak M E.Correlation of foliage and litter chemistry of sugar maple,Acer saccharum,as affected by elevated CO_2 and varying N availability,and effects on decomposition [J].Oikos,2001,94:403-4 16
    King J S,Pregitzer K S,Zak D R et al.Fine root chemistry and decomposition in model communities of north-temperate tree species show little response to elevated atmospheric CO_2 and varying soil resource availability[J].Oecologia,2005,146:318-328
    Keplin B,H(u¨)ttl R F.Decomposition of root litter in Pinus sylvestris L.and Pinus nigra stands on carboniferous substrates in the Lusatian lignite mining district[J].Ecological Engineering,2001,17:285-296
    Kshattdya So Sharma G D,Mishra R R.Enzyme activities related to litter decomposition in forests of different age and altitude in North East India[J].Soil Biology and Biochemistry,1992,24:265-270
    Kuzyakov Y,Schneckenberger K.Review of estimation of plant rhizodeposition and their contribution to soil organic matter formation[J].Archives of Agronomy and Soil Science,2004,50:115-132
    Lefroy R D B,Blair G J.Changes in soil organic matter with cropping as measured by organic carbon fractions and ~(13)C natural isotope abundance[J].Plant and Soil,1993,155/156:300-402
    Liang B C,Wang X L,Ma B L.Maize root-induced change in soil organic carbon pools[J].Soil Science and Society of America Journal,2002,66:845-847
    Lousier J D,Parkinson D.Chemical element dynamics in decomposing leaf litter[J].Canadian Journal of Botany,1978,56:2795-2812
    L(o¨)hnis F.Nitrogen availability of green manures[J].Soil Science,1926,22:253-290
    Ludovici K H,Kress L W.Decomposition and nutrient release from fresh and dried pine roots under two fertilizer regimes[J].Can.J.For.Res.,2006,36:105-111
    Luizao R C C,Bonde T A.,Rosswall T.Seasonal variation of soil microbial biomass-the effect of clear felling in a tropical rain forest and establishment of pasture in the Central Amazon[J].Soil Biology& Biochemistry,1992,24:805-813
    Maithani K,Tripathi R S,Arunachalam A,Pandey H N.Seasonal dynamics of microbial biomass C,N and P during regrowth of a disturbed subtropical humid forest in north-east India[J].Applied Soil Ecology,1996,4:31-37
    Majdi H,Andersson P.Fine root production and turnover in Norway spruce stand in northern Sweden:Effects of nitrogen and water manipulation[J].Ecosystem,2005,8:191-199
    McClaugherty C A,Aber J D,Melillo J M.The role of fine roots in organic matter and nitrogen budgets of forested ecosystem[J].Ecology,1982,63:1481-1490
    McClaugherty C A,Aber J D,Melillo J M.Decomposition dynamics of fine roots in forested ecosystems[J].Oikos,1984,42:378-386
    McClaugherty C A,Pastor J,Aber J D et al.Forest liner decomposition in relation to soil nitrogen dynamics and litter quality[J].Ecology,1985,66:266-275
    Meenemeyer V.Microclimate and lignin control of litter decomposition rates[J].Ecology,1978,59:465-472
    Mun H T,Whitford W G.Changes in mass and chemistry of plant roots during the long-term decomposition on a Chihuahuan desert watershed[J].Biol Fertil Soils,1998,26:16-22
    Nadelhoffer K J,Raich J W.Fine root production estimates and belowground carbon allocation in forest ecosystems[J].Ecology,1992,73(4):1139-1147
    Nannipieri P Mueeini L,Ciardi C.Microbial biomass and enzyme activities:production and persistence [J].Soil Biology & Biochemistry,1983,15:676-685
    Naseby D C,Pascual J A,Lynch J M.Effect of bioeontrol strains of Trichoderma on plant growth,Pythium ultimum populations,soil microbial communities and soil enzyme activities[J].Journal of Applied Microbiology,2000,88:161-169
    Ostertag R,Hobbie S E.Early stages of root and leaf decomposition in Hawaiian forest:effect of nutrient availability[J].Oecologia,1999,121:564-573
    Parsons W F J,Kopper B J,Lindroth R L.Altered growth and fine root chemistry ofB etula papyrifera and Acer saccharum under elevated CO_2[J].Can J For Res,2003,33:842-846
    Pausas J G,Casals P,RomanyaJ.Litter decomposition and faunal activity in Mediterranean forest soils:effects of N content and the moss layer[J].Soil Biology & Biochemistry,2004,36:989-997
    Phillips D L Johnson M G,Tingey D T et al.CO_2 and N-fertilization effects on fine-root length,production,and mortality:A 4-year ponderosa pine study[J].Oecologia,2006,148:517-525
    Pregitzer K S,Deforest J D,Burton A J et al.Fine root architecture of nine North American trees[J].Ecologica Monographs,2002,72:293-309
    Prescott C E.Does nitrogen availability control rates of litter decomposition in forest[J]? Plant and Soil,1995,168/169:83-88
    Prescott C E,Corbin J P,Parkinson D.Immobilization and availability of N and P in the forest floors of fertilized Rocky Mouatain coniferous forests[J].Plant and Soil,1992,143:1-10
    Ribeiro C,Madeira M,Arafijo M C.Decomposition and nutrient release from leaf litter of Eucalypttts globulus grown under different water and nutrient regimes[J].Forest Ecology and Management,2002,171:31-41
    Robinson C H,Kirkham J B,Littlewood R.Decomposition of root mixtures from high arctic plants:a microcosm study[J].Soil Biology & Biochemistry,1999,31:1101-1108
    Ronald L,Hendrick K S.The dynamic of fine root length,biomass,and nitrogen content in two northern hardwood ecosystem[J].Can.J.For.Res..1993,23:2507-2520
    Rothstein D E,Zak D R,Pregitzer K S et al.The kinetics of nitrogen up take by Populgs trem uloides grown under experimental atmospheric CO_2 and soil N availability treatments[J].Tree Physiol,2000,20:265-270
    Ruan H,Zou X,Scatena F,Zimmerman J.Asynchronous fluctuations of soil microbial biomass and plant litterfall in a tropical wet forest[J].Plant and Soil,2004,260:147-154
    Ruess R W,Hendrick R L,Burton A J et al.Coupling fine root dynamics with ecosystem carbon cycling in spruce forests of Interior Alaska[J].Ecological Monographs,2003,73:643-662
    Runion G B,Entry J A,Prior S Aet al.Tissue chemistry and carbon allocation in seedlings of Pings palustris subjected to elevated atmospheric CO_2 and water stress[J].Tree Physiol,1999,19:329-335
    Santantonio D,Hermann R K.Standing crop,production and turnover of fine roots on dry,moderate and wet sites of mature Douglas fir in western Oregon[J].Ann.Sci.For.,1985,42:113-142
    Sarathchandra S U,Perrott K W,Upsdell M P.Microbiological and biochemical characteristics of a range of New Zealand soils under established pastures[J].Soil Biology & Biochemistry,1984,16:177-183
    Sadyildiz T,Anderson J M.Interactions between litter quality,decomposition and soil fertility:a laboratory study[J].Soil Biology & Biochemistry,2003,35:391-399
    Seheu S,Sehauermann J.Decomposition of roots and twigs:effects of wood type(beoch and ash),diameter,site of exposure and maerofauna exclusion[J].Plant andSoil,1994,163:13-24
    Sehimel D S,Brasswell B H,Holland E et al.Climatic,edaphic,and biotic controls over storage and turnover of carbon in soils[J].Global Biogeochemical Cycles,1994,8:279-294
    Seastedt T R,Parton W J,Ojima D S.Mass loss and nitrogen dynamics of decaying litter of grasslands:the apparent low nitrogen immobilization potential of root detritus[J].Can.J.Bot,1992,70:384-391
    Silver W L,Miya R K.Global patterns in root decomposition:comparisons of climate and litter quality effects[J].Oecologia,2001,129:407-419
    Sinsabaugh R L,Antibus R,Linkins A et al.Wood decomposition over a first-order watershed:mass loss as a function of lignocellulase activity[J].Soil Biology & Biochemistry,1992,24:743-749
    Sinsabaugh R L,Benfield E F,Linkins A E.Cellulase activity associated with the decomposition of leaf litter in a woodland stream[J].Okios,1981,36:184-190
    Sinsabaugh R L,Findlay S.Microbial production,enzyme activity,and carbon turnover in surface sediments of the Hudson River Estuary[J].Microbial Ecology,1995,30:127-141
    Sinsabaugh R L,Moorhead D L,Linkins A E.The enzyme basis of plant litter decomposition:emergence of an ecological process[J].Applied Soil Ecology,1994,1:97-111
    Smolander A,Kitunen V.Soil microbial activities and characteristics of dissolve organic C and N in relation to tree species[J].Soil Biology & Biochemistry,2002,34(5):651-660
    Spier T W,Lee R,Pansier E A,Cairns A.A comparison of sulphatase,urease and protease activities in planted and fallow soils[J].Soil Biology & Biochemistry,1980,12:281-291
    Swift M J,Heal O W,Anderson J M.Decomposition in Terrestrial Ecosystems[M].Oxford:Biackwell Science,1979
    Tagliavini M,Tenon G,Scandellari F et al.Nutirent recycling during the decomposition of apple leaves (Malus domestica) and mowed grasses in an orchard[J].Agriculture,Ecosystem and Environment,2007,118:191-200
    Tanaka Y.Microbial decomposition of reed(Phragmites communis) leaves in saline lake[J].Hydrobiologia,1991,220:119-129
    Tripathi S K,Singh K P.Nutrient immobilization and release patterns during plant decomposition in a dry tropical bamboo savanna,India[J].Biol Fertil Soils,1992,14:191-199
    Trasar-Cepeda C,Leiros M C,Seoane et al.Limitations of soil enzymes as indicators of soil pollution [J].Soil Biology & Biochemistry,2000,32:1867-1875
    Tsuchiya M.Nutrient dynamics and leaf litter decomposition in a subtropical mangrove forest at Oura Bay,Okinawa,Japan[J].Trees,2002,16:172-180
    Useiman S M.Production and fate of soluble organic carbon,nitrogen,and phosphorous during forest ecosystem development:Root versus leaf litter[D].Ph.D.diss.Univ.of Nevada,Reno,2006
    Uselaman S M,Quails R G,Lilienfein J.Contribution of root vs.leaf litter to dissolved organic carbon leaching through soil[J].Soil Scinece Society of America,2007,71:1555-1563
    Van Soest,Wine P J.Determination of lignin and cellulose in acid-detergent fibre with permanganate [J].Journal of the Association of Official Agricultural Chemists,1968,51:780-785
    Vance E D,Brookes P C,Jenkinson D S.An extraction method for measuring soil microbial biomass C [J].Soil Biol.Biochem,1987,19:703-707
    Vance E D,Chapin Ⅲ F S.Substrate limitations to microbial activity in taiga forest floors[J].Soil Biology & Biochemistry,2001,33(2):173-188
    Vestgarden L S.Carbon and N turnover in the early stage of Scots pine(Pinus sylvestris L.) needle litter decomposition:Effects of internal and extemal N[J].Soil Biology and Biochemistry,2001,33:465-474
    Vogt K A,Crier C C,Gower S T et al.Overestimation of net root production:A real or imaginary problem[J]? Ecology,1986a,67:577-579
    Vogt K A,Grier C C,Meier C E et al.Mycorrhizal role in net primary production and nutrient cycling in Abies amabilis ecosystems in western Washington[J].Ecology,1982,63:370-380
    Vogt K A,Grier C C,Vogt D J.Production turnover,and nutrients dynamics of above-and belowground detritus of world forests[J].Advances in Ecological Research,1986b,15:303-377
    Vogt K A,Dahlgren R,Ugolini F et al.Aluminum,Fe,Ca,Mg,K,Mn,Cu,Zn and P in above-and belowground biomass.Ⅱ.Pools and circulation in a subalpine Abies amabilis stand[J].Biogeochemistry,1987,4:295-311
    Vogt K A,Vogt D J,Blooomfield J et aL Input of organic matter to the soil by tree roots[A].In Person H,McMichiel(eds).Plant root and their environments,Elsevier,Amslerdam,1991,171-190
    Wardle D A.Communities and Ecosystem:Linking the aboveground and beiowground components[M].Prineetor:Prineetor University press,2002
    Whitbread A M,Lefroy R D B,Blair G J.A survey of the impact of cropping on soil physical and chemical properties in north-western New South Wales[J].Australian Journal of Soil Research,1998,36:669-681
    Wood T G.Field investigation on the decomposition of leaves of Eucalyptus delegatensis in relation to environmental factors[J].Pedobiologia,1991,14:343-371
    Yang Y S,Guo J F,Chen G S et al.Litterfall,nutrient return,and leaf-litter decomposition in four plantations compared with a natural forest in subtropical China[J].Annals of Forest Science,2004,61:465-476
    Zsolnay A,Gorlitz H.Water extractable organic matter in arable soils-effect of drought and long-term fertilization[J].Soil Biology & Biochemistry,1994,26:1257-1261
    安树青,张久海,陈龙,等.江苏海岸带林草复合生态技术及其效应研究[J].林业科学,2001,37(2):21-28
    鲍士旦.土壤农化分析[M].北京:中国农业出版社,2005
    曹慧,孙辉,杨浩,等.土壤酶活性及其对土壤质量的指示研究进展[J].应用与环境生物学报,2003,9(1):105-109
    陈文新.土壤环境和微生物学[M].北京:北京农业大学出版社,1989
    陈印平,赵丽华,吴越华,等.森林凋落物与土壤质量的互作效应研究.世界科技研究与发展,2005,8:88-94
    陈吉泉,李博,马志军,等.生态学家面临的挑战——问题与途径.北京:高等教育出版社,2005
    戴全厚,刘国彬,姜峻,等.黄土丘陵区不同植被恢复模式对土壤酶活性的影响[J].中国农学通报,2008,24(9):429-434
    董慧霞,李贤伟,张健,等.不同草本层三倍体毛白杨林地土壤抗蚀性研究[J].水土保持学报,2005,19(3):70-74
    窦森,张晋京,Lichtfouse E,等.用δ~(13)C方法研究玉米秸秆分解期间土壤有机质数量动态变化[J].土壤学报,2003,40(3):328-334
    窦森,张晋京.用δ~(13)C值研究土壤有机质周转的方法及其评价[J].吉林农业大学学报,2001,23(2):64-67
    杜社妮,梁银丽,徐福利,等.施肥对目光温室土壤微生物与酶活性变化的影响[J].中国生态农业学报,2007,15(4):68-71
    范冰,李贤伟,张健,等.三倍体毛白杨—黑麦草复合生态系统林木细根与草根的分解及养分动态[J].应用生态学报,2005,16(11):2030-2034
    范冰,李贤伟,张健,等.退耕地三倍体毛白杨与黑麦草复合模式细根和草根的分解动态[J].林业科学,2007,43(增刊1):1-6
    范世华,李培芝,王力华,等.杨树人工林下根系地氮素循环与动态特征[J].应用生态学报,2004,15(3):387-390
    方华军,杨学明.农土壤有机碳动态研究进展[J].土壤通报,2003,34(6):562-567
    关松荫.土壤酶及其研究方法[M].北京:农业出版社,1986
    郝余祥.土壤微生物[M].北京:科学出版社,1982
    胡诚,曹志平,叶钟年,等.不同的土壤培肥措施对低肥力农田土壤微生物量碳的影响[J].生态学报,2006,26(3):808-814
    黄建辉,韩兴国,陈灵芝.森林生态系统生物量研究进展[J].生态学报,1999,19(2):270-275
    黄文昭,赵秀兰,朱建国,等.土壤碳库激发效应研究[J].土壤通报,2007,38(1):051-351
    贾恩吉,何文安,赵立华,等.作物根茬对土壤物理形状的影响[J].吉林农业科学,1996,3:55-57
    姜培坤.不同林分下土壤活性有机碳库研究[J].林业科学,2005,41(1):10-13
    李传荣,许景伟,宋海演,等.黄河三角洲滩地不同造林模式的土壤酶活性[J].植物生态学报,2006,30(5):802-809
    李海涛,于贵瑞,李家永,等.亚热带红壤丘陵区四种人工林凋落物分解动态及养分释放[J].生态学报,2007,27(3):898-908
    李华,孔新刚,王俊.秸秆饲料中纤维素、半纤维和木质素的定量分析研究[J].新疆农业大学学报,2007,30(3):65-68
    李培芝,范世华,王力华,等.杨树细根及草根的生产力与周转的研究.应用生态学报,2001,12(6):829-832
    李凌浩,林鹏,邢雪荣.武夷山甜槠林细根生物量和生长量研究[J].应用生态学报,1998,9(4):337-340
    李任敏,常建国,吕皎,等.太行山主要植被类型根系分布对土壤结构的影响[J].山西林业科技,1998,1:17-19
    李贤伟,张健,胡庭兴,等.退耕还林理论基础及林草模式的实践应用[J].北京:科学出版社,2009
    廖利平,陈楚莹,张家武,等.杉木、火力楠纯林及混交林细根周转的研究[J].应用生态学报,1995,6(1):7-10
    廖利平,邓仕坚,于小军,等.不同连载代数杉木人工林细根生长、分布与营养物质分泌特征.生态学报[J].2001,21(4):569-573
    廖利平,杨跃军,汪思龙,等.杉木(Cunninghamia lanceolata)、火力楠(Michelia macclurei)纯林及其混交林细根分布、分解与养分归还[J].生态学报,1999,19(3):342-346
    林滨,陶澍,刘晓航.土壤与沉积物中水溶性有机物释放动力学研究[J].环境科学学报,1997,17:8-13
    林成芳,杨玉盛,陈光水,等.杉木人工林细根分解和养分释放及化学组成变化[J].亚热带资源与环境学报,2008,3(1):15-23
    刘定辉,李勇.植物根系提高土壤抗侵蚀性机理研究[J].水土保持学报,2003,17(3):34-37
    柳敏,宇万太,姜子绍,等.土壤活性有机碳[J].生态学杂志,2006,25(1):1412-1417
    刘艳、汪思龙、王晓伟等.不同温度条件下杉木、桤木和火力楠细根分解对土壤活性有机碳的影响[J].应用生态学报,2007,18(3):481-486
    刘住舜.林木根系的作用—枯烂根系对土壤环境的影响[J].辽宁林业科技,1988,6:35-44
    吕国红,周广胜,周莉,等.土壤溶解性有机碳测定方法与应用[J].气象与环境学报,2006,22(2):51-55
    吕卫光,沈其荣,余廷园,等.酚酸化合物对土壤酶活性和土壤养分的影响[J].植物营养与肥料学报,2006,12(6):845-849
    M.亚历山大.土壤微生物学[M].北京:科学出版社,1983
    倪进治,徐建民,谢正苗.土壤水溶性有机碳的研究进展[J].生态环境,2003,12(1):71-75
    史建伟,王孟本,张育平,等.大气CO_2浓度升高对植物细根影响的研究进展[J].农业环境科学学报,2007,16(增刊):334-339
    单建平,陶大立.国外对树木细根的研究动态[J].生态学杂志,1992,11(4):46-49
    单建平,陶大立,王淼,等.长白山阔叶红松林细根动态[J].应用生态学报,1993,4(3):241-245
    沈宏,曹志洪.施肥对土壤不同碳形态及碳库管理指数的影响[J].土壤学报,2000,37(2):166-173
    沈宏,曹志洪,胡正义.土壤活性有机碳的表征及其生态效应[J].生态学杂志,1999,18(3):32-38
    宋日,吴春胜,牟金明,等.玉米根茬留田对土壤微生物量碳和酶活性动态变化特征的影响[J].应用生态学报,2002,13(3):303-306
    孙多.苏南丘陵天然次生栎林根系分布特征和生物量结构的研究[A].见:中国森林生态系统定位研究.哈尔滨:东北林业大学出版社,1994,517-523
    万忠酶,吴景贵.土壤酶活性影响因子研究进展[J].西北农林科技大学学报,2005,33(6):87-91
    王敬.台湾桤木与黑麦草复合模式根系分解及根际土壤养分动态研究(硕士学位论文)[D].雅安,四川农业大学,2008
    王巧,李贤伟,杨渺,等.光皮桦-扁穗牛鞭草复合模式细根草根生物量及其空间分布[J].四川农业大学学报,2007,25(4):430-435
    王轶,邹莉,王义.凉水自然保护区原始阔叶红松林土壤微生物的主要生理类群及分布[J].东北林业大学学报,2008,36(3):16-17
    王忠.植物生理学[M].北京:中国农业出版社,2000
    卫星,张国珍.树木细根主要研究领域及展望[J].中国农学通报,2008,24(5):143-147
    温达志,魏平,孔国辉,等.鼎湖山南亚热带森林细根生产力与周转[J].植物生态学报,1999,23(4):361-369
    温达志,魏平,张佑昌,等.鼎湖山南亚热带森林细根分解干物质损失和元素动态[J].生态学杂志,1998,17(2):1-6
    吴金水,林启美,黄巧云,等.土壤微生物生物量测定方法及其应用[M].北京:气象出版社,2006
    吴彦,刘世全,付秀琴,等.植物根系提高土壤水稳性团粒含量的研究[J].土壤侵蚀与水土保持学报,1997,3(1):45-49
    徐秋芳,姜培坤.不同森林植被下土壤水溶性有机碳研究[J].水土保持学报,2004,18(6):57-60
    徐侠,王丰,栾以玲,等.武夷山不同海拔植被土壤易氧化碳[J].生态学杂志,2008,27(7):1115-1121
    杨丽韫,李文华,吴松涛.长白山原始红松阔叶林及其次生林细根分解动态和氮元素的变化[J].北京林业大学学报,2007,29(6):10-15
    杨万勤.森林土壤生态学IM].成都:四川科学技术出版社,2006,279
    杨万勤,王开运.森林土壤酶研究进展[J].林业科学,2004,40(2):152-159
    杨万勤,钟章成,陶建平,等.缙云山森林土壤酶活性与植物多样性的关系[J].林业科学,2001,27(4):124-128
    杨玉盛,陈光水,郭剑芬,等.杉木观光木混交林凋落物分解及养分释放的研究[J].植物生态学报,2002,26(3):275-282
    杨玉盛,陈光水,林鹏,等.杉木观光木混交林和杉木纯林群落细根生产力、分布及养分归还[J].应用与环境生物学报,2002,8(3):223-233
    杨玉盛,陈光水,林鹏,等.格氏栲天然林与人工林细根生物量、季节动态及净生产力[J].生态学报,2003,23(9):1719-1730
    杨云贵,龙明秀,王莺,等.牧草、玉米青贮和作物秸秆营养价值的洗涤剂法评定[J].草地学报,2004,12(2):132-135
    于群英.土壤磷酸酶活性及其影响因素研究[J].安徽技术师范学院学报,2001,15(4):5-8
    宇万太,马强,赵鑫,等.不同土地利用类型下土壤活性有机碳库的变化[J].生态学杂志,2007,26(12):2013-2016
    张国平,周伟军译.植物生理生态学[M].浙江:浙江大学出版社,2003,pp200
    章家恩.生态学常用试验研究方法与技术[M].北京:化学工业出版社
    张立华,叶功富,林益明,等.木麻黄人工林细根分解过程中的养分释放及能量归还[J].厦门大学学报(自然科学版),2007,46(2):861-866
    张猛,张健.森林土壤微生物、酶活性研究进展[J].四川农业大学学报,2003,21:347-351
    张鹏,田兴军,何兴兵,等.亚热带森林凋落物层土壤酶活性的季节动态[J].生态环境,2007,16(3):1024-1029
    张瑞清,孙振钧,王冲,等.西双版纳热带雨林凋落叶分解过程Ⅱ.微生物与线虫的群落动态[J]. 生态学报,2007,27(2):640-649
    张小全,吴可红.森林细根生产与周转研究[J].林业科学,2001,37(3):126-135
    张小全,吴可红,March D.森林细根生产和周转研究方法评述[J].生态学报,2000,20(5):875-880
    张秀娟.水曲柳落叶松细根分解与养分释放.[硕士学位论文][D].哈尔滨,东北林业大学,2004
    张秀娟,梅莉,王政权,等.细根分解研究及其存在的问题[J].植物学通报,2005,22(2):246-254
    张秀娟,吴楚,梅莉,等.水曲柳和落叶松人工林细根分解与养分释放[J].应用生态学报,2006,17(8):1370-1376
    张志丹,赵兰坡.土壤酶在土壤有机培肥研究中的意义[J].土壤通报,2006,37(2):362-368
    赵斌,何绍江.微生物学试验[M].北京:科学出版社,2002
    赵其国,王明珠,何园球.我国热带亚热带森林凋落物及其对土壤的影响[J].土壤,1991,23(1):8-15
    中国科学院南京土壤研究所微生物实验室.土壤微生物研究方法[M].北京:科学出版社,1985
    中华人民共和国林业行业标准.森林植物与森林枯枝落叶层养分分析方法[M].北京:中国标准出版社,1999
    中华人民共和国林业行业标准.森林土壤分析方法[M].北京:中国标准出版社,1999
    周礼恺.土壤酶学[M].北京:科学出版社,1987
    朱志建,姜培坤,徐秋芳.不同森林植被下土壤微生物量碳和易氧化态碳的比较[J].林业科学研究,2006,19(4):523-526

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700