用户名: 密码: 验证码:
空间柔性机械臂的动力学特性与主动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类对太空探索的不断深入使得空间任务越来越多,而太空环境的特殊性和危险性使得很多任务不能完全依靠宇航员完成。空间柔性机械臂具有适应太空恶劣作业环境的能力,采用机械臂协助或代替宇航员完成一些太空作业在经济性和安全性两方面都具有现实意义,已成为当前空间技术领域的重要研究方向。本论文在教育部科学技术研究重大项目“空间柔性机器人动力学/控制耦合系统的研究”(课题编号:307005)的资助下,以空间柔性机械臂为研究对象,对其动力学特性和相关的主动控制策略展开了深入的分析和研究,本文的主要工作如下:
     首先,提出空间机械臂的刚/柔/控耦合模态分析概念,借助反馈约束原理求得柔性臂在动约束状态下的复杂边界条件,并将关节控制器参数引入臂杆在离散平衡位置附近的振动动力方程,分别建立了频域空间和状态空间内模态求解的解析方法;针对机械臂的大范围运动影响臂杆自身的弹性振动模态问题,重点研究柔性臂动力学方程中切向惯性力项的影响,得到刚/柔耦合运动条件下臂杆的振动模态参数;特别地,研究了多活动部件柔体系统的有限元分析方法,并求解某型多自由度空间柔性机械臂的模态特性。
     其次,从虚功的角度出发,采用哈密顿变分原理对含约束阻尼非保守力的柔性机械臂系统进行刚/柔/控耦合动力学建模;基于系统的状态空间模型设计一种适用于开、闭环条件的稳定数值PIM法,同时进行大量的数值实验以验证积分算法的有效性;对控制器反馈约束作用下系统的动力学响应进行数值求解并与KED法进行对比分析,得到不用于经典振动理论的结论。
     再次,对机械臂柔性关节的动态不确定模型进行了建模分析,并提出一种同时补偿柔性、非连续摩擦、系统不确定性和外部干扰抑制的小波神经-鲁棒复合控制策略。全局采用Lyapunov函数的Backstepping方法设计具有柔性补偿和L2干扰抑制性能的控制器,同时,针对常规神经网络无法辨识非连续性函数的问题,提出在局部采用小波神经网络对摩擦和不确定项进行补偿。设计的控制策略不仅避免了单一反演鲁棒设计中复杂的求导运算,而且无须检测关节角加速度、辨识摩擦和估计不确定上界。
     再其次,基于微分几何输入-输出线性化方法将双连杆柔性机械臂在新坐标系下分解为输入-输出子系统和内部子系统,导出零动力学规范化方程,并讨论系统观测输出位置的选择和零动力学稳定性之间的关系;建立柔性机械臂的全局快速收敛终端滑模控制策略,解决非最小相位系统的鲁棒控制问题,实现仅依靠关节处的驱动电机完成关节定位和臂杆残余振动的抑制。
     最后,对空间柔性机械臂的相关动力学特性和控制策略进行实验研究,搭建空间柔性机械臂地面气浮式微重力模拟综合实验平台,设计并完成柔性关节的位置跟踪与测试、柔性机械臂的试验模态分析、柔性臂残余振动的主动控制等典型实验。
With the deepening of space exploration, the future space missions continue to be more and more, but it is hard to be completed entirely all by the astronauts as a results of the particularity and the risk of the space environment. The space flexible manipulator has the capability of adapting the vile space environment, so it is practically significant in both the economy and security aspects to assist or replace astronauts to complete some space operations utilizing the space manipulators, and it has become an important research direction in the space technology field. This paper is supported by the Key Project of Ministry of Education of China (307005) "space flexible robot dynamics/control coupling system research", and deeply focused on the dynamics and active control strategies for the space manipulator. The main work of this paper is as follows:
     Firstly, the concept of rigid/flexible/control coupling mode analysis for the space flexible manipulator is proposed. The complex boundary conditions of flexible arm under the dynamic constraint state is obtained using feedback constraint theory, and the gain parameters of the joint controller are introduced into the vibration dynamic equation near the discrete equilibrium position. The analytic method of solving mode differential equations in frequency domain and state space are established separately. Taking into account the problem that the elastic modes are influenced by the large-scale movement, the mode parameters under the rigid/flexible coupling movement are solved in respect of the tangential inertia item. Especially, a multi degree of freedom mode characteristics of space manipulator are solved by the finite element method.
     Secondly, the rigid/flexible/control coupling dynamics equations for the space manipulator involving the constrained damping non-conservative forces are established with Hamilton variational principle from the perspective of virtual work. Based on state space model, a stable numerical PIM that is suitable for both open and closed-loop conditions system is designed, and a large number of numerical experiments are implemented to verify the integration algorithma. The dynamic response under the feedback constraint is resolved by the PIM in oeder to compare with the traditional KED method, and some conclusions different from the classical vibration theory are obtained.
     Thirdly, the uncertain second-order cascade dynamics equations including non-consecutive friction and external interference were modelled. In view of the complex dynamics character that flexibility coexists with friction, uncertain parameter perturbations and disturbances, a wavelet neural networks-robust hybrid control strategy was proposed. The global controller was designed using backstepping technique to compensate the flexibility and suppress disturbance based on L2 property. Considering it is difficult for the conventional neural networks to identify the non-consecutive items, the wavelet neural networks approach was locally utilized to estimate the nonlinear terms including friction and uncertainties. This strategy can avoid the complicated derivation, acceleration measurement, friction identification and uncertain upper bound forecast.
     Fourthly, the two-link manipulator system was decomposed into input-output subsystem and internal subsystem by differential geometry input-output linearization method, and then the normalized equation of zero-dynamics is educed. The relationship between the choice of system observation output position and the zero-dynamic stability is discussed. A robust control approach using global terminal sliding mode was developed and the nonminimum phase control problem of two-link flexible space manipulator was solved. The target completing joint positioning and residual vibration suppression is achieved only rely on the joint driven motor.
     Finally, some experiments about dynamics and control strategy of flexible space manipulator are researched. A ground gravity flotation simulation integrated experimental platform for space flexible manipulator is designed, and some typical experiments, such as flexible joint position tracking and testing, experimental modal analysis for the flexible beam, and residual vibration suppression are performed.
引文
[1]贠超,宗光华,周岩武等.机械系统的反馈约束特性分析[J].机械工程学报,2000,36(3):56~60.
    [2]Cetinkunt S, Yu W T. Closed-loop behavior of a feedback-controlled flexible arm:A comparative study[J]. Int. J. Robotics Research,1991,10(3):263~275.
    [3]Gofron M, Shabana A A. Control structure interaction in the nonlinear analysis of flexible mechanical system[J]. Nonlinear Dynamics,1993,4:183~206.
    [4]张铁民,郭治,刘又午.带有反馈控制的柔性机械臂动态特性的理论和实验研究[J].机械科学与技术,1998,17(3):416~418.
    [5]张铁民,李成元.带有反馈控制的柔性机械臂动态研究与振动控制[J].机械工程学报,2000,36(3):47~50.
    [6]阎绍泽,季林红,刘才山等.柔性机械臂结构/控制耦合特征的实验研究[J].机械科学与技术,2000,19(5):796~799.
    [7]Fumitoshi Matsuno, Takahito Endo. Dynamics based control of two-link flexible arm[C]. Proceedings of the IEEE International Conference AMC 2004,135~140.
    [8]D.G.Wilson, GP.Starr, GGParker, etc. Robust Control Design for Flexible-Link/Flexible-Joint Robots[C]. Proceedings of the 2000 IEEE International Conference on Robotics &Automation,2000,1496~1501.
    [9]Xu Bo, Yoshikazu Hayakawa. Control two-link flexible manipulators using controlled Lagrangian method[C]. Proceedings of the SICE International Conference,2004,289~294.
    [10]边宇枢,陆震.柔性机器人动力学建模的一种方法[J].北京航空航天大学学报,1999,25(4):487~490.
    [11]邓峰岩,和兴锁,李亮等.计及变形耦合的双连杆柔性机械臂动力学模型[J].机械工程学报,2006,42(增刊):69~73.
    [12]Wu Licheng, Sun Fuchun, etc. Dynamic modeling, control and simulation of flexible dual-arm space robot[C]. Proceedings of IEEE TENCON'02,2002,1282-1285.
    [13]晏雄伟,邓志东,孙增祁.双连杆柔性机械手的动力学建模及基于传感器的稳定控制[C]. Proceedings of the 3rd World Congress on Intelligent Control and Automation.,2000, 2102~2106.
    [14]Simo J C, Quoc V L. On the dynamics of flexible beams under large overall motion, the planar case, part 1[J]. Journal of Applied Mechanics,1986,53:849~854.
    [15]Simo J C, Quoc V L. The role of non2linear theories in transient dynamic analysis of flexible structures[J]. Journal of Sound and V ibration,1987,119 (3):487~508.
    [16]Hsiao K M, Yang R T, Lee A C. A consistent finite element formulation for non-linear dynamic analysis of planar beam[J]. International Journal for Numerical Methods in Engineering.1994,37:75~89.
    [17]Sharf I. Geometrically non-linear beam ele Zhang D J,L iu C Q, Huston R L. On the dynamics of an arbitrary flexible body with large overall motion:An interate approach[J]. Mech Struct.& Mach,1995,23 (3):419~438.
    [18]ment for dynamics simulation of multibody systems[J]. International Journal for Numerical Methods in Engineering,1996,39:763~786.
    [19]洪嘉振,尤超蓝.刚柔耦合系统动力学研究进展[J].动力学与控制学报,2004,2(2):1~6.
    [20]刘锦阳,洪嘉振.刚-柔耦合动力学系统的建模理论研究[J].力学学报,2002,34(3):408~415.
    [21]胡振东,洪嘉振.刚柔耦合系统动力学建模及分析[J].应用数学和力学,1999,20(10):1087~1093.
    [22]杨辉,洪嘉振,余征跃.两种刚柔耦合动力学模型的对比研究[J].上海交通大学学报,2002,36(11):1591~1595.
    [23]杨辉,洪嘉振,余征跃.刚-柔耦合多体系统动力学建模与数值仿真[J].计算力学学报,2003,20(4):408~415.
    [24]杨辉,洪嘉振,余征跃.刚柔耦合建模理论的实验验证[J].力学学报,2003,35(2):253~256.
    [25]杨辉,洪嘉振,余征跃.动力刚化问题的实验研究[J].力学学报,2004,36(1):118~124.
    [26]肖世富,陈滨.一类刚-柔耦合系统的建模与稳定性研究[J].力学学报,1997,29(4):439~447.
    [27]肖世富,陈滨.一类刚-柔耦合系统柔体模态分析的特征[J].中国空间科学技术,1998,(4):8-13.
    [28]刘才山,陈滨,阎绍泽等.基于Hamilton原理的柔性多体系统动力学建模方法[J].导弹与航天运载技术,1999,(5):32~36.
    [29]邱志成.刚柔耦合系统的振动主动控制[J].机械工程学报,2006,42(11):26~33.
    [30]黄文虎,邵成勋.多柔体系统动力学[M].北京:科学出版社,1996,101~114.
    [31]胡海岩.机械振动基础[M].北京:北京航空航天大学出版社,2005,64~146.
    [32]钟万勰.结构动力方程的精细时程积分法[J].大连理工大学学报,1994,34(2):131~136.
    [33]Zhong W X, Williams F W. A precise time step integration method[J]. Journal of mechanical Engineering Science,1994,208:427~430.
    [34]钟万勰.应用力学的辛数学方法[M].北京:高等教育出版社,2006,5~55.
    [35]孔向东,钟万勰.柔性机械臂动力学方程的精细时程积分法[J].机器人,1998,20(5):378~381.
    [36]邓子辰,郑涣军等.基于精细积分法的伸展悬臂结构动态特征的计算[J].宇航学报,2001,22(6):110~113.
    [37]谭述君,钟万勰.非齐次动力方程Duhamel项的精细积分[J].力学学报,2007,39(3):374~381.
    [38]顾元宪,陈飚松,张洪武.结构动力方程的增维精细积分法[J].力学学报,2000,32(4):447~456.
    [39]李金桥,于建华.非线性动力方程避免状态矩阵求逆的级数解[J].四川大学学报,2004,36(4):71~75.
    [40]李金桥,于建华.基于精细积分的结构主动最优控制算法[J].西南交通大学学报,2004,39(1):77~81.
    [41]Yigit A S. On the stability of PD control for a two-link rigid-flexible manipulator[J]. ASME J Dyna Syst Meas and Control,1994,116(2):208~215.
    [42]Kelly R, Ortega R, Ailton A. Global regulation of flexible joint robots using appoximate differentiation[J]. IEEE Transaction on Automation Control,1994,36(6):1222~1224.
    [43]Damaren C J. Modal properties and control system design for two-link flexible manipulators [J]. Int J Robotics Research,1998,17(6):669~678.
    [44]Fuchun Sun, Lingbo Zhang, Yuangang Tang,etc. Neural network plus fuzzy PD control of tip vibration for flexible-link manipulators[C]. Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems,2004,2942~2947.
    [45]Heidar A. Malki, Dave Misir, etc. Fuzzy PID control of a flexible-joint robot arm with uncertainties from time-varying loads[J]. IEEE Transaction on Control Systems Technology,1997,5(3):371~378.
    [46]丁希仑,陈伟海,张启先.空间机器人柔性臂动力学模糊控制的研究[J].北京航空航天大学学报,1999,25(1):104~107.
    [47]S. S. Ge, T. H. Lee, G. Zhu. Improving joint PD control of single-link flexible robots by strain/tip feedback[C]. Proceedings of the 1996 IEEE International Conference on Control Applications,1996,965~969.
    [48]Talebi H A, Patel R V, Asmer H. Neural network based dynamic modeling of flexible-link manipulators with application to the SSRMS[J]. J Robotic Systems,2000,17(7):385~401.
    [49]Wang D, Vidyassagar M. Control of a class of manipulator with a single flexible link. Part I:Feedback linearization, Part II[J]:Observer-controller. ASME J Dynam Syst Meas and Control,1991,113(4):655~668.
    [50]刘才山,王建明,阎绍泽,刘又午.柔性机械臂非线性动力学模型及控制的研究[J].振动工程学报,1998,11(2):152~157.
    [51]张袅娜,冯勇,孙黎霞.双臂柔性机械手的终端滑模控制[J].控制与决策,2004,19(10):1142~1146.
    [52]王大龙,陆佑方,陈塑寰,李晓光.双连杆柔性机械臂的非线性轨迹跟踪控制[J].吉林工业大学学报,1996,26(2):35~40.
    [53]Wang Dalong, Lu Youfang, etc. Dynamic model and tip trajectory tracking control for a two-link flexible robotic manipulator[C]. Proceedings of the 1996 IEEE International Conference,1996,1020~1024.
    [54]刘岩,王大龙,刘玉梅,刘昱.双连杆柔性机械臂的变结构轨迹控制[J].长春邮电学院学报,1997,15(3):59~63.
    [55]A. Arisoy, M. Gokasan, O.S. Bogosyan. Partial feedback linearization control of a single flexible link robot manipulator[C]. Proceedings of the 2005 IEEE International Conference, 2005,282~287.
    [56]Knorasani K. Nonlinear feedback control of flexible joint manipulator:A single link case study[J]. IEEE Tran.on Automation Control,1990,35(10):1145~1149.
    [57]张奇志,孙增祁,孙富春.基于奇异摄动的柔性机械手预测控制[J].机械科学与技术,2001,20(2):172~174.
    [58]张友安,吕凤琳,孙富春.基于奇异摄动的双连杆柔性臂模糊控制[J].计算机仿真,2004,21(4):109~112.
    [59]张友安,糜玉林,吕凤琳,孙富春.双连杆柔性臂自适应模糊滑模控制[J].吉林大学学报(工学版),2005,35(5):520~525.
    [60]黄季妮,黄金泉.基于奇异摄动与神经网络的柔性臂控制[J].南京航空航天大学学报,2003,35(4):420~423.
    [61]李元春,陆佑方,唐保健.双连杆柔性臂轨迹跟踪的鲁棒控制[J].自动化学报,1999,25(3):330~336.
    [62]Karimi, H. R, M. J. Yazdanpanah. A new modeling approach to single-link flexible manipulator using singular perturbation method[J]. Electrical Engineering,2006,88(5): 375~382.
    [63]Vossoughi, GR, A. Karimzadeh. Impedance control of a two degree-of-freedom planar flexible link manipulator using singular perturbation theory [J]. Robotica,2006,24(2): 221~228.
    [64]Li, Y, et al. On the basis of the singular perturbation approach to control a two-link constrained flexible manipulator[J]. High Technology Letters,2001,7(3):90~92.
    [65]Zeng. K, G. Li. Singular perturbation control approach to a hydraulically driven flexible manipulator[J]. Zhongguo Jixie Gongcheng,2006,17(11):1128~1131.
    [66]Sicilizno B., Book W. J, and Maria G. D. Anintegral Manifold Approach to Control of a one Link flexible Arm[C]. Proc.25th IEEE Conf.on Decision and Control, Athens, Greece, 1986:1131-1134.
    [67]Ghorbel, F, M.W. Spong. Adaptive integral manifold control of flexible joint robot manipulators[C]. in Robotics and Automation, IEEE International Conference,1992: 707~714.
    [68]刘才山,刘又午,王建明.柔性机械臂的动力学模型及滑模变结构控制[J].振动与冲击,1998,17(1):24~29.
    [69]刘才山,王建明,阎绍泽,刘又午.滑模变结构控制在柔性机械臂中的应用[J].天津大学学报,1999,32(2):244~247.
    [70]邱志成.柔性机械臂的变结构振动控制研究[J].动力学与控制学报,2007,5(1):62~67.
    [71]You-an Zhang, Yu-lin Mi, etc. Adaptive sliding mode control for two-link flexible manipulators with H8 tracking performance [C]. IEEE Proceedings of the Fourth International Conference on Machine Learning and Cybernetics,2005:702~707.
    [72]An-Chyau Huang, Yuan-chih Chen. Adaptive sliding control for single-link flexible-joint robot with mismatched uncertainties[J]. IEEE Transactions on Control Systems Technology,2004,12(5):770~775.
    [73]Jian-xin Xu, Wen-jun Cao. Direct Tip Regulation of Single-link Flexible Manipulator by Adaptive Varable Structure Control[J]. International Journal of System Science,2001, 32(1):121~135.
    [74]Zhu Y, Qiu J, Tani J. Simultancous optimization of a two-link flexible robot arm[J]. J Robotic Systems,2001,18(1):17~27.
    [75]刘广瑞,刘又午,刘敏.柔性机械臂末端位置的变结构模型参考自适应控制[J].机器人,1998,20(4):292~296.
    [76]张铁民,李贵涛,梁莉.带有加速度反馈的柔性机械臂开关变结构控制[J].机械工程学报,2002,38(3):39~41.
    [77]张铁民,梁莉.带有应变反馈控制的柔性机械臂开关变结构控制的实验研究[J].中国机械工程,2001,12(8):849~851.
    [78]Yang J. H, Lian F. L, Fu L. C. Nonlinear Adaptive Control for Flexible-link Manipulat- ors[J]. IEEE Transactions on Robotics and Automation,1997,13(1):140~148.
    [79]Lin Lih-chang, Yeh Sylin. A Composite Adaptive Controln with Flexible Quantity Feedback for Flexible-link Manipulators[J]. J. of Robotic Systems,1996,13 (5):289~302.
    [80]Wu S, Cetinkunt S. Model Reference Adaptive Inverse Control of a Single Link Flexible Robot[J]. J. of Compttters and Structures,1993,47 (2):213~223.
    [81]Sasiadek J.Z., Srinivasam R. Dynamical Modeling and Adaptive Control of a Single Link Flexible Manipulator[J]. J. of Guid Control Dyn,1989,12(6):834~844.
    [82]王晓磊,吴宏鑫.挠性航天器振动抑制的自适应方法及实验研究[J].宇航学报,2005,26(3):275~281.
    [83]闫茂德.不确定非线性系统的自适应变结构控制研究[D].西北工业大学博士学位论文,2001.
    [84]郭毓,刘萍,胡彦,陈庆伟.不确定机械臂的组合自适应迭代学习轨迹跟踪[J].华中科技大学学报(自然科学版),2008,36(增刊Ⅰ):295~298.
    [85]Gyurkovics E, D. Svirko. A nonlinear observer for flexible joint robots[J]. Periodica Polytechnica, Mechanical Engineering,2002,.46(2):127~137.
    [86]Chang-Woo, P., et al. Control of uncertain flexible joint manipulator using adaptive Takagi-Sugeno fuzzy model based controller[C]. Robotics and Automation,2001. Proceedings 2001 ICRA. IEEE International Conference.
    [87]董朝阳,王龙,王青,张明廉.基于神经网络的机械臂分散自适应跟踪控制[J].系统仿真学报,2006,18(5):1267~1270.
    [88]于志刚,宋申民,段广仁,陈兴林.具有未建模动态机械臂的自适应神经网络控制[J].仪器仪表学报,2006,27(6):853~855.
    [89]刘建昌,苗宇.基于神经网络补偿的机械臂轨迹控制策略的研究[J].控制与决策,2005,20(7):732~736.
    [90]孙富春,孙增祁,张钹.基于观测器的机械手神经网络自适应控制[J].自动化学报,1999,25(3):295~302.
    [91]Sun Fuchun, Sun Zengqi. Stable Adaptive Controller Design for Manipulators Using Neural Networks[J]. Control of Theory and Applications,1997,14(6):809~816.
    [92]孙富春,孙增祁,尔联结.机械手的神经网络自适应滑动模控制器设计[J].航空学报,1997,18(2):168~172.
    [93]Konstantin V. Zmeu, Eliya A. Shipitko, Andrey S.Perevozchikov. Linear neural model-based predictive controller design for flexible link robot[C]. Proceedings of the 2004 IEEE International Symposium on Intelligent Control,2004:293~298.
    [94]Konstantin V. Zmeu, Eliya A. Shipitko. Predictive controller design with offline model learning for flexible beam control[C]. IEEE International Conference,2005:345~350.
    [95]S. Z. Mohd Hashim, M.O. Tokhi, I.Z. Mat Darus. Nonlinear dynamic modelling of flexible beam structures using neural networks[C]. IEEE International Conference,2004:171~175.
    [96]S Jain, P. Y.Peng, A.Tzes. The Design of Neural Network with Heredity Study Function in the Control of Single-link Flexible Manipulator[J]. J. of Intelligent Robotic Systems, 1996,15(2):135-151.
    [97]K. Takahashi, I. Yamada. The Study Control Based on Neural Network in Flexible Structure and its Applicationin Single-link Flexible Arms[J]. Tran.of the ASME Measurement and Control,1994,16 (4):792~795.
    [98]http://mme.uwaterloo.ca/~constrct/sfl_control.
    [99]http://arl.stanford.edu/projects/past-projects/flexible-manipulators.
    [100]http://arl.stanford.edu/projects/past-projects/micro-macro-manipulators.
    [101]Lingbo Zhang, Fuchun Sun, Zengqi Sun. Cloud Model-based Controller Design for Flexible-Link Manipulators[C]. Proceedings of the IEEE International Conference, RAM2006.
    [102]刘兴占,张令波,孙富春.柔性双连杆机械臂末端振动测量的研究[J].光学技术,2000,26(3):241~247.
    [103]刘新建.柔性机械手的动力学特性与控制技术研究[D].国防科学技术大学博士学位论文,1998.
    [104]王建明,王示,王学军.两杆机构柔性多体动力学实验研究[J].振动与冲击,1999,18(1):33~37.
    [105]贠今天,王树新,回振波.刚-柔机械臂主动柔顺控制的实验研究[J].机械科学与技术,2005,24(11):1327~1331.
    [106]祝发荣,黄清华,陈德成.旋转柔性梁的振动控制仿真及实验探讨[J].北京大学学报(自然科学版),2002,38(1):24~29.
    [107]贠超.结构/控制耦合系统的运动稳定性研究[D].北京航空航天大学博士后论文,1996.
    [108]王建明.大范围刚体运动对柔性梁模态形函数的影响分析[D].上海交通大学博士后论文,1999:13~39.
    [109]王建明.柔性体刚柔耦合动力学建模理论及动力刚化有限元算法研究[J].中国机械工程,2000,11(6):640~642.
    [110]熊有伦.机器人学[M].北京:机械工业出版社,1993.
    [111]张素英,邓子辰.非线性动力方程的增维精细积分法[J].计算力学学报,2003,20(4):423~426.
    [112]赵丽滨,张建宇,王寿梅.精细积分方法的稳定性和精度分析[J].北京航空航天大学学报,2000,26(5):569-572.
    [113]唐庆,徐旭常.GEAR算法在随机轨道模型计算中的应用[J].工程热物理学报,1997,18(5):634~638.
    [114]陈会光,王雨时,闻泉.用Gear法求解病态的引信球转子运动常微分方程组[J].探测与控制学报,2008,30(4):30~39.
    [115]彭济根,倪元华,乔红.柔性关节机操手的神经网络控制[J].自动化学报,2007,33(2):175~180.
    [116]刘业超,金明河,刘宏.柔性关节机器人基于柔性补偿的奇异摄动控制[J].机器人,2008,30(5):460~466.
    [117]Ming-Chih Chien, An-Chyau Huang. Adaptive Control for Flexible-Joint Electrically Driven Robot With Time-Varying Uncertainties[C]. IEEE International Conference on Industrial Electronics,2007:1032-1038.
    [118]张晓东,贾庆轩,孙汉旭,等.空间机器人柔性关节轨迹控制研究[J].宇航学报,2008,29(6):1866~1870.
    [119]An-Chyau Huang, Yuan-Chih Chen. Adaptive sliding control for single-link flexible-joint robot with mismatched uncertainties[J]. IEEE Transactions on Control Systems Technology,2004,12(5):770~775.
    [120]Jong-Guk Yim, Je Sung Yeon, Jong Hyeon Park,etc. Robust Control using Recursive Design Method for Flexible Joint Robot Manipulator[C]. IEEE International Conference on Robotics and Automation,2007:3805-3810.
    [121]Sang-Hun Lee, Jong-Sung Hur, Hyun-Chul Cho,etc. A PID-Type Robust Controller Design for Industrial Robots with Flexible Joints[C]. SICE-ICASE,2006. International Joint Conference,2006:5905-5910.
    [122]Bonsignore A, Ferretti G, Magnani G. Coulomb Friction Limit Cycles in Elastic Positioning Systems[J]. ASME Journal of Dynamic Systems, Measurement, and Control, 1999,121(2):298~301.
    [123]张天霄,王永富,柴天佑.基于RBF神经网络的摩擦补偿建模与控制[J].控制工程,2008,15(5):568~571.
    [124]Young Ho Kim, Frank L, Lewis. Reinforcement Adaptive Learning Neural-Net Based Friction Compensation Control for High Speed and Precision[J]. IEEE Transactions on Control Systems Technology,2000,6(8):118~126.
    [125]周景雷,张维海.带有摩擦的机器人鲁棒控制[J].机械工程学报,2007,43(9):102~106.
    [126]刘强,尔联洁,刘金琨.参数不确定机械伺服系统的鲁棒非线性摩擦补偿控制[J].自动化学报,2003,29(4):628~632.
    [127]M. Kermani, M. Wong, R. Patel, etc. Friction Compensation in Low and High-reversal-velocity Manipulators, in Proc. ICRA'04,2004 IEEE Int. Conf. on Robotics and Automation, vol.5,2004:4320~4325.
    [128]刘强,尔联洁,刘金琨.摩擦非线性环节的特性、建模与控制补偿综述[J].系统工程与电子技术,2002,24(11):45~52.
    [129]Canudas De Wit C. A New Model for Control of Systems with Friction[J]. IEEE Tran. on Automatic Control,1995,40(3):419~425.
    [130]Gafvert M. Comparisons of Two Dynamic Friction Models[C]. In Proceedings of the 1997 IEEE International Conference on Control Applications,1997:386~391.
    [131]申铁龙.机器人鲁棒控制基础[M].北京:清华大学出版社,2000:130~170.
    [132]G Liu. Decomposition-based Friction Compensation of Mechanical Systems[J]. Mechatro-nics,2002,12:755~769.
    [133]C.K. Lin. Adaptive Tracking Controller Design for Robotic Systems Using Gaussian Wavelet Networks[J]. IEEE Proc. Control Theory appl,2002,149(4):316~322.
    [134]侯霞.小波神经网络若干关键问题研究[D].南京航空航天大学博士学位论文,2006:12~14.
    [135]尉询楷,陈希林,李应红.基于小波神经网络的PID整定与应用[J].控制工程,2003,10(6):532~535.
    [136]李秋红,许光华,孙健国.航空发动机小波神经网络PID控制[J].航空动力学报,2009,24(4):875~879.
    [137]黄绍辉,曹小涛,李元春.基于小波神经网络的机械臂力/位置控制算法[J].吉林大学学报,2008,38(1):163~167.
    [138]王家军.基于自回归小波神经网络的感应电动机滑模反推控制[J].自动化学报,2009,35(1):1~8.
    [139]蔡吉刚,李树荣,王平.基于小波神经网络的自适应控制器设计[J].中国石油大学学报,2007,31(5):141~147.
    [140]Derrick Nguyen, Bernard Widrow. Improving the Learning Speed of 2-Layer Neural Networks by Choosing Initial Values of the Adaptive Weights[R]. Proceedings of the IJCNN,1990(3):21~26.
    [141]Benosman M, and Le Vey G Model inversion for a particular class of nonlinear non-minimum phase systems an application to the two-link flexible manipulator[C]. Proceedings of the 40th IEEE Conference on Decision and Control. Orlando, Florida USA, vol.2:1174~1180, December 2001.
    [142]Benosman M, and Le Vey G Stable inversion of SISO nonminimum phase linear systems through output planning:an experimental application to the one-link flexible manipulator [C]. IEEE Transactions on Control Systems Technology. Guangzhou, China, vol.11(4): 588~597, July 2003.
    [143]顾仲权,马扣根,陈卫东.振动主动控制[M].北京:国防工业出版社,1997:142~153.
    [144]Li Xiaoguang, Liu Junyi, Lei Xia, and Zhang Qiguang. Application of singular perturbation approach in trajectory tracking control of two-link flexible manipulator[C]. Proceedings of the IEEE 3rd World Congress on Intelligent Control and Automation. Hefei, China, vol.5:3736~3740, June 2000.
    [145]Bo X, and Hayakawa Y. Control two-link flexible manipulators using controlled Lagrangian method[C]. SICE 2004 Annual Conference, vol.1:289~294, August 2004.
    [146]Fuchun Sun, Lingbo Zhang, Yuangang Tang, and Jianwei Zhang. Neural network plus fuzzy PD control of tip vibration for flexible-link manipulators[C]. Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems. Sendal. Japan, vol.3:2942~2947, September 2004.
    [147]Wenwei Xu, Hongliu Du, and Nair, S.S. Adaptive joint control design for a flexible two-link system[C]. Proceedings of the 1999 American Control Conference. San Diego, California, vol.3:2215~2219, June 1999.
    [148]You-An Zhang, Yu-Lin Mi, Ming Zhu, and Feng-Lin Lu. Adaptive sliding mode control for two-link flexible manipulators with H∞ tracking performance[C]. Proceedings of 2005 IEEE International Conference on Machine Learning and Cybernetics. Guangzhou. China, vol.2:702~707, August 2005.
    [149]Chih-Min Lin, Te-Yu Chen, Wei-Zhe Fan, and Yueh-Feng Lee. Adaptive fuzzy sliding mode control for a two-link robot[C]. Proceedings of 2005 IEEE International Conference on Robotics and Biomimetics:581~586,2005.
    [150]Yanmin Wang, Yong Feng, and Xinghuo Yu. Fuzzy terminal sliding mode control of two-link flexible manipulators[C]. Proceedings of IECON 2008 IEEE 34th Annual Conference of Industrial Electronics:1620~1625, November 2008.
    [151]Wen-Jun Cao and Jian-Xin Xu. Dynamic modeling and adaptive VSC of two-link flexible manipulators using a hybrid sliding surface[C]. Proceedings of the 39th IEEE Conference on Decision and Control. Sydney. Auatralia, vol.5:5143~5148, December 2000.
    [152]刘克平.柔性体系统振动控制及约束柔性机械臂系统鲁棒控制研究[D].吉林大学博士学位论文,2002:23~24.
    [153]胡跃明.非线性控制系统理论与应用[M].北京:国防工业出版社,2005:18~34.
    [154]Park K B, Tsuiji T. Terminal sliding mode control of second-order nonlinear uncertain systems[J]. International Journal of Robust and Nonlinear Control,1999,9(11):769~780.
    [155]Shuanghe Yu, Xinghuo Yu, and Man Zhihong. Robust global terminal sliding mode control of SISO nonlinear uncertain systems[C]. Proceedings of the 39th IEEE Conference on Decision and Control. Sydney, Australia:2198~2203, December 2000.
    [156]吴国庆,孙汉旭,贾庆轩.基于气浮方式的空间机器人地面试验平台的设计与实现[J].现代机械,2007,(3):1~2.19.
    [157]张晓东.空间柔性机械臂控制策略研究[D].北京邮电大学博士学位论文,2009:59~67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700