用户名: 密码: 验证码:
基于迭代学习控制的几类列车自动控制问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:论文将迭代学习控制理论引入列车自动控制领域,研究了动力学模型的参数辨识,运行曲线跟踪控制,安全控制,以及进站停车控制等列控领域的重要问题,提出了多种新算法。在这些基于迭代学习控制的列控算法中,列车运行的重复性信息被充分挖掘和利用,因此控制性能可以随列车重复运行而逐步提高。
     现将论文的主要工作及创新点总结如下:
     第一,提出了列车动力学模型参数的迭代学习辨识算法。算法以实测数据为期望输出量,以待辨识参数为控制输入量,借助迭代学习辨识器不断更新待辨识参数,最终使该参数逼近期望值。通过严格的数学分析证明了待辨识参数误差的收敛性,随后通过实例仿真验证了算法的有效性。
     第二,提出了基于迭代学习控制的列车运行曲线跟踪控制算法。算法以期望的列车最优运行曲线为跟踪目标,利用前次运行时的速度跟踪偏差校正当前运行的控制量(牵引力或制动力),从而使得列车在重复运行过程中跟踪性能逐步提高。通过数学分析给出了跟踪误差收敛性定理。最后的实例仿真验证了所提算法的有效性。
     第三,分析了应用所提运行运行曲线跟踪控制算法时列车运行的安全性问题。通过对列车速度跟踪误差和位移跟踪误差的分析,给出了防止超速和追尾事故发生的充分性条件,然后以此为基础分析了列车最小追踪间隔问题。
     第四,提出了基于终端迭代学习控制的列车自动停车控制算法。算法依次选取初始制动位置,制动力,以及两者的组合作为控制量,给出了三种情形下的终端迭代学习控制算法并证明了停车误差的收敛性。在第三种算法中,同时选取系统的初始状态(初始制动位置)和外部输入信号(制动力)为控制量,以充分利用系统资源提高误差收敛速度,从理论上提出了一种终端迭代学习控制器设计的新方法。
     本文研究的基于迭代学习控制的列车自动控制算法,将列车控制问题由时间域推广到迭代域内解决,最大特点是可以使控制性能沿迭代轴逐步提高,弥补了现有的控制方法无法利用列车运行的重复性提高控制性能的缺陷。同时,文中部分算法还从理论上对迭代学习控制器的设计提出了改进。
ABSTRACT:
     This dissertation introduces iterative learning control (ILC) into automatic train control field and intensively studies several important problems, including dynamical model identification, trajectory tracking control, safety control and station stopping control. Some novel algorithms are proposed, which make full use of the repeatability of the train motion pattern in order that the control performance can be iteratively improved through the repetitive running cycles.
     The main works and contributions are summarized as following:
     1. An iterative learning identifier is developed to identify the parameters in the train dynamical model. The identifier has an ability to make the parameters converge to their actual values through repeated identifying trials where the experimental data serve as the desired outputs and the parameters to be identified serve as the control inputs. Both the theoretical analysis and simulation examples demonstrate the validity and effectiveness of the proposed identification method.
     2. An iterative learning control approach is proposed to address the trajectory tracking problem of a train operation. The ILC-ba33sed controller makes use of previous speed tracking error to modify the current control input (tration force or braking force). Therefore, the controlled train is guranteed to track the desired trajectory (usually from optimal scheduling) without deviation when the running cycle increases to infinity. Finally, the simulation examples verify the effectiveness of proposed algorithms.
     3. The safety issues under the ILC-based trajectory tracking algorithm are discussed in detail. With theoretical analysis of the speed and displacement tracking errors, the sufficient conditions to prevent overspeed and collision accidents are derived. Finally, the minimum headway problem is investigated.
     4. Three train station stop control algrithms based on terminal iterative learning control (TILC) are proposed. The initial braking point, the braking force and the combination of them are chosen as the control profile in turn, and the corresponding learning laws and convergence theorems are presented respectively for the three scenarios. In the 3rd scenario, the initial state (initial braking point) and the external input signal (the braking force) are chosen as the control input simultaneously, in order that the convergence speed is effectively increased. This provides a new structure of the terminal iterative learning controller.
     In these ILC-based train control algorithms, the control tasks are technically extended from the time domain to the iteration domain. Thus, the control performance can be effectively improved along the iteration axis by utilizing the obvious repeatability. This is a main priority compared with other control methods. Meanwhile, some proposed algorithms also make progress in ILC theory.
引文
[1]Z. Bien, and J.-X. Xu, Iterative learning control:analysis, design, integration and applications, Norwell, MA, USA, Kluwer Academic Publishers,1998.
    [2]J.-X. Xu, and Y. Tan, Linear and nonlinear iterative learning control. Springer-Verlag Berlin Heidelberg,2003.
    [3]M. Uchiyama, Formation of high-speed motion pattern of a mechanical arm by trial, Transactions of the Society of Instrumentation and Control Engineers,1978,14 (6),706-712 (in Japanese).
    [4]S. Arimoto, S. Kawamura, S. Miyazaki, Bettering operation of robots by learning, Journal of Robotic Systems,1984,1 (2),123-140.
    [5]S. Arimoto, Mathematical theory of learning with application to robot control, Adaptive and Learning Systems:Theory and Applications (K. S. Narendra, Ed.),1985,379-388, Yale University.
    [6]S. Arimoto, Robustness of learning control for robot manipulators, Proceeding of the 1990 IEEE International Conference on Robotics and Automation, Cincinnati, Ohio, USA,1990, 1528-1533.
    [7]S. Arimoto, T. Naniwa and H. Suzuki, Robustness of P-type learning control with a forgetting factor for Robotic Motions, Proceeding of 29th IEEE Conference of Decision and Control, Honolulu, Hawaii, USA,1990,2640-2645.
    [8]S. Arimoto, T. Naniwa, and H. Suzuki, Selective learning with a forgetting factor for robotic motion control, Proceeding of IEEE International Conference of Robotics and Automation, Sacramento, CA,1991,728-733
    [9]S. Arimoto, P. T. A. Nguyen, T. Naniwa and H. Suzuki, Learning of robot tasks on the basis of passivity and impedance concepts, Robots and Autonomous Systems,2000,32(2-3),79-87, 2640-2645.
    [10]S. R. Oh, Z. Bien, and I. H. Suh, An iterative learning control method with application for the robot manipulator, IEEE Journal of Robotics and Automation,1988,4 (5),508-514.
    [11]S.Kawamura, F. Miyazaki, and S. Arimoto, Realization of robot motion based on a learning method, IEEE Transactions on Systems, Man and Cybernetics,1988,18 (1),126-134.
    [12]P. Bondi, G. Casaline, and L. Gambardella, On the iterative learning control theory for robotic manipulators, IEEE Journal of Robotics and Automation,1988,4 (1),14-22.
    [13]T. Kuc, K. Nam, and J. S. Lee, An iterative learning control of robot manipulator, IEEE Transactions on Automatic Control,1991,7 (6),835-841.
    [14]M. Norrlof, An Adaptive Iterative learning control algorithm with experiments on an industrial robot, IEEE Transactions on Robotics and Automation,2002,18 (2),245-251.
    [15]D. S. Yoo, M. J. Chung and Z. Bien, Real-time implementation and evaluation of dynamic control algorithms for industrial manipulators, IEEE Transactions on Industrial Electronics, 1991,38(1),26-31.
    [16]D. W. Wang, A simple iterative learning controller for manipulators with flexible joints, Automatica,1995,10(33),1905-1907.
    [17]P. Lucibello, S. Panzier and G. Ulivi, Repositioning control of a two-link flexible arm by learning, Automatica,1997,33 (4),579-590.
    [18]M. Togai, and O. Yamano, Analysis design of an optimal learning control scheme for industrial robots:a discrete system approach. Proceeding of the 24th Conference of Decision and Control, Ft. Laudedale, FL,1985,1399-1404.
    [19]L. A. De, and S. Panzieri, An iterative scheme for learning gravity compensation in flexible robot arms, Automatica,1994,30 (6),993-1002.
    [20]J.-X. Xu, V. Badrinath,& Z.-H. Qu., Robust learning control for robotic manipulators with an extension to a class of non-linear systems, International Journal of Control,2000,73, 858-870.
    [21]J.-Y. Choi, and J.-S. Lee, Adaptive iterative learning control of uncertain robotic systems, IEE Proceedings of Control Theory and Applications,2000,147 (2),217-223.
    [22]P. Jiang, and R. Unbehauen, Robot visual servoing with iterative learning control, IEEE Transactions on Systems, Man, Cybernetics, Part A, Humans,2002,32 (2),281-287.
    [23]J. D. Ratcliffe, P. L. Lewin, E. Rogers, J. J. Hatonen, and D. H. Owens, Norm-Optimal Iterative Learning Control Applied to Gantry Robots for Automation Applications, IEEE Transactions on Robotics,22 (6),1303-1307.
    [24]D.-I. Kim and S. Kim, An iterative learning control method with application for CNC machine tools, IEEE Transactions on Industry Applications,1996,32 (1),66-72.
    [25]A. D. Barton, P. L. Lewin, and D. J. Brown, Practical implementation of a real-time iterative learning position controller, International Journal of Control,2000,73 (10),992-999.
    [26]D. D. Roover and O. H. Bosgra, Synthesis of robust multivariable iterative learning controllers with application to a wafer stage motion system, International Journal of Control,2000,73 (10),968-979.
    [27]S. Mishra, J. Coaplen, and M. Tomizuka, Precision positioning of wafer scanners segmented iterative learning control for nonrepetitive disturbances [application of control], IEEE Control Systems Magazine,2007,27 (4),20-25.
    [28]H. Havlicsek and A. Alleyne, Nonlinear control of an electrohydraulic injection molding machine via iterative adaptive learning, IEEE/ASME Transactions on Mechatronics,1999,4 (3),312-323.
    [29]F. Gao, Y. Yang, and C. Shao, Robust iterative learning control with applications to injection molding process, Chemical Engineering Science,2001,56 (24),7025-7034
    [30]邵诚,高福荣,最优迭代学习控制的鲁棒稳定性及其在注塑机控制中的应用,自动化学报,2003,29(1),72-79。
    [31]J. Y. Choi, and H. M. Do, A learning approach of wafer temperature control in rapid thermal processing system, IEEE Transactions on Semiconductor Manufacturing,2001,14 (1),1-10.
    [32]D. R. Yang, K. S. Lee, H. J. Ahn, and J. H. Lee, Experimental application of a quadratic optimal iterative learning control method for control of wafer temperature uniformity in rapid thermal processing, IEEE Transactions on Semiconductor Manufacturing,2003,16 (1),36-44.
    [33]J.-X. Xu, Y. Q. Chen, T. H. Lee, and S. Yamamoto, Terminal iterative learning control with an application to RTPCTD thickness control, Automatica,1999,35 (9),1535-1542.
    [34]D. Gorinevsky, Loop shaping for iterative learning control of batch process, IEEE Control Systems Magazine,2002,22 (6),55-65.
    [35]J.-X. Xu, Q. P. Qu, T. H. Lee, and S. Yamamoto, Iterative learning control with smith time delay compensator for batch processes, Journal of Process Control,2001,11 (3),321-328.
    [36]J.-X. Xu, T.-H. Lee, and Y. Tan, Enhancing trajectory tracking for a class of process control problems using iterative learning, Engineering Applications of Artificial Intelligence,2002,15 (1),53-64.
    [37]K. S. Lee and J. S. Lee, Iterative learning control-based batch process control technique for integrated control of end product properties and transient profiles of process variables, Journal of Process Control,2003,13 (7),607-621.
    [38]Z. Xiong, and J. Zhang, Batch-to-batch optimal control of nonlinear batch processes based on incrementally updated models, IEE Proceedings of Control Theory and Applications,2004, 151 (2),158-165.
    [39]J. Shi, F. R. Gao, and T.-J. Wu, Robust design of integrated feedback and iterative learning control of a batch process based on a 2D Roesser system, Journal of Process Control,2005,15 (8),907-924.
    [40]J. H. Lee and K. S. Lee, Iterative learning control applied to batch processes:An overview, Control Engineering Practice,2007,15 (10),1306-1318.
    [41]S. A. Saab, A stochastic iterative learning control algorithm with application to an induction motor, International Journal of Control,2004,77 (2),144-163.
    [42]W. Z. Qian, S. K. Panda, and J.-X.. Xu, Speed ripple minimization in PM synchronous motor using iterative learning control, IEEE Transactions on Energy Conversion,2005,20 (1), 53-61.
    [43]K. K. Tan, T. H. Lee, and H. X. Zhou, Micro-positioning of linear-piezoelectric motors based on alearning nonlinear PID controller, IEEE/ASME Transactions on Mechatronics,2002,6 (4), 428-436.
    [44]K. K. Tan, H. F. Dou, and Y. Q. Chen, and T. H. Lee, High precision linear motor control via relay-tuning and iterative learning based on zero-phase filtering, IEEE Transactions on Control System Technology,2001,9 (2),244-253.
    [45]N. C. Sahoo, J. X. Xu, and S. K. Panda, Low torque ripple control of switched reluctance motors usingiterative learning,2002, IEEE Transactions on Energy Conversion,16 (4), 318-326.
    [46]A. D. Barton, P. L. Lewin, and D. J. Brown, Practical implementation of a real-time iterative learning position controller, InternationalJournal of Control,2000,73 (10),992-999.
    [47]Y. Q. Chen and K. L. Moore, A practical iterative learning path-following control of an omni-directional vehicle, Asian Journal of Control,2002,4(1),90-98.
    [48]C. Mi, H. Lin, and Y. Zhang, Iterative learning control of antilock braking of electric and hybrid vehicles, IEEE Transactions on Vehicle Technology,2005,54 (2),486-494.
    [49]Z. S. Hou, and J.-X. Xu, Freeway traffic density control using iterative learning control approach, Proceeding of the 6th IEEE International Conference on Intelligent Transportation Systems, Shanghai, China, October 12-15,2003,1081-1086.
    [50]Z. S. Hou, and J.-X. Xu, The iterative learning control based traffic volume control approach via local ramp metering, Proceeding of the 44th IEEE Conference on Decision and Control and European Control Conference ECC 2005, Seville, Spain, December 12-15,2005, 2883-2888.
    [51]Z. S. Hou, J.-X. Xu, and H. W. Zhong, Freeway traffic control using iterative learning control based ramp metering and speed signaling, IEEE Transactions on Vehicular Technology,2007, 56 (2),466-477.
    [52]Z. S. Hou, J.-X. Xu, and J. W. Yan, An iterative learning approach for density control of freeway traffic flow via ramp metering, Transportation Research Part C,2008,16(1),71-97.
    [53]侯忠生,金尚泰,赵明,宏观交通流模型参数的迭代学习辨识方法,自动化学报,2008,34(1),64-71。
    [54]J.-I. Nagumo, and A. Noda, A learning method for system identification, IEEE Transactions on Automatic Control,1967,12 (3),282-287.
    [55]Y. Q. Chen, C. Y. Wen, H. F. Dou, and M. X. Sun, Iterative learning identification, Proceeding of the 36th IEEE Conference on Decision and Control, San Diego, CA, USA,1997, 4702-4707.
    [56]郭毓,申晓宁,胡维礼,一类线性时变系统组合自适应迭代学习辨识,控制与决策,2008,23(6),638-646。
    [57]M. X. Sun, and X. X. He, Iterative Learning Identification and Control of Discrete Time-varying Systems, Proceeding of the 26th Chinese Control Conference, Hunan, China, 2007,520-524.
    [58]P. J. Wu, and M. X. Sun, Two iterative learning identification algorithms for discrete time-varying systems, Proceeding of the 27th Chinese Control Conference, Kunming, China, 2008,91-95.
    [59]K. L. Moore, Iterative learning control, Applied and computational control, signals and circuits, Springer,2001.
    [60]Y. Q. Chen, C. Y. Wen, J.-X. Xu, and M. X. Sun, Extracting projectile's aerodynamic drag coefficient curve via high-order iterative learning identification, Proceeding of the 35th IEEE Conference on Decision and Control, Kobe,1996,3070-3071.
    [61]Y. Q. Chen, C. Y. Wen, J.-X. Xu, and M. X. Sun, High-order iterative learning identification of projectile's aerodynamic drag coefficient curve from radar measured velocity data, IEEE Transactions on Control Systems Technology,1998,6 (4),563-570.
    [62]Y. Q. Chen, C. Y. Wen, H. F. Dou, and M. X. Sun, Iterative learning identification of aerodynamic drag curve from tracking radar measurements, Control Engineering Practice, 1997,5(11),1543-1553.
    [63]S.-K. Han, Y.-H. Kim, and I.-J. Ha, Iterative identification of state-dependent disturbance torque for high-precision velocity control of servo motors, IEEE Transactions on Automatic Control,1998,43 (5),724-729.
    [64]B. Bukkems, D. Kostic, B. De Jager, and M. Steinbuch, Learning-based identification and iterative learning control of direct-drive robots, IEEE Transactions on Control Systems Technology,2005,13 (4),537-549.
    [65]M. X. Sun, Iterative learning identification for chaos communication, Proceeding of the 27th Chinese Control Conference, Kunming, China,2008,293-297.
    [66]S. S. Saab, W. G. Vogt, and M. H. Mickle, Robustness and convergence of P-type learning control, Proceeding of American Control Conference, San Francisco, CA, USA,1993,36-38.
    [67]S. S. Saab, On the P-type learning control, IEEE Transactions on Automatic Control,1994,39 (11),2298-2302.
    [68]C.-J. Chien, J.-S. Liu, A P-type iterative learning controller for robust output tracking of nonlinear time-varying systems, International Journal of Control,1996,64 (2),319-334.
    [69]Y. Q. Chen, C. Y. Wen, and M. X. Sun, Robust high-order P-type iterative learning controller using current iteration tracking error, InternationalJournal of Control,1998,68 (2),331-342.
    [70]J. D. Ratcliffe, J. J. Hatonen, P. L. Lewin, E. Rogers, T. J. Harte, and D. H. Owens, P-type iterative learning control for systems that contain resonance, International Journal of Adaptive Control and Signal Processing,2005,19(10),1099-1115.
    [71]J. Hauser, Learning control for a class of nonlinear systems, Proceeding of 26th IEEE Conference on Decision and Control, Los Angles, CA, USA,1987,859-860.
    [72]T. Sugie, and T. Ono, An iterative learning control law for dynamic systems, Automatica,1991, 27 (4),729-732.
    [73]G. Heinzinger, D. Fenwick, B. Paden, and F. Miyazaki, Stability of learning control with disturbance and uncertain initial conditions, IEEE Transactions on Automatic Control,1992, 37(1),110-114.
    [74]K.-H. Park, An average operator-based PD-type iterative learning control for variable initial state error, IEEE Transactions on Automatic Control,2005,50 (6),865-869.
    [75]S.-J. Yu, J.-H. Wu, and X.-W. Yan, A PD-type open-closed-loop iterative learning control and its convergence for discrete systems, Proceeding of 2002 International Conference on Machine Learning and Cybernetics, Beijing, China,2002,659-662.
    [76]孙明轩,黄宝健,张学智,非线性系统的PD型迭代学习控制,自动化学报,1998,24(5),711-714。
    [77]孙明轩,黄宝健,任意初态下不确定时滞系统的PD型迭代学习控制,控制理论与应用,1998,15(6),853-858。
    [78]C. K. Chen, and J. Hwang, PD-type iterative learning control for trajectory tracking of a pneumatic X-Y table with disturbance, Proceeding of 2004 IEEE International Conference on Robotics and Automation, New Orleans, LA, USA,2004,3500-3505.
    [79]Y. Q. Chen, and K. L. Moore, PI-type iterative learning control revisited, Proceeding of American Control Conference, Anchorage, Alaska, USA,2002,2138-2143.
    [80]皮道映,张政江,孙优贤,非线性系统开闭环PI型迭代学习控制的鲁棒性,浙江大学学报(工学版),2001,35(5),479-482。
    [81]K. H. Park, Z. Bien, and D. H. Hwang, A study on robustness of a PID-type iterative learning controller against initial state error, International Journal of Systems Science,1999,30 (1), 49-59.
    [82]A. Madady, PID type iterative learning control with optimal gains, International Journal of Control, Automation, and Systems,2008,6 (2),194-203.
    [83]Z. Bien, and K. M. Huh, High-order iterativel learning control algorithm, IEE Proceedings, Part D, Control Theory and Applications,1989,136 (3),105-112.
    [84]Y. Q. Chen, M. X. Sun, B. J. Huang, and H. F. Dou, Robust high order repetitive learning control algorithm for tracking control of delayed repetitive systems. Proceeding of 31st IEEE Conference on Decision and Control, Tucson, Arizona, USA,1992,2504-2510.
    [85]Y. Q. Chen, Z. M. Gong, and C. Y. Wen, Analysis of a high-order iterative learning control algorithm for uncertain nonlinear systems with state delays, Automatica,1998,34 (3), 345-353.
    [86]K. L. Moore, and Y. Q. Chen, On monotonic convergence of high order iterative learning update laws, Proceeding of 15th Triennial World Congress, Barcelona, Spain,2002.
    [87]M. X. Sun, and D. W. Wang, Analysis of nonlinear discrete-time systems with higher-order iterative learning control, Dynamic and Control,2004,11 (1),81-96.
    [88]S. Gunnarsson, and M. Norrlof, On the disturbance properties of high order iterative learning control algorithms, Automatica,2006,42 (11),2031-2034.
    [89]N. Amann, H. Owens, and E. Rogers, Iterative learning control for discrete-time systems with exponential rate of convergence, IEE Proceedings of Control Theory and Applications,1996, 143 (2),217-224.
    [90]D. W. Wang, Convergence and robustness of discrete time nonlinear systems with iterative learning control, Automatica,1998,34 (11),1445-1448.
    [91]J.-X. Xu, and Y. Tan, Robust optimal design and convergence properties analysis of iterative learning control approaches, Automatica,2002,38 (11),1867-1880.
    [92]K. L. Moore, Y. Q. Chen, and V. Bahl, Monotonically convergent iterative learning control for linear discrete-time systems, Automatica,2005,41 (9),1529-1537.
    [93]H.-S. Lee, and Z. Bien, A note on convergence property of iterative learning controller with respect to sup norm, Automatica,1997,33 (8),1591-1593.
    [94]林辉,王林,非线性系统闭环P型迭代学习控制的收敛性,控制理论与应用,1995,12(6),742-746。
    [95]皮道映,孙优贤,非线性时变系统开闭环P型迭代学习控制的收敛性,自动化学报,1999,25(3),351-354。
    [96]K. Lee, and Z. Bien, Study of robustness of iterative learning control with non-zero initial error, InternationalJournal of Control,1996,64 (3),345-359.
    [97]J.-X. Xu, and Z. H. Qu, Robust learning control for a class of non-linear systems, Proceeding of the 35 th IEEE Conference on Decision and Control, Kobe, Japan,1996,2484-2489.
    [98]Y. Q. Chen, C. Y. Wen, Iterative learning control:(convergence, robustness and applications), Lecture notes in control and information sciences,1999,248, Springer.
    [99]Y.-P. Tian, and X. H. Yu, Robust learning control for a class of nonlinear systems with periodic and aperiodic uncertainties, Automatica,2003,39 (11),1957-1966.
    [100]A. Tayebi, and M. B. Zaremba, Robust iterative learning control design is straightforward for uncertain LTI systems satisfying the robust performance condition, IEEE Transactions on Automatic Control,2003,48 (1),101-106.
    [101]J. X. Xu, and B. Visvanathan, Adaptive robust iterative learning control with dead zone scheme, Automatica,2000,36 (1),91-99.
    [102]J. H. Moon, T. Y. Doh, and M. J. Chung, A robust approach to iterative learning control design for uncertain systems, Automatica,1998,34 (8),1001-1004.
    [103]孙明轩,迭代学习控制系统的鲁棒性分析,科技通报,1996,12(4),198-203。
    [104]L. M. Hideg, Time delays in iterative learning control schemes, Proceedings of the 1995 IEEE International Symposium on Intelligent Control, Monterey, CA, USA,1995,215-220.
    [105]J.-X. Xu, Q. P. Hu, T. H. Lee, and S. Yamamoto, Iterative learning control with Smith time delay compensator for batch processes, Journal of Process Control,2001,11 (3),321-328.
    [106]M. X. Sun, and D. W. Wang, Initial condition issues on iterative learning control for non-linear systems with time delay, International Journal of Systems Science,2001,32 (11),1365-1375.
    [107]X.-D. Li, T. W. S. Chow, and J. K. L. Ho, Iterative learning control for a class of nonlinear discrete-time systems with multiple input delays, International Journal of Systems Science, 2008,39(4),361-369.
    [108]孙明轩,陈阳泉,非线性时滞系统的高阶迭代学习控制,自动化学报,1994,20(3),360-365。
    [109]孙明轩,不确定时滞系统的迭代学习控制算法(I),西安工业学院学报,1997,17(4),259-266。
    [110]孙明轩,不确定时滞系统的迭代学习控制算法(II),西安工业学院学报,1997,18(1),1-8。
    [111]方忠,陈彭年,时滞系统采样迭代学习控制,控制与决策,2001,16(6),869-872。
    [112]方忠,韩正之,陈彭年,一类时滞非线性系统的采样迭代学习控制,系统科学与数学,2004,24(4),564-570。
    [113]M. X. Sun, D. W. Wang, and G. Y. Xu, Sampled-data iterative learning control for SISO nonlinear systems with arbitrary relative degree, Proceeding of Amrican Control Conference, Chicago, Illinois, June,2000,667-671.
    [114]M. X. Sun, and D. W. Wang, Sampled-data iterative learning control for nonlinear systems with arbitrary relative degree, Automatica,2001,37 (2),283-289.
    [115]M. X. Sun, D. W. Wang, and Y. Y. Wang, Sampled-data iterative learning control with well-defined relative degree, International Journal of Robust and Nonlinear Control,2004,14 (8),719-739.
    [116]Y.-J. Pan, H. J. Marquez, T. W. Chen, Sampled-Data Iterative Learning Control for a Class of Nonlinear Networked Control Systems, Proceeding of American Control Conference, Minneapolis, Minnesota, USA, June,2006,3494-3499.
    [117]Z. H. Qu, An iterative learning algorithm for boundary control of a stretched string on a moving transporter, Proceeding of the 3rd Asian Control Conference, Shanghai,413-418.
    [118]H.-S. Ahn, Y. Q. Chen, and K. L. Moore, Iterative learning control:robustness and monotonic convergence for interval systems, Springer,2007.
    [119]M. Arif, T. Ishihara, and H. Inooka, Prediction-based Iterative Learning Control (PILC) for Uncertain Dynamic Nonlinear Systems Using System Identification Technique, Journal of Intelligent and Robotic Systems,2000,27 (3),291-304.
    [120]J.-X. Xu, and Y. Tan, A suboptimal learning control scheme for nonlinear system with time-varying parametric uncertainties, Journal of Optimal Control-Applications and Theory, 2001,22(3),111-126.
    [121]J.-X. Xu, and Y. Tan, A composite energy function-based learning control approach for nonlinear systems with time-varying parametric uncertainties, IEEE Transactions on Automatic Control,2002,47 (11),1940-1945.
    [122]Z. Geng, R. L. Carroll, and J. Xie, Two-dimensional model algorithm analysis for a class of iterative learning control systems, Interantional Journal of Control,1990,52 (4),833-862.
    [123]J. E. Kurek, M. B. Zaremba, Iterative learning control synthesis based on 2-D system theory, IEEE Transactions on Automatic Control,1993,38 (1),121-125.
    [124]N. Amann, D. H. Owens, and E. Rogers,2-D systems theory applied to iterative learning control systems, Proceeding of the 33rd Conference on Decision and Control, Lake Bruena Vista, FL, USA, December 1994,985-986.
    [125]T W. S. Chow, and Y. Fang, An iterative learning control method for continous-time systems based on 2-D systems theory, IEEE Transactions on Circuits and Systems,1998,45 (6), 683-689.
    [126]Y. Fang, and T. W. S. Chow,2-D analysis for iterative learning controller for discrete-time systems with variable initial conditions, IEEE Transations on Circuits and Systems I: Fundemental Theory and Applications,2003,50 (5),722-727.
    [127]X.-D. Li, T. W. S. Chow, and J. K. L. Ho,2-D system theory based iterative learning control for linear continuous systems with time delays, IEEE Transations on Circuits and Systems I: Regular Papers,2005,52 (7),1421-1430.
    [128]J. E. Kurek, Stability of nonlinear parameter-varying digital 2-D systems, IEEE Transactions on Automatic Control,1996,40 (8),1428-1432.
    [129]J.-X. Xu, Y. Tan, and T.-H. Lee, Iterative learning control design based on composite energy function with input saturation, Automatica,2004,40 (8),1371-1377.
    [130]K. L. Moore, M. Dahleh, and S. P. Bhattacharyya, Iterative learning control:a survey and new results, Journal of Robotic Systems,1992,9 (5),563-594.
    [131]J.-X. Xu, The frontiers of iterative learning control- part Ⅰ, Journal of Systems, Control and Information,2002,46 (2),63-72.
    [132]J.-X. Xu, The frontiers of iterative learning control-part Ⅱ, Journal of Systems, Control and Information,2002,46 (5),233-243.
    [133]J.-X. Xu, T. H. Lee, and H.-W. Zhang, Analysis and comparison of iterative learning control schemes, Engineering Applications of Artificial Intelligence,2004,17 (6),675-686.
    [134]J.-X. Xu, Recent Advances in Iterative Learning Control, Acta Automatica Sinica,2005,31 (1),132-142.
    [135]D. A. Bristow, M. Tharayil, and A. G. Alleyne, A survey of iterative learning control, IEEE Control Systems Magazine,2006,26 (3),96-114.
    [136]H. S. Ahn, Y. Q. Chen, and K. L. Moore, Iterative learning control:Brief Survey and Categorization, IEEE Transactions on Systems, Man and Cybernetics, Part C:Applications and Reviews,2007,37 (6),1099-1121.
    [137]方忠,韩正之,陈彭年,迭代学习控制新进展,控制理论与应用,2002,19(2),161-166。
    [138]李仁俊,韩正之,迭代学习控制综述,控制与决策,2005,20(9),961-966。
    [139]许建新,侯忠生,学习控制的现状与展望,自动化学报,2005,31(6),943-955。
    [140]K. L. Moore, Iterative learning control for deterministic systems, Springer-Verlag New York, Inc.1993.
    [141]孙明轩,黄宝健,迭代学习控制,北京:国防工业出版社,1999。
    [142]谢胜利,田森平,谢振东,迭代学习控制的理论与应用,北京:科学出版社,2005。
    [143]J.-X. Xu, and D. Q. Huang, Initial state iterative learning for final state control in motion systems, Automatica,2008,44 (2),3162-3169.
    [144]P. Lucibello, Point to point polynomial control of linear systems by learning, Proceeding of Conference on Decision and Control, Tucson, Arizona,1992,2531-2532.
    [145]P. Lucibello, S. Panzieri, and G. Ulivi, Repositioning control of a two-link flexible arm by learning, Automatica,1997,33 (4),579-590.
    [146]Y. Q. Chen, and J.-X. Xu, A high-order terminal iterative learning control scheme, Proceeding of 36th Conference on Decision and Control, San Diego, California, USA, December,1997, 3771-3772.
    [147]J.-X. Xu, Y. Q. Chen, T. H. Lee, and S. Yamamoto, Terminal iterative learning control with an application to RTPCVD thickness control, Automatica,1999,35 (9),1535-1542.
    [148]Y. Q. Chen, and J.-X. Xu, High-order terminal iterative learning control with an application to a rapid thermal process for chemical vapor deposition, In Iterative Learning Control Convergence, Robustness and Applications, Springer, New York, USA,1999,95-104.
    [149]L.-P. Zhang, and F.-W. Yang, Study on the application of iterative learning control to terminal control of linear time-varying systems, Acta Automatica Sinica,2005,31 (2),309-313.
    [150]G. Gauthier, and B. Boulet, Convergence analysis of terminal ILC in the z domain, Proceedings of the 2005 American Control Conference, Portland, Oregon, USA,2005, 184-189.
    [151]G. Gauthier, and B. Boulet, Terminal Iterative Learning Control Applied to Thermoforming Machine Reheat Phase, Proceeding of 2006 IEEE International Symposium on Industrial Electronics, Montreal, Quebec, Canada, July 2006,353-357.
    [152]G Gauthier, and B. Boulet, Robust design of terminal ILC with H∞ mixed sensitivity approach for a thermoforming oven, Journal of Control Science and Engineering,2008,2,1-6.
    [153]L. A. Zadeh, Fuzzy sets, Information and Control,1965,8 (3),338-353.
    [154]L. A. Zadeh, Outline of a new approach to the analysis of complex systems and decision processes, IEEE Transactions on Systems, Man and Cybernetics,1973,3 (1),28-44.
    [155]E. Mamdani, and S. Assilian, An experiment in linguistic synthesis with a fuzzy logic controller, International Journal of Man-Machine Studies,1975,7 (1),1-13.
    [156]E. Mamdani, Advances in the linguistic synthesis of fuzzy controllers, International Journal of Man-Machine Studies,1976,8 (6),669-678.
    [157]J. H. Holland, Adaptation in natural and artificial systems, The MIT Press,1992.
    [158]W. S. McCulloch, and W. H. Pitts, A logical calculus of the ideas immanent in nervous activity, Bulletin of Mathematical Biophysics,1943,5,115-133.
    [159]M. Minsky, and S. Papert, Perceptrons:an introduction to computational geometry, The MIT Press,1969.
    [160]J. J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proceedings of the National Academy of Sciences of the USA,1982,79 (8), 2554-2558.
    [161]侯忠生,非线性系统参数辨识、自适应控制及无模型学习自适应控制,沈阳:东北大学博士论文,1994。
    [162]侯忠生,无模型学习自适应控制理论,哈尔滨:哈尔滨工业大学博士后科学研究报告,1997。
    [163]侯忠生,非参数模型及其自适应控制理论,北京:科学出版社,1999。
    [164]侯忠生,无模型自适应控制的现状和展望,控制理论与应用,2006,23(4),586-592。
    [165]R. M. Goodall, and W. Kortum, Mechatronic developments for railway vehicles of the future, Control Engineering Practice,2002,10 (8),887-898.
    [166]E. C. Schmidt, Freight train resistance, its relation to average car weight, University of Illinois Engineering Experiment Station Bulletin,1910,43.
    [167]E. C. Schmidt, and H. H. Dunn, Passenger train resistance, University of Illinois Engineering Experiment Station Bulletin,1916,110.
    [168]W. J. Davis, Tractive resistance of electric locomotives and cars, General Electric Review, 1926,29 (10),685-708.
    [169]American Railway Engineering Association, Manual for Railway Engineering (Fixed Properties), IL,16-2-2,1970, Chicago.
    [170]W. W. Hay, Railroad Engineering,2nd ed, John Wiley and Sons,1982.
    [171]K. Ghoseiri, F. Szidarovszky, and J. A. Mohammad, A multi-objective train scheduling model and solution, Transportation Research Part B,2004,38 (10),927-952.
    [172]P. Kokotovic, and G. Singh, Minimum-energy control of a traction motor, IEEE Transactions on Automatic Control,1972,17 (1),92-95.
    [173]J. X. Cheng and P. Howlett, Application of critical velocities to the minimization of fuel consumption in the control of trains, Automatica,1992,28 (1),165-169.
    [174]J. X. Cheng, and P. Howlett, A note on the calculation of optimal strategies for the minimization of fuel consumption in the control of trains, IEEE Transactions on Automatic Control,1993,38 (11),1730-1734.
    [175]P. Howlett, I. Milroy and P. Pudney, Energy-efficient train control, Control Engineering Practice,1994,2 (2),193-200.
    [176]P. Howlett, Optimal strategies for the control of a train, Automatica,1996,32 (4),519-532.
    [177]H. S. Hwang, Control strategy for optimal compromise between trip time and energy consumption in a high-speed railway, IEEE Transactions on Systems, Man and Cybernetics, Part A,1998,28 (6),791-802.
    [178]E. Khmelnitsky, On an optimal control problem of train operation, IEEE Transactions on Automatic Control,2000,45 (7),1257-1266.
    [179]Y.-H. Chang, C.-H. Yeh, and C.-C. Shen, A multiobjective model for passenger train services planning:application to Taiwan's high-speed rail line, Transportation Research Part B,2000, 34 (2),91-106.
    [180]R. Liu, and I. Golovitcher, Energy-efficient operation of rail vehicles, Transportation Research Part A,2003,37 (10),917-932.
    [181]X. Zhuan, and X. Xia, Cruise control scheduling of heavy haul trains, IEEE Transactions on Control Systems Technology,2006,14 (4),757-766.
    [182]X. Zhuan, and X. Xia, Optimal scheduling and control of heavy haul trains equipped with electronically controlled pneumatic braking systems, IEEE Transactions on Control Systems Technology,2007,15 (6),1159-1166.
    [183]M. A. Murtaza, and S. B. L. Garg, Dynamic-response of a railway vehicle air brake system, InternationalJournal of Vehicle Design,1989,10 (4),481-496.
    [184]A. D. Cheok, and S. Shiomi, A fuzzy logic based anti-skid control system for railway applications, Proceedings of the Second International Conference on Knowledge-Based Intelligent Electronic Systems, Adelaide, Australiar, 1998,195-201.
    [185]A. D. Cheok, and S. Shiomi, Combined heuristic knowledge and limited measurement based fuzzylogic antiskid control for railway applications, IEEE Transactions on Systems, Man and Cybernetics Part C,2000,30 (4),557-568.
    [186]P.Gruber and M. Bayoumi, Suboptimal control strategies for multilocomotive powered trains, IEEE Transactions on Automatic Control,1982,27 (3),536-546.
    [187]M. Chou, and X. Xia, Optimal cruise control of heavy-haul trains equipped with electronic controlled pneumatic brake systems, Control Engineering Practice,2007,15 (5),501-509.
    [188]X. Zhuan, and X. Xia, Optimal scheduling and control of heavy haul trains equipped with electronically controlled pneumatic braking systems, IEEE Transactions on Control Systems Technology,2007,15 (6),1159-1166.
    [189]X. Zhuan, and X. Xia, Speed regulation with measured output feedback in the control of heavy haul trains, Automatica,2008,44 (1),242-247.
    [190]C. D. Yang, and Y. P. Sun, Mixed H2/H∞ cruise controller design for high speed trains, InternationalJournal of Control,2001,74 (9),905-920.
    [191]武妍,施鸿宝,基于神经网络的地铁列车运行过程的集成型智能控制,铁道学报,2000,22(3), 10-15。
    [192]S. Sekine, and M. Nishimura, Application of fuzzy neural network control to automatic train operation, Proceeding of 1995 IEEE International Conference on Fuzzy Systems,1995,39-40.
    [193]Rail Transit Vehicle Interface Standards Committee of the IEEE Vehicular Technology Society, IEEE Std 1474.1-1999, IEEE Standard for Communications-Based Train Control (CBTC) Performance and Functional Requirements,3 Park Avenue, New York, NY 10016-5997, USA, The Institute of Electrical and Electronics Engineers, Inc,1999.
    [194]傅世善,闭塞与列控概论,北京:中国铁道出版社,2006。
    [195]唐涛,黄良骥,列车自动驾驶系统控制算法综述,铁道学报,2003,25(2),98-102。
    [196]殷原,刘澜,张金阁,列车进站提前减速初探,交通运输工程与信息学报,2007,5(2),84-88。
    [197]J.-X. Xu, W. Wang, and D. Q. Huang, Iterative Learning in Ballistic Control, Proceedings of American Control Conference, New York City,2007,1293-1298.
    [198]饶忠,列车牵引计算,北京:中国铁道出版社,2006。
    [199]国家铁道试验中心,环线主要数据,(2009-6-2), http://home.rails.com.cn/dj/zysj.htm.
    [200]J. M. Ortega, and W. C. Rheinboldt, Iterative solution of nonlinear equations in several variables, Academic Press,1970.
    [201]C. S. Chang, and S. S. Sim, Optimising train movements through coast control using genetic algorithms, IEE Proceedings Electric Power Applications,1997,144 (1),65-73.
    [202]D. Frylmark, and S. Johnsson, Automatic slip control for railway vehicles, Master's thesis, Linkopings university, Sweden,2003,21-22.
    [203]H. Oshima, S. Yasunobu, and S.-I. Sekino, Automatic train operation system based on predictive fuzzy control, Proceedings of the International Workshop on Artificial Intelligence for Industrial Application,1988,485-489.
    [204]S. J. Huang, and S. L. Her, Fuzzy control of automatic train operation system, International Journal of Modeling and Simulation,1997,17 (2),143-150.
    [205]C. S. Chang, and D. Y. Xu, Differential evolution based tuning of fuzzy automatic train operation for mass rapid transit system, IEE Proceedings Electric Power Applications,2000, 147 (3),206-212.
    [206]A. Fay, A fuzzy knowledge-based system for railway traffic control, Engineering Applications of Artificial Intelligence,2000,13 (6),719-729.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700