用户名: 密码: 验证码:
Ti-15-3的两段超塑性行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超塑性变形模式严重影响到合金的超塑性能,本文以未经任何处理的粗晶板材Ti-15-3为研究对象,采用应变速率变化的两段超塑变形法,系统地探索了该合金在β转变温度附近的超塑性行为,研究第一段变形的应变速率和应变量对第二段变形的影响,探索提高超塑性的连续变形条件。
     进行两段拉伸实验,第一段的应变速率控制为0.1和0.01s-1,应变量设定为0.2、0.3、0.5与0.6;第二段分别以3×10-4、1×10-3、3×10-3s-1的应变速率进行超塑性拉伸。实验结果显示,在780℃、不同变形条件下的两段拉伸变形对第二阶段m值影响不大,两段超塑性的伸长率明显好于一段超塑性,当第一段的应变速率为0.01s-1时,初始应变量为0.2、第二段应变速率为3×10-4s-1时伸长率达到最大值为345%,和恒应变速率相比,伸长率提高了93%。而在700℃和850℃下,两段拉伸变形的伸长率均小于一段拉伸变形。
     变形条件对晶粒尺寸具有很大的影响。当应变速率较低时,动态再结晶主要是通过在晶界的弓出机制形核生成亚晶粒,应变速率越小,所产生的再结晶晶粒越小;780℃下晶粒尺寸随着变形程度增大而增大,伸长率随着变形程度的增大而减小。
The superplasticity of titanium alloy is siginificantly affected by deformation conditions. In this paper, in order to understand the superplasticity of coarse grained Ti-15-3 around the beta transus temperature, strain-rate-step tests of two-stage deformation method were carried out. The effect of the strain rate and the strain in the first stage on the deformation behavior of the second stage is investigated. The purpose of the paper is to develop a low-cost method for superplastic forming of Ti-15-3.
     In the two stages strain-rate step tests, the strain rate is 0.1 and 0.01s-1, and the strain is 0.2、0.3、0.5 and 0.6 in the first stage respectively. In the second stage, the strain rate is 3×10-4、1×10-3、3×10-3s-1 respectively. The strain rate sensitivity m obtained from the second stage deformation is found independent on the first stage deformation conditions. At 780℃, when the strain rate is 0.01 s-1 at the first stage, and the strain rate is 3×10-3s-1 at the second stage, the elongation reaches the maximum value of 345%, exceeding 93% than that under the constant strain rate. At 700 and 850℃, the elongation under the two stages deformation is lower than that under the one strain rate deformation.
     Grain size is largely affected by deformation condition. When deformed at lower strain rate, the fine grain is developed by the dynamic recrystallization nucleation at the grain boundary using the grain boundary bulging mechanism. The dynamic recrystallization become easier with the strain rate decreasing, the grain size is finer. At 780℃, the grain size is larger and the elongation is smaller as the strain at the first stage is larger.
引文
[1]张喜燕,赵永庆,白晨光.钛合金及应用[M].北京:化学工业出版社,2005:287~302.
    [2] C.莱茵斯,M.皮特尔斯.钛与钛合金[M].陈振华译.北京:北京化学出版社,2005:292~306.
    [3] Bania P J. Beta titanium alloys and their role in the titanium industry [J]. JOM,1994, 46(7):16~19.
    [4] D Eylon. In: S Fujishiro, D Eylon, T Kishi(Eds.). Metallurgy and Technology of Practical Titanium Alloys [J], TMS, Warrendale, PA,1994:29~34.
    [5] Weiss I, Semiatin S L. Thermomechanical processing of beta titanium alloys - an overview [J]. Mater. Sci. Eng.,1998,A243:46~65.
    [6] Bania P J, Lenning G A, Hall J A. Development and properties of Ti-15V -3Al - 3Sn - 3Cr [J]: Beta Titanium Alloys in the 1980’s [M]. New York: American Institute of Metallurgical and Petroleum Engineer, Inc., 1984:209~228.
    [7] H W Rosenberg. In: R R Boyer, H W Rosenberg (Eds.), Beta Titanium Alloys in the 1980’s TMS, Warrendale, PA, 1984:145~160.
    [8] R R Boyer, G Lütjering. In: I.Weiss, R Srinivasan, P J Bania, D Eylon, S L Semiatin (Eds.), Advances in the Science and Technology of Titanium Alloy Progressing, TMS, Warrendale, PA, 1997:349~367.
    [9] P K Poulose, M A Imam. In: PA .Blenkinsop, W J Evans, H M Flower (Eds.), Titanium’95: Science and Technology, institute of Metals, London, 1996:988~995.
    [10] M A.Imam, P K Poulose, B B Rath. In: F H Froes, I. Caplan (Eds.), Titanium’92:Science and Technology, TMS, Warrendale, PA, 1993:177~184.
    [11] T Suzuki, N Niwa, K Goto, M Kobayashi, T Moroyama, H Takatori. In:PA. Blenkinsop, W. J. Evans, H M Flower (Eds.), Titanium’95: Science and Technology, institute of Metals, London, 1996:1294~1301.
    [12] K Ameyama, T Inaba, K Hirota, K Hirai, M Tokizane. In:F H Froes, I Caplan(Eds.), Titanium’92: Science and Technology, TMS, Warrendale, PA, 1993:169~176.
    [13] C Ouchi, H Suenaga, Y kohasaka. In:P Lacommbe,R Tricot,G Beranger(Eds.),Sixth World Conference on Titanium,Societe Francaise de Metallurgie, Les Ulis Cedex,France, 1988:819~824.
    [14]陈玉文.β钛合金及其在宇航工业中的应用[J].稀有金属,1996,20(4):297~300.
    [15]杨丽芳.航空用的一种新材料Ti-15-3合金的发展与性能[J].稀有金属材料与工程,1987(5):12~16.
    [16]沙学爱,王庆如,李兴无.航空用高强度结构钛合金的研究及应用[J],稀有金属,2004(28):239~242.
    [17]王庆如,张庆玲,陈玉文等.Ti-15-3钛合金的应用研究[J].材料工程,1996(12):16~19.
    [18]王庆如,张庆玲,陈玉文等.Ti-15-3合金的超塑性及应用[J].材料工程,1998(2):9~12.
    [19] T Furuhara, T Maki, T Makino. Microstructure control by thermomechanical processing inβ- Ti-15-3 alloy [J]. Materials Processing Technology,2001:318~323.
    [20] Srinivasan R, Weiss I. In: Eylon D , Boyer R R, Koss D A(Eds.), Beta Titanium Alloys in the 1990’s, The Minerals Metals & Material Society,1993:283~295.
    [21] Hamilton CH. In: Suphal Pagrawal eds. Superplastic forming [C]. Metals Park, Ohio: American Society for Metals,1985:13~22.
    [22]王庆如,张庆玲,魏寿庸等.Ti-15-3合金的性能数据[J].材料工程,1996(11):17~21.
    [23]王庆如,马济民,张庆玲等.Ti-15-3合金时效性能研究[J].航空材料学报,1998(18):7~14.
    [24]潘雅琴,杨昭苏.Ti-15-3合金的超塑性[A].第七届全国钛及钛合金学术交流会文集[C].上海:上海钢铁研究所,1990:513~519.
    [25]李才巨,顾家琳,刘庆.Ti-15-3合金的超塑行为研究[J].材料科学与工艺,2007(15):319.
    [26]陈慧琴,林好转,郭灵等.钛合金热变形机制及微观组织演变规律的研究进展[J].材料工程,2007:60~64.
    [27]刘勤,金属的超塑性[M].上海:上海交通大学出版社,1989:1~2.
    [28]何景素,王燕文,金属的超塑性[M].北京:科学出版社,1993.
    [29] Ashby, M F, Verrall R A. Diffusion-Accommodated Flow and Superplasticity[J]. Acta Metallurgica, 1973(21).149~163.
    [30]文九巴等.超塑性应用技术[M].北京:机械工业出版社,2005:16~24.
    [31]李超.金属学原理[M].哈尔滨:哈尔滨工业大学出版社,1989:342~347.
    [32] Ohyama H, Ashida Y. Estimation of recrystallized grain size under continuous annealing of cold-rolled alloy strips [J]. ISIJ Int, Sepecial Issue on Recent Advances on Titanium Technology,1991:799~806.
    [33]于振涛,周廉,邓炬等.Ti-2Al-2.5Zr合金再结晶特性及动力学机制[J].稀有金属材料与工程,1999(28):340~343.
    [34]李楠,刘天模,刘宇等.室温压缩AZ31镁合金的再结晶动力学[J].机械工程材料,2008(32):10~12.
    [35]彭伟平,彭彩虹,李培杰等.AZ31B镁合金再结晶过程的动力学[J].中国有色金属学报,2006(16):1724~1729.
    [36]陈浦泉.组织超塑性[M].哈尔滨:哈尔滨工业大学出版社,1988:19~21.
    [37] J C Tan, M J Tan. Superplasticity in a rolled Mg-3Al-1Zn alloy by two-stage deformation method [J]. Scripta Materialia,2002(47):101~106.
    [38] J C Tan, M J Tan. Dynamic continuous recrystallization characteristics in two-stage deformation of Mg-3Al-1Zn alloy sheet [J]. Scripta Materialia,2002(47):101~106.
    [39]万菊林.非理想制造材料超塑性变形的研究[D].北京:清华大学,1995:143.
    [40]李才巨,顾家琳,刘庆.Ti-15-3钛合金的超塑性[J].航空材料学报,2003(23):52~58.
    [41]唐捷,刘伟,顾家琳等.Ti-15-3合金超塑性变形及微观组织演变[J].稀有金属,2006(30):577~581.
    [42]林兆荣.金属超塑性成形原理及应用[M].北京:航空工业出版社,1990:2~7.
    [43]李萍,薛克敏,吕炎等.Ti-15-3合金热变形实验研究[J].哈尔滨工业大学学报,2000(32):45~47.
    [44]宋玉泉,程永春,刘术梅.超塑性拉伸变形应变速率敏感性指数的力学解析[J]机械工程学报,2001,37(3):15~21.
    [45]宋玉泉,管志平,李志刚等.应变速率敏感性指数的理论和测量规范[J].中国科学(E辑:技术科学),2007,37(11):1363~1382.
    [46] E Sato, K Kuribayashi, R Horiuchi. Effect of Cr bearing on the grain growth during superplastic deformation in Al-33%Cu eutectic alloy [J]. J. Japan Inst. Metals, 1989, 53:885~891.
    [47]杨瑞成,丁旭,季根顺等.机械工程材料[M].重庆:重庆大学出版社,2004:15~21.
    [48]余永宁.金属学原理[M].北京:冶金工业出版社,2000:428~469.
    [49] Langdon T. G. Unified approach to grain boundary sliding in creep and superplasticity[J]. Acta Metall Mater 1994,42:2437~2443.
    [50] Hiromi Miura, Masayoshi Ozama, Ryo Mogawa, Taku Sakai. Strain-rate effect on dynamic recrystallization at grain boundary in Cu alloy bicrystal[J]. Sripta Materialia,2003:1501~1505.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700