用户名: 密码: 验证码:
固体火箭冲压发动机绝热层烧蚀及结构参数对烧蚀的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体火箭冲压发动机以其高速、大比冲和机动能力强的特点成为了现代战争中极具发展前景的武器动力装置之一。热防护是固冲火箭发动机研制过程中的一大关键技术问题,也是多年来制约固冲发动机发展的问题。开展固冲发动机烧蚀机理研究对推动固冲发动机发展具有相当的理论和工程意义。
     本文以采用硅基绝热层的冲压发动机为研究对象,以理论分析,数值计算和试验分析相结合的方法对硅基绝热层的烧蚀问题进行研究,并以相关研究结论为依据对进气道进行了优化设计,使进气道获得最大总压恢复和最小绝热层烧蚀率。
     首先,以经典传热理论为基础建立了硅基绝热层热化学烧蚀模型。二维数值模拟结果表明温度控制了发动机绝热层的烧蚀速度。温度的不均匀性分布是导致烧蚀坑出现的主要原因之一。以CVT插值方法实现了流固耦合的边界数据交换,对发动机烧蚀问题进行了三维数值模拟。在进气道进口两侧的高温区逐渐形成了由化学反应引起的烧蚀坑。而在补燃室下游区域,由于近壁面气流温度下降较快,烧蚀则不明显。当碳化层形成后,绝热层烧蚀现象增速很快。在碳化层形成后,在稳定的流场环境下,化学烧蚀即趋于稳定。
     根据硅基绝热层的特点,分析了硅基绝热层烧蚀的三种形式,包括气动冲蚀,颗粒剥蚀和热化学烧蚀。在硅化物生成率是稳态的假设条件下,建立了补燃室绝热层的烧蚀模型。对试车试验工况下的发动机进行了数值模拟,分别计算了化学烧蚀率,气动冲蚀率和颗粒剥蚀率。综合计算结果,对于硅基绝热层,在硅化物形成后发生的气动冲蚀率是造成补燃室绝热层失效的主要原因之一。气动冲蚀效应较强的区域是进气道开口后半段两侧及紧靠进气道的部分区域。
     分析了颗粒相与壁面碰撞后的运动形式,分别模拟了固相与液相颗粒对绝热层的影响。颗粒相对绝热层的影响主要是强化绝热层传热和颗粒冲蚀两个方面。对绝热层热增量有较大影响的颗粒是粒径较大,速度较快的液相颗粒,与壁面碰撞后的运动形式为飞溅形态。对颗粒冲蚀效应有较大影响的仍然是粒径较大的颗粒。颗粒冲蚀较严重的区域是补燃室的中部。
     研究了发动机结构特征参数对绝热层烧蚀的影响。燃气发生器喷口结构对于补燃室的烧蚀形态有着一定的影响。相比五喷口燃气发生器,采用单一喷口烧蚀率较低。燃气发生器间的喷口间距增大对气流冲蚀的影响不大,但化学烧蚀率提高较大。
     进气道进气角度对气动冲蚀率有着较大影响。在其他进口条件不变的情况下,进气角度较小时,气流冲蚀影响区域在轴向上范围扩大,但是周向影响区域减小,最大气流冲蚀率有小幅减弱;近壁面燃气流温度较高,绝热层表面化学反应速度较快,使得化学烧蚀率提高。进气道出口面积缩小使得空气来流速度提高,气流冲蚀率形态呈现出影响范围沿轴向较长的特点,最大冲蚀率也出现了小幅下降。
     在对发动机参数对进气道的影响分析基础上,对进气道进行了优化设计。进气道内通道设计中,以补燃室的绝热层是气动冲蚀率与内通道长度为优化目标对内通道进行了优化设计。优化分析结果表明,内通道平直扩张段对内通道长度的影响是单调的。
Solid Ramjet features with its high velocity, high specific impulse and wellmaneuverability. These merits make it a good candidate of weapon power system.Thermo Protection is a key technology in ramjet development. And it’s also the bottleneck in solid ramjet research. So, the research on ramjet insulator ablation would makesignificant progress on ramjet research.
     In this paper, one kind of silica insulators has been taken into research. Approachesof theory analysis, numerical computation, and experimental study have been applied inthis research. And with the conclusion of this research, the ramjet inlet has been optimaldesigned, in order to maximize total pressure recovery and minimize insulator ablationrate.
     First, thermo-chemical ablation model has been established based on classicalthermo transfer theory. A2-D numerical simulation result shows that the temperaturecontrols insulator ablation rate. And non-uniform temperature distribution inducesablation holes on insulator surface. With the method of CVT, Constant-VolumeTetrahedron, boundary condition problems on fluid-solid interface have been solved.And a3-D numerical simulation has been computed. On the two sides of each inlet,there are two zones of high temperature, and also two ablation holes. The temperature ofzones that downstream of the combustion chamber declines quickly. And insulatorablation on these zones is not such serious as zones besides the inlet. The ablation rategets bigger while the char layer generates. And also chemical ablation rate wouldgradually approach a constant after char layer generates.
     According to silica insulator ablation features, three kinds of insulator ablationmechanics have been analyzed, including ablation due to gas blowing, particleimpingement and thermo-chemical ablation. Based on the assumption of stable silicidesgeneration rate, the insulator ablation model has been established. It is calculated thechemical ablation rate, gas-bolowing ablation rate and particle erosion rate under acertain condition. The numerical simulation result shows that, among these3mechanics,gas blowing is the main effect causing TPS failure. The zones besides inlet anddownstream the combustion chamber are seriously ablated. The gas temperature is veryhigh in this zone.
     The particle movement after impingement has been analyzed. The effect of solidparticles and liquid particles to insulator ablation has been argued. Heat transfer andparticle erosion are the main particle effects. The liquid particles, with high speed andlarge particle diameter, strengthen insulator heat transfer. After impingement, rather thanadhering on the insulator, they all split into small particles, and spray out. Also, particlesof large diameter charge the particle erosion. The zones with serious particle erosion locate at the centry of the combustion chamber.
     Ramjet structure parameters’ effect to insulator ablation has been argued. It isfound that the structure of gas generator outlet affects insulator ablation. The insulatorablation of the one having only one jet on gas generator declines while compared to theone having5jets. The zone with most serious ablation moves to the downstream of thecombustion chamber and is far from the inlet. The distance of two neighbor jets haslittle affect to ablation due to gas blowing, but heavily affects the chemical ablation.
     The inlet angle affects ablation due to gas blowing. Small inlet angle makes themaximum ablation rate decreases. Small inlet angle also makes temperature of the gas,adjacent to the chamber wall, increases. But this makes the chemical ablation rate getlarger. Inlet area reducing enhances the velocity of air flow. And this makes themaximum ablation rate decreases.
     Based on the conclusions of other ramjet structure parameters’ effects on inlet, theinlet has been optimal designed. Minimizing gas-blowing ablation rate and the tunnellength are taken as two optimal targets in inner tunnel design. The optimal results shows,the length of flat tunnel has little affect on the tunnel length. Inlet angle affects both theablation rate and inlet inner tunnel length.
引文
[1]叶定友.固体火箭冲压发动机的若干技术问题[J].固体火箭技术.2007.Vol.30(6).470~473.
    [2] P.F.Melia. Flow and ablation patterns in Titan Ⅳ SRM aft closures [R].AIAA95-2878. San Jose, CA: United Technologies, Chemical Systems Division.1995.
    [3] Ronald Fry S. A century of ramjet propulsion technology evolution [J]. Journalof Propulsion and Power.2004.20(1).38.
    [4] Krishnan S., Philmon George. Solid fuel ramjet combustor design [J]. Progressin Aerospace Sciences.1998.34(3).219~256.
    [5] Veraar R. G., Elands P. J. M. Overview of the Swedish-Dutch Co-operationprogramme on solid fuel ramjet propelled projectiles [C].18th InternationalSymposium on Ballistics.1999.
    [6] Ronald G. V. A. A computer program for flight performance prediction of solidfuel ramjet propelled projectiles [C].15th International Symposium on Ballistics.1995.
    [7] Stockenstrom A. Numerical model for analysis and specification of a ramjetpropelled artillery projectile [C].19th International Symposium on Ballistics.2001.
    [8]曹军伟.空空导弹动力装置现状与展望[C]中国宇航学会固体火箭推进专业委员会2001年学术交流论文.2001.
    [9]胡昌宇.冲压发动机研制分析及国内外研制装备情况[C]中国宇航学会固体火箭推进专业委员会2000年学术交流论文.2000.
    [10]王志吉,罗振兵,胡建新.国外固体火箭冲压发动机研制现状与发展趋势[J].湖北航天科技.2002.5).1~5.
    [11]阎大庆.固体火箭冲压发动机技术进展[C]中国宇航学会固体火箭推进专业委员会2001年学术交流论文.2001.
    [12] Waltrup Paul J., White Michael E., Zarlingo Frederick et al. History of Ramjetand Scramjet Propulsion Development for U.S. Navy Missiles [J]. JohnsHopkins APL Technical Digest.1997.18(2).234~243.
    [13]尹健,熊翔,张红波et al.固体火箭发动机喷管用C/C复合材料的研究进展[J].粉末冶金材料科学与工程.2003.8(3).231~236.
    [14]时圣波,梁军,方国东.热物理性能对高硅氧/酚醛复合材料烧蚀性能的影响[J].固体火箭技术.2011.34(3).354~359.
    [15]付东升,奚建明,李媛. EPDM绝热材料耐烧蚀性能影响因素研究进展[J].化学推进剂与高分子材料.2007.5(5).12~15.
    [16]陈春娟,马国富.改善固体火箭发动机内绝热层抗冲刷性能研究进展[J].宇航材料工艺.2004.1).7~11.
    [17] K.K.Kuo, al et. A comprehensive Theoretical Model for C/C Composite NozzleRecession [J]. Combustion Science and Technology.1985.145~164.
    [18] Milos F. S., Marschall J. Thermochemical ablation model for TPS materials withmultiple surface constituents [R].AIAA94-2042. NASA Ames Research Center.1994.
    [19] W.C.Milhoan, V.T.Pham. Doulble type a reinforced carbon-carbon convetivemass loss [R].JSC26651.1994.
    [20]方丁酉,夏智勋,姜春林. C/C喉衬稳态烧蚀的工程计算[J].固体火箭技术.2000.23(2).24~27.
    [21]付鹏,蹇泽群,张钢锤等.发动机喷管喉衬烧蚀及热结构工程计算[J].固体火箭技术.2005.28(1).15~19.
    [22] T.S.Romanos, G.J.Nacouzi, G.A.Payne. Estimation of flight enhanced erosion ofbooster internal insulation [R].AIAA95-3019. San Bernardino: TRW StrategicSystems Division.1995.
    [23]徐善玮,侯晓,张宏安.固体火箭发动机内绝热层烧蚀质量损失计算[J].固体火箭技术.2003.26(3).28~31.
    [24] Robert L. Potts. Application of integral methods to ablation charring erosion, Areview [J]. Journal of Spacecraft and Rockets.1995.32(2).200~209.
    [25] Y.Fabignon. Ablation rate calculation of thermal insulations in segmented solidpropellant rocket motors [R].AIAA93-1884.1993.
    [26] F.S.Milos, Y.-K.Chen. Comprehensive model for multicomponent ablationthemochemistry [R].AIAA97-0141. NASA Ames Research Center.1997.
    [27]孙冰,林小树,刘小勇等.硅基材料烧蚀模型研究[J].宇航学报.2003.24(3).282~286.
    [28] M.C.Adams. Recent advances in ablation [J]. ARS J.1959.29(9).625~632.
    [29]何洪庆.固体火箭喷管烧蚀和传热的基本问题[J].推进技术.1993.13(3).22~28/35.
    [30]唐金兰,何洪庆.硅基内衬喷管扩张段烧蚀何温度场的耦合计算方法[J].推进技术.1991.14(3).19~25.
    [31]何洪庆,周旭,潘宏亮.喷管内衬碳/酚醛的烧蚀模型[J].固体火箭技术.1991.14(1).43~49.
    [32]何洪庆,周旭.石墨渗铜材料的烧蚀模型探索[J].固体火箭技术.1991.14(4).102~107.
    [33]何洪庆,严红. EPDM的烧蚀模型[J].推进技术.1999.20(4).36~39.
    [34] S.T.Keswani, K.K.Kuo. An aerothermchemical model of carbon-carboncomposite nozzle recession[C] Structures, Structural Dynamics and MaterialsConference. Lake Tahoe, NV.1983.348~358.
    [35] H.Kamath, R.Arora, K.K.Kuo. Erosive burning measurements and predictionsfor a highly aluminized composite solid propellant [R].AIAA1982-1111.Cleveland, OH: Pennsylvania State University.1982.
    [36] M.K.Razdan, K.K.Kuo. Erosive burning study of composite solid propellants byturbulent boundary-layer approach[C] AIAA&SAE, Joint PropulsionConference. Las Vegas, Nev.1978.
    [37] J.J.Brown, S.T.Thynell, K.K.Kuo. Regression behavior of composite layeredgun propellants [R].AIAA93-1880. Moterey, CA: Department of MechaniclaEngineering, The Pennsylvania State University.1993.
    [38] Bulgakov Victor K., Karpov Alexander I. Numerical studies of solid propellanterosive burning [J]. Journal of Propulsion and Power.1993.9(6).812~818.
    [39] M.K.King. Erosive burning of solid propellants [J]. Journal of Propulsion andPower.1993.9(6).785~805.
    [40] Mukunda H.S., Paul P.J. Universal behavior in erosive burning of solidpropellants [J]. Combustion and Flame.1997.224~236).
    [41]余晓京.富氧环境下绝热层烧蚀模型研究[D].西安:西北工业大学(硕士).2004.
    [42]武渊,何国强,乐发仁.飞行过载对燃烧室化学反应流场影响[J].推进技术.2007.28(4).341~345.
    [43]田维平,于贞勇,任全彬等.飞行加速度对固体火箭发动机前封头绝热层烧蚀特性影响研究[J].推进技术.1998.19(2).27~34.
    [44] Greatrix D.R. Internal ballistic model for spinning star-grain motors [J]. Journalof Propulsion and Power.1996.12(3).
    [45] Greatrix D.R. Acceleration-based combustion augmentation modeling fornon-cylindrical grain solid rocket motors [R].AIAA95-2876.1995.
    [46] Powars D.C. Acceleration effects on internal insulation erosion [R].AIAA93-1858.1993.
    [47] Sabnis J.S. Calculation of particle trajectories in solid rocket motors witharbitrary acceleration [J]. Journal of Propulsion and Power.1992.8(5).
    [48]何国强,王国辉,蔡体敏等.高过载条件下固体发动机内流场数值模拟[J].推进技术.2002.23(3).4~8.
    [49]余晓京,何国强,刘洋等.颗粒冲刷条件下绝热层二维烧蚀计算[J].固体火箭技术.2007.30(4).282~286.
    [50]何国强,王国辉,蔡体敏.高过载条件下固体发动机内流场与绝热层冲蚀研究[J].固体火箭技术.2001.24(4).4~8.
    [51]李江,刘佩进,陈剑等.冲蚀条件下碳布橡胶绝热层烧蚀实验与计算[J].固体火箭技术.2006.29(2).110~116.
    [52]卞荫贵.气动热力学[M].合肥:中国科学技术大学出版社,1997.
    [53]杜新.飞行加速度对固体发动机前封头内绝热层烧蚀的影响[J].固体火箭技术.1998.19(3).7~11.
    [54]李江,何国强,陈剑等.高过载条件下绝热层烧蚀实验方法研究(Ⅱ)收缩管聚集法[J].推进技术.2004.25(3).195~198.
    [55]李江,何国强,秦飞等.高过载条件下绝热层烧蚀实验方法研究(Ⅰ)方案论证及数值模拟[J].推进技术.2003.24(4).315~318.
    [56]李江,何国强,刘洋等.高浓度颗粒冲刷条件下高硅氧酚醛烧蚀实验[J].推进技术.2005.26(4).381~384.
    [57]李江,董昊,王文彬等.粒子流量可调的喷管烧蚀试验方法[J].固体火箭技术.2008.31(1).96~98.
    [58] Susumu Yamada, Chouji Serizawa, Kazushige Kato. Thermal and ablativeproperties of silicone insulation [R].AIAA97-3259. Aichi Works, TaketoyoPlant.1997.
    [59]王希亮,何国强,李江等.基于RTR技术的绝热层烧蚀实时测量试验[J].固体火箭技术.2006.29(5).384~386.
    [60] B. McWhorter, M. Ewing, K. Albrechtsen et al. Real-time measurements of aftdome insulation erosion on space shuttle reusable rocket motor [R].2004.
    [61] Franck CAUTY, Jean-Claude DéMARAIS, Charles éRades et al. Internalinsulation and solid propellant behavior measured by ultrasonic method on solidrocket motors [R].AIAA97-2994. Office National d'Etudes et de RechechesAérospatiales.1997.
    [62]胡建新,夏智勋.固冲发动机补燃室内硼颗粒点火和燃烧数值研究[J].弹道学报.2006.18(1).68~71.
    [63]申慧君.粉末燃料冲压发动机关键技术探索与研究[D].长沙:国防科学技术大学(博士).2008.
    [64]金乐骥,邓康清,王光天等.超细铝粉燃烧特性初探[J].推进技术.1993.14(6).68~72.
    [65] J.F.Widener, Y.Liang, M.W.Beckstead. Aluminum combustion modeling in solidpropellant environments [R].AIAA99-2629. Department of ChemicalEngineeering, Brigham Young University, Provo, Utah.1999.
    [66] Liang Y, Beckstead M.W. Numerical simulation of quasi-steady, singlealuminum particle combustion in air[C]36thAerospace Sciences Meeting&Exhibit. Reno, NV.1998.
    [67] Ying Huang, Grant A. Risha, Vigor Yang et al. Effect of particle size oncombustion of aluminum particle dust in air [J]. Combustion and Flame.2008.07).1~9.
    [68] Ungar E.W. Particle impacts on the melt layer of an ablating body [J]. A.R.S.Joulnal.1960.30(9).799~805.
    [69] Zien T.F. Thermal effects of particles on hypersonic ablation [R].AIAA2001-2833. Anaheim, Canada:2001.
    [70]庄峰青,刘大有.圆球形粒子超高速撞击侵蚀过程的数值模拟[J].1996.1996.17(2).65~69.
    [71]高立新,蔡峨.碳/酚醛材料的粒子侵蚀[J].推进技术.1993.14(5).31~38.
    [72] Springer G S. A model for rain erosion of homogeneous materials [J]. AmericanSociety for Testing and Materials.1974.
    [73]王俊山.防热复合材料抗粒子侵蚀特性研究[J].宇航材料工艺.2000.5).32~35.
    [74] Solid Rocket Motor Nozzle [R].1975.
    [75]姜贵庆,刘连元.高速气流传热与烧蚀热防护[M].北京:国防工业出版社,2003.
    [76] Bethe H.A., Adams M.C. A theory for the ablation of galssy materials [J].Journal of Aerospace Science.59.26(6).560~564.
    [77] Adams M.C. Recent advances in ablation [J]. A.R.S. Joulnal.1959.29(9).621~625.
    [78] Hidolgo H. Ablation of gassy material around blunt bodies of revolation [J].A.R.S. Joulnal.1960.30(9).806~822.
    [79] Hidolgo H., Kadanoff. Comarison between theory and flight ablation data [J].AIAA Journal.1963.1(1).41~44.
    [80]姜贵庆.有加质和化学反应热传到的积分计算[J].宇航学报.1980.1(1).
    [81]侯小利,蔡体敏.在烧蚀条件下固体火箭发动机复合喷管的温度预示[J].推进技术.1988.9(6).18~23.
    [82]王思民,周旭,何洪庆.高硅氧/酚醛喷管扩张段的温度场计算与测定[J].推进技术.1990.11(5).23~29.
    [83]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,1998.
    [84]何洪庆,周旭.固体火箭喷管中的烧蚀控制机制[J].推进技术.1993.14(4).36~41.
    [85]陶文铨.数值传热学(第二版)[M].西安:西安交通大学出版社,2001.
    [86] Eric L.Blades, James C. Newman. Computational Aeroelastic Analysis of anUnmanned Aerial Vehicle using U2NCLE [R].2007.
    [87]夏刚,刘新建,程文科.钝体高超声速气动加热与结构热传递耦合的数值计算[J].国防科技大学学报.2003.25(1).35~41.
    [88] Rainald L., Yang Chi, Juan R.Cebral. Fluid-structure-thermal interaction using aloose coupling algorithm and adaptive unstructured grids [R].1998.
    [89] Juan R.Cebral, Rainald L. On The Loose Coupling Of Implicit Time-MarchingCodes [R].2005.
    [90] Robert L.Harder, N.Desmarais Robert. Interpolation using surface splines [J].Journal of Aircraft.1972.9(2).189~191.
    [91]史忠军. CFD/CSD耦合接口技术研究[D].西安:西北工业大学(硕士).2003.
    [92] R.Jenkins David. Thin plate spline interpolation on an annulus [J]. Australianand New Zealand Industrial and Applied Mathematics.2000.819~836.
    [93] Farhat Charbel, Lesoonne Charbel. A conservative algorithm for exchangingaerodynamic and elastodynamic data in aeroelastic [R].1998.
    [94] Venkayya Vipperla B., A.Tischler Victoria. Force and displacementtransformations for aero-structure interaction analysis [R].2004.
    [95] Sadeghi M., Liu F. Application of Three-Dimensional Interfaces for DataTransfer in Aeroelastic Computation [R].2004.
    [96] Boer Aukje De, Bijl Hester, Zuijlen Alexander Van. Comparing DifferentMethods for the Coupling of Non-Matching Meshes in Fluid-StructureInteraction Computations [R].2005.
    [97] C.B Allen, T.C.S Rendall. Unified Approach to CFD-CSD Interpolation andMesh Motion Using Radial Basis Functions [R].2007.
    [98]李立州,王婧超,吕震宙.学科间载荷参数空间插值传递方法[J].航空动力学报.2007.22(7).1050-1054.
    [99] Duchon J. Splines minimizing rotation-invariant semi-norms in sobolev spaces[J]. Constructive Theory of Functions of Several Variables.1976.85~100.
    [100]徐敏,陈士橹. CFD/CSD耦合计算研究[J].应用力学学报.2003.21(2).33~37.
    [101]郝木明,李香,李鲲et al.端面弧形浅槽机械密封温度场及变形研究[J].流体机械.2010.38(4).23~27.
    [102]高耀东,何雪.基于ANSYS单元生死技术的焊接模拟[J].热加工工艺.2010.39(7).121~126.
    [103]闫鹏飞,吴运新,廖凯.切割对铝合金厚板残余应力分布影响的仿真与分析[J].中南大学学报(自然科学版).2010.41(6).2213~2217.
    [104]寇淑清,王金伟,赵勇et al.脉冲激光加工连杆裂解槽数值仿真[J].吉林大学学报(工学版).2010.5).
    [105]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997.
    [106]周力行.湍流两相流动与燃烧的数值模拟[M].北京:清华大学出版社,1991.
    [107]周力行.多相湍流反应流体力学[M].北京:国防工业出版社,2002.
    [108]范宝春.两相系统的燃烧、爆炸和爆轰[M].北京:国防工业出版社,1998.
    [109]王立范.固体火箭发动机燃烧与流动[M].北京:北京工业学院出版社,1987.
    [110]胡建新.含硼推进剂固体火箭冲压发动机补燃室工作工程研究[D].长沙:国防科技大学(博士).2006.
    [111]严传俊,范纬.燃烧学[M].西安:西北工业大学出版社,2005.
    [112]刘君.超音速完全气体和H2/O2燃烧非平衡气体的复杂喷流流场数值模拟[D].绵阳:中国空气动力研究与发展中心(博士).1993.
    [113] Launder B.E., Spalding D.B. Lectures in Mathematical Models of Turbulence[M]. London:Acedemic Press, London,1972.
    [114] Beckstead M.K. A summary of aluminum combustion [R].RTO-EN-023.Rhode-Saint-Genèse, Belgium:2002.
    [115] Hermsen R.W. Aluminum combustion efficiency in solid rocket motors
    [R].AIAA81-0038.1981.
    [116] Mecher J.C. Burning aluminum paricles inside a laboratory-scale solid rocketmotor [J]. Journal of Propulsion and Power.2001.18(3).
    [117]王德全,夏智勋,胡建新.固冲发动机补燃室凝相碳颗粒燃烧研究[J].国防科技大学学报.2010.32(3).37~41.
    [118]章明川,徐旭常. CO气相反应对碳颗粒燃烧的影响—连续膜理论的一种简化模拟方法[J].工程热物理学报.1990.11(438~443.
    [119]于娟.挥发分、CO火焰与碳粒燃烧的相互作用及其膜化[D].上海:上海交通大学(2003.
    [120] Lockwood F.C., Mahmud T., Yehia M.A. Simulation of pulverized coal testfurnace performance [J]. Fuel.1998.77(12).1329~1337.
    [121]张宏安,叶定友,侯晓.固体火箭发动机凝聚相微粒分布研究现状[J].固体火箭技术.2000.23(3).25~28.
    [122]张炜,曹泰岳,王宁飞.铝粉颗粒燃烧产物的平均弥散度计算研究[J].推进技术.1997.18(2).
    [123] Slita M. Predicted slag deposition histories in eight solid rocket mostors usingthe CFD model "EVT"[R].AIAA95-2728.1995.
    [124] Laredo D., Crorie J.D. Mc, Vaughn J.K. et al. Motor and plume particle sizemeasurements in solid propellants micro motors [J]. journal of Propulsion andPower.1994.10(3).
    [125]王德全.固体火箭冲压发动机补燃室粒子沉积与绝热层烧蚀过程研究[D].长沙:国防科技大学(博士).2009.
    [126] Wachters L.H.J. The heat transfer from a hot wall to impinging water drops inthe spheroidal state [J]. America Chemestry Engine Science.1966.21(1933).
    [127] Baber J.D., Reitz R.D. Modeling engine spray/wall impingement [R].1988.
    [128] Wang D.M., Watkins A.P. Numerical modeling of diesel spray wall impactionphenomena [J]. international Journal of Heat and Fluid Flow.1993.14(3).301~312.
    [129] Senda J., Kanda T. Modeling spray impingement considering fuel film formationon the wall [R].SAE Paper970047.1997.
    [130] Mundo C., Sommerfeld M., Tropea C. Droplet-wall collisions: Experimentalstudies of the deformation and breakup process [J]. International Journal ofMultiphase Flow.1995.21(2).151~173.
    [131] Mundo C., Tropea C., Sommerfeld M. Numerical and experimental investigationof spray characteristic in the vicinity of a grid wall [J]. Exprimental Thermal andFluid Science.1997.15(228~237).
    [132] Xu H., Liu Y., He P. The TAR model for calculation of droplet/wall impingement[J]. America: Journals of Fluids Engineering.1998.120(3).593~597.
    [133]万吉安,黄荣华,成晓北.喷雾撞壁模型的发展[J].柴油机设计与制造.2004.2).28~32.
    [134]贺征,郜冶,顾璇et al.液滴与壁面碰撞模型研究[J].哈尔滨工程大学学报.2009.30(3).267~270.
    [135]高翔,周劲松,骆仲泱等.气固亮相流中颗粒运动强化器壁对流传热的机理[J].化工学报.1998.49(3).294~302.
    [136]王淑华,姜贵庆.粒子侵蚀潜入喷管端头的质量损失率计算[J].固体火箭技术.1990.1990(13).50~58.
    [137]饶江,葛满初,徐建中et al.固体颗粒与通道壁面相互作用的实验研究[J].工程热物理学报.2003.24(1).134~136.
    [138]林建忠,吴法理,余钊圣.一种减轻固粒对壁面冲蚀磨损的新方法[J].摩擦学学报.2003.23(3).231~235.
    [139]梅其志,祁怀理,罗振群et al.火箭两相羽流对硅氧基材料烧蚀的实验研究与理论分析[J].哈尔滨船舶工程学院学报.1990.11(4).385~393.
    [140] Edwards J.K., McLaury B.S., Shirazi S.A. Evaluation of alternative pipe bendfittings in erosive service[C] ASME2000Fluids Engineering Division SummerMeeting. Boston.2000.
    [141]成晓北.柴油机燃油喷射雾化过程的机理与试验研究[D].武汉:华中科技大学(博士).2002.
    [142] Li D.Y., Khaled Elaem, Anderson M.J. A microscale dynamical model for wearsimulation [J]. Wear.1999.1999(380~386.
    [143]傅德彬,姜毅.基于MSDM方法的粒子—固壁侵蚀效应研究[J].固体火箭技术.2009.32(5).482~485.
    [144] Chen Q., Li D.Y. Computer simulation of solid-particle erosion of compositematerials [J]. Wear.2003.78~84.
    [145] Hu J., Li D.Y., Lewellyn R. Synergistic effects of microstructure and abrasioncondition on abrasive wear of compostites-a modeling study [J]. Wear.2007.218~227.
    [146]高翔.新型余热回收、除尘、脱硫多功能烟气净化装置的基础研究[D].杭州:浙江大学(博士).1995.
    [147]王洋,梁军,杜善义.碳基材料超高速粒子侵蚀的数值模拟[J].复合材料学报.2006.23(6).130~134.
    [148] Timoshenko S.P., Gooodier J.N. Theory of Elasticity [M].北京:清华大学出版社,2004.
    [149] Timosdhenko S., Goodier J.N. Theory of Elasticity [M]. New York:McGray HillBook Company,1951.
    [150] Soo S.L. Particlates and continuum multiphase fluid dynamics [M]. NewYork:Hemisphere Publishing Corporation,1989.
    [151] Yang B.C., Cheung F.B. Modeling of one-dimensional thermal mechanicalerosion of the high temperature ablatives [J]. journal of Applied Mechanics.1992.2).67~73.
    [152]孙冰,刘小勇,林小树等.固体火箭冲压发动机燃烧室热防护层烧蚀计算[J].推进技术.2002.23(5).375~378.
    [153] Karabeyoglu M.A., Altman D., Cantwell B.J. Combustion of liquefying hybridpropellants: Part1, General Theory [J]. Journal of Propulsion and Power.2002.18(3).
    [154] Karabeyoglu M.A., Cantwell B.J. Combustion of liquefying hybrid propellants:Part2, Stability of liquid films [J]. Journal of Propulsion and Power.2002.18(3).
    [155]杨涛,方丁酉,唐乾刚.火箭发动机燃烧原理[M].长沙:国防科技大学出版社,2008.
    [156]霍东兴,何国强,陈林泉.固冲发动机补燃室冷流掺混效果与燃烧效率对比研究[J].固体火箭技术.2006.29(5).329~332.
    [157]陈林泉,毛根旺,霍东兴等.燃气喷射方式对冲压发动机补燃室掺混效果的影响[J].固体火箭技术.2005.28(1).40~43.
    [158]傅维标,卫景彬.燃烧物理学基础[M].北京:机械工业出版社,1984.
    [159]徐天瑞,龚友成,许祖昌et al.铝粉粒度对它的燃烧热和发火点的影响[J].爆破器材.1986.1(1).1~2.
    [160]郑金华.多目标进化算法及其应用[M].北京:科学出版社,2007.
    [161] Deb Kalyanmoy, Amrit Pratap, Sameer Agrawal et al. A fast and elitistmulti-objective genetic algorithm: NSGA-Ⅱ [J]. IEEE Transactions onEvolutionary Computation.2002.6(2).182~197.
    [162] Deb Kalyanmoy. Multi-objective genetic algorithms: problem difficulties andconstruction of test problems [J]. Evolutionary Computation.1999.7(3).205~320.
    [163] Zitzler Eckart, L. Thiele. Multiobjective evolutionary algorithms: A comparativecase study and the strength Pareto approach [J]. IEEE Transactions onEvolutionary Computation.1999.7(4).257~271.
    [164] Knowles Joshua, David W. Corne. The Pareto archived evolution strategy: a newbaseline algorithm for Pareto multiobjective optimization[C] Proceedings of theCongress of Evolutionary Computation.1999.98~105.
    [165]范培蕾.多目标优化理论与方法及其在高超声速试飞器系统中的应用研究[D].长沙:国防科学技术大学(博士).2009.
    [166] David W. Corne, Jerrma N.E., Knowles Joshua et al. PESA-Ⅱ: Region-basedselection in evolutionary multiobjective optimization[C] Proceedings of theGenetice and Evolutionary Computation Confererence.283~290.2001.
    [167] Van Veldhuizen David A. Multiobjective evolutionary algotrithm: classifications,analysis and new innovations [D]. Writht-Patterson AFB, Ohio:Air ForceInstitute of Technology(1999.
    [168]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1999.
    [169]刘旭红,刘玉树,张国英.多目标优化算法NSGA-Ⅱ的改进[J].计算机工程与应用.2005.41(15).73~75.
    [170] Zitzler Eckart, Deb Kalyanmoy, Thiele L. Comparison of multi-objectiveevolutionary algorithm: empirical results [J]. Evolutionary Computation.2000.4(8).173~195.
    [171]万大为,郭荣伟.定几何二元倒置"X"型混压式超声速进气道实验[J].南京航空航天大学学报.2007.39(3).277~281.
    [172]张传民.飞航导弹动力装置[M].北京:中国宇航出版社,1991.
    [173]白鹏,朱守梅,李稳绪等. X型布局导弹冲压发动机攻角特性数值研究[J].宇航学报.2005.26(1).99~103.
    [174]黎明,宋文艳,贺伟.高超声速二维混压式前体/进气道设计方法研究[J].航空动力学报.2004.19(4).459~465.
    [175] Shukla V, Gelsey A, Schwabacher M. Automated design optimization for the P2and P8hypersonic inlets [J]. journal of Aircraft.1997.34(2).228~235.
    [176]余安远,乐嘉陵.一种高超声速轴对称导弹用进气道的前体一喉道的设计与数值模拟[C]冲压发动机技术交流会.2005.
    [177] Yanta W J, Collier A S, Spring W C. Experimental measurements of the flowin a scramjet inlet at Mach4[J]. Journal of Propulsion and Power.1990.6(6).784~790.
    [178]梁德旺,陈晓.亚音速飞行器进气道内通道设计及性能计算[J].1992.1992.7(1).14~18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700