用户名: 密码: 验证码:
几类重要蛋白质的分子动力学模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酶是大分子蛋白的一种,它是由活细胞产生并具有催化功能的蛋白质。由于计算机技术的日益发展,计算机模拟方法被广泛应用于生物酶研究的科学领域。本文中,基于同家族的相关蛋白质晶体结构,我们利用如量子化学计算,分子模建,分子动力学模拟等多种计算机技术搭建几种高质量的人类生物酶的结构模型。同时,分子对接方法也被引入,用于生物分子复合物的获得及抑制剂的比对研究。主要结果如下:
     1.谷胱甘肽硫转移酶家族几种等位基因蛋白酶的分子对接及分子动力学模拟研究
     谷胱甘肽硫转移酶(Glutathione S-Transferases, GSTs, E.C.2.5.1.18)是由多个基因编码组成的,具有多种生理功能的家族酶。该家族酶广泛分布于哺乳动物体内,并能通过促进对有毒化合物的亲核攻击而参与细胞解毒过程。其中π家族中的成员GSTP1,因其与肿瘤耐药性密切相关,而被广泛研究。最近的研究结果表明, GSTP1在包括膀胱癌,口腔癌,食道癌,肺癌,肾癌,结肠癌,卵巢癌,睾丸癌,和胃癌等多种人类肿瘤细胞中,存在过度表达的现象。因此, GSTP1作为恶性肿瘤的标志,其耐药性及与肿瘤的关系链已成为肿瘤防治相关领域的研究热点。
     借助分子动力学模拟的手段系统地研究了谷胱甘肽硫转移酶家族GSTP1的等位基因蛋白B(GSTP1*B)与抑制剂利尿酸(EA)及EA的谷胱甘肽共轭物EAG(I),EAG(O)的具体结合方式。抑制剂及其谷胱甘肽共轭物与蛋白的相互作用能计算和分子动力学轨迹的统计分析结果表明, GSTP1*B与EA的谷胱甘肽共轭物的结合能力高于EA的结合能力,残基Phe8, Arg13, Trp38和Tyr108是作用过程中的关键残基,对稳定抑制剂及其谷胱甘肽共轭物在GSTP1*B的G-位点和H-位点的构象有着重要的作用。通过对构象的统计分析发现残基Phe8和Tyr108与GSTP1*B酶对抑制剂的选择性密切相关.
     另外,自从1991年第一个GSTP1的蛋白质晶体结构在0.23nm结晶条件下被获得,多达168个GSTP1的蛋白质晶体结构被发现。然而,人类GSTP1*D三维(3D)结构的一直未被确定。如果要详细地了解人类GSTP1*D结构—功能的关系,则需要其蛋白质的精确三维结构作为基础。本节中,我们利用如分子模建,分子动力学模拟等多种计算机技术搭建高质量的人类GSTP1的结构模型。同时,分子对接方法也被引入,用于生物分子复合物的获得及抑制剂的比对研究。本节中提出了GSTP1*D与五种抑制剂的相互作用模式,包括利尿酸(EA),瘤可宁(CBL),利尿酸的两种谷胱甘肽共轭物EAG(I)、EAG(O),和瘤可宁的谷胱甘肽共轭物LZ6。这些发现将会为基于结构的GSTP1*D的相关研究提供较好的出发点。
     2.人类犬尿氨酸转氨酶III(HKAT3)与底物及抑制剂相互作用的分子模拟
     犬尿酸(Kynurenic acid, KYNA),是唯一已知的内生拮抗剂N-甲基-D-天冬氨酸(NMDA)亚型谷氨酸受体,也可作为拮抗剂R7-烟碱的乙酰胆碱受体。最近,KYNA被确认为一种内源性配体的孤对耦合-G蛋白受体(GPR35)。根据报道,多种神经退行性疾病都与KYNA在中枢神经系统的异常表达水平密切相关,如亨廷顿症,阿尔茨海默症,精神分裂症和获得性免疫缺陷综合痴呆征。此外, KYNA可能对谷氨酸类和类胆碱类所控制的神经传递型心血管疾病的发病有相应的影响。KYNA是存在于大多数哺乳动物细胞组织中的色氨酸代谢途径中间体,该种化合物是由L-KYN配合维生素B6衍生物(pyridoxal5‘-phosphate, PLP)辅酶经由犬尿氨酸转氨酶家族(KATs)催化的不可逆反应生成。
     在本文中,我们对来源于人类细胞内的犬尿氨酸转氨酶III(HKAT3)进行了深入研究。基于鼠类KATIII的晶体结构(PDB code:3E2Y),模建了HKAT3的三维结构模型。此后,对HKAT3的初始模型进行能量最小化和分子动力学优化模拟。该模型通过了Verify-3D和Procheck程序评估。我们还使用CDOCKER方法将两种抑制剂与蛋白对接,获得了酶与配体的作用模型。尽管两种抑制剂作用于相同的活性位点区域,但两者却以不同模式与蛋白HKAT3结合。通过分子动力学的轨迹分析和相互作用能的计算,发现了几个与配体对接相关的关键氨基酸残基。我们所得的实验结果与以往的生物学实验数据十分吻合。此外,本节中还发现了一些对配体具有选择作用的氨基酸残基,包括Phe32,Tyr95,Thr269,Arg59(B)和Cys121。上述结果可能有助于对HKAT3的生物角色的进一步研究,并为新型抑制剂的设计提供新的探索方向。
     另一方面,在本节中,通过使用分子动力学模拟方法研究了由HKAT3参与催化的KYN转氨作用机理。我们还获得了详细的配体与蛋白的结合模型,并且比较了辅酶PMP对配体结合过程的影响。实验结果不仅揭示了蛋白酶HKAT3,配体KYN和辅酶PMP间的相互作用模式,更有助于了解在KYN代谢途径中配体存在情况下的酶的催化特性。此外,本节中的研究发现能够指向KYN代谢途径的重要中间产物KYNA,并且可能为进一步了解蛋白酶HKAT3生理地位的提供崭新的出发点。
     3.钾离子通道KCNQ1/KCNE1对接模型的搭建及二者相互作用的分子动力学模拟研究
     KCNQ1是典型的电压门控钾离子(Kv)通道,并在人体组织细胞内有着广泛表达。在KCNQ1和KCNE1共同表达的不同类型的细胞中,KCNQ1通道似乎需要辅助亚基KCNE家族的协同方能履行其功能。在心脏细胞中,KCNQ1与KCNE1(此处缩写为Q1和E1)结合形成了缓慢延迟整流型(IKs)通道。亚基E1从以下几个方面调节Q1通道功能:增高单一通道的电导和响应电流幅度;减缓的激活和去激活速度;使激活的电压依赖在正方向移动并延缓失活速度。研究发现,蛋白Q1和E1所涉及的丧失功能型突变可能导致先天性心率缓慢(LQT)综合征,并且,降低病变心脏组织中的IKs通道的数量也会促使心率缓慢速综合征的发生。另一方面,对Q1通道蛋白进行获得性通道功能型突变将引起心动过速综合征(SQT2)和家族性心房颤动综合征(fAF)。显然,适当的IKs的通道数量对于维持心脏的电稳定性至关重要,过多或过少都同样危险。由此,我们可以推断,在具体的情况下通过抑制和催化IKs通道蛋白可以防止心律失常症状。
     在本文中,我们基于Kv1.2_2.1的Chimera结构(PDB code:2r9r),利用MODELER程序模建了离子通道KCNQ1的三维结构模型。此外,我们还使用布朗尼动力学对接方法将辅基KCNE1与通道蛋白KCNQ1进行对接,获得了Iks通道的的作用模型。并且,对KCNQ1通道模型、KCNE1辅基蛋白晶体结构和Iks通道模型的初始模型进行能量最小化和分子动力学优化模拟的结果进行了相应的分析。通过对KCNQ1/KCNE1对接模型的分析表明,辅基KCNE1的细胞外N-端区域与通道蛋白KCNQ1的S5-P连接区域间的相互作用提高了复合通道在细胞膜表面的表达。此外,辅基KCNE1的跨膜螺旋区域以其高骨架柔性面与KCNQ1进行优化对接。结合布朗尼动力学蛋白质对接方法、实验所得的相关限制和分子动力学模拟的强大方法我们得出大量的实验结果,由此能够更为完整地探测Q1/E1的相互作用机制。
Enzymes are kinds of proteins that can act as catalysts and are produced byliving cells. Becaues of the development of the computer technology, computationalmethods have been widely used in scientific reseach fields of the enzymes. In thesisstudy, we constructed several high quality model structures of human enzymes byusing various computational techniques, such as homology modeling and moleculardynamics (MD) simulations. And the molecular binding modes has been adopted todetermine biomolecular complexes and to compare the inhibitors. We reveal themechanism of interaction between the protein and inhibitors. The finding might be agood starting point for further determination of the biological role and structure-basedinhibitor design of these human proteins.
     1. Computational modeling of novel inhibitors targeting the human GSTP1variants homology domain
     The glutathione transferases (GSTs, E.C.2.5.1.18), also known as a family ofenzymes involved in the mechanism of cellular detoxification, catalyze thenucleophilic attack of glutathione on the electrophilic center of a number of toxiccompounds and xenobiotics. The Pi-class GST enzyme (GSTP1) has beenextensively studied because of its potential role in disease research. Previous studiespredicted four human Pi gene variants from human normal cells and malignantgliomas.
     We constructed a high quality model of human GSTP1*B (GlutathioneS-Transferases, Pi,1B) and revealed the interactions between protein and threeinhibitors including EA and its conjugate of Glutathione (EAG(I) and EAG(O)) toexplore the structure-function relationship by molecular dynamics (MD) simulations. Based on the results of interaction energy caculation and the analysis of MDsimulation trojactory, we identified several critical residues of stablizing the structureof G-and H-site, including Phe8, Arg13, Trp38and Tyr108. Our results also show thatthe conjutation of GSTP1*B protein may increase the binding ability of the inhibitorand the specific selectivity of Phe8and Tyr108to the substrate.
     Meanwhile, a detailed understanding of human GSTP1*D requires an accuratestructure, which has not been determined yet. We constructed a high quality modelstructure of human GSTP1*D by molecular dynamics (MD) simulations and revealedthe interactions between the proteins and five inhibitors including CBL, EA, EAG andLZ6to explore the structure-function relationship. We identified several criticalresidues, including Phe8, Arg13, Val35, Ile104, Tyr108, and Val113. Our resultsrevealed the specific selectivity of Phe8and Tyr108to the substrate. And we provieda new explanation for how does Ile104influence the substrate binding and ahypothesis about the indirect interaction between Val113and Tyr108. These resultsmay illustrate the alteration of enzymatic activity in the variants of GSTP1. Inaddition, the influence of Glutathione conjugate on ligands was observed.. This workwill be a good starting point for further determination of the biological role andstructure-based inhibitor design of human Pi-class GST.
     2. A Molecular Dynamics and Computational Study of Human KAT3homologymodel Involved in KYN Pathway and substrate binding study
     Kynurenine aminotransferase III (KAT3) is a novel member of the kynurenineaminotransferase enzyme family. Its active site topology and structure characteristicshave not been established. In this study, with extensive computational simulations,including homology modeling and molecular dynamics simulations, a3D structuremodel of human KAT3(HKAT3) dimmer was created and refined. Furthermore,CDOCKER approach was employed to dock two ligands (L-methionine andL-tryptophan) into the active sites of human KAT III dimmer and uncover theligand-binding modes. The complexes were subjected to5ns MD simulation, and the results indicate that Tyr159and Trp53might be the key residues as they have the largecontributions to the binding affinity, which is in good agreement with theexperimental results. Moreover, another two residues (Asp160and Tyr97) are alsofound that their strong interactions stabilize the whole system. The structural andbiochemical insights obtained from the present study will be helpful for designing thespecific inhibitors of HKAT3.
     However, KATs also catalyze the transamination of kynurenine (KYN) pathwayand endogenous KYNs have been suggested to correlate highly to abnormal braindiseases. HKAT3is a key member of KAT family, while the binding mechanism ofKYN and cofactor with HKAT3has not been determined yet. In this study, we focuson the structure-function relationship among KYN, cofactor and HKAT3. The bindingmodels of KYN complex and KYN&cofactor complex were obtained and werestudied by Molecular Dynamics (MD) simulations. We identified several criticalresidues and influence of conformational changes in human Kynurenineaminotransferase3complexes. The cofactor may play significant contributions notonly to the catalysis, but also to the binding. In addition, a hypothesis is proposed thata strong hydrophobic interaction between Tyr159and Lys280may influence thebinding mode and the binding region of the substrate and the cofactor. Our results willbe a good starting point for further determination of the biological role.
     3. Building KCNQ1/KCNE1docking models and probing their interactions bymolecular dynamics simulations
     The slow delayed-rectifier (IKs) channel is composed of KCNQ1(pore-forming)and KCNE1(auxiliary) subunits, and functions as repolarization reserve‘in the heart.Design of IKs-targeting anti-arrhythmic drugs requires detailed3-D structures of theKCNQ1/KCNE1complex, a task made possible by Kv-channel crystal structures(templates for KCNQ1homology modeling) and KCNE1NMR structures. PreviousKCNQ1/KCNE1models included only the KCNE1transmembrane domain(E1-TMD), despite data indicating the importance of extracellular N-terminal domain (E1-NT) in IKs function. Our goal is to build KCNQ1/KCNE1models includingE1-NT:(a) creating KCNQ1homology model based on new experimental restraints,(b) refining KCNE1NMR structures to correct non-native loop configurations,(c)docking E1-TMD and E1-NT to KCNQ1in a step-wise manner,(d) testing modelpredictions independent from restraints used in model-building,(e) subjecting thecomplex to molecular dynamics simulations in explicit lipid/solvent environment, andanalyzing KCNQ1/KCNE1contacts and impact of docking on their backbonefluctuations. Our analysis suggests two novel aspects of KCNQ1/KCNE1interactions:(1) Frequent contacts between E1-NT and KCNQ1S5-P linker may serve to stabilizethe docking conformation and enhance IKs expression in cell surface membrane,(2)E1-TMD uses one helical face of high backbone fluctuations to optimize contactswith KCNQ1during protein docking.
引文
[1] Hogeweg P., Hesper B. Interactive instruction on population interactions[J].Comput. Biol. Med.,1978,8:319–327.
    [2] Hogeweg P. Simulating the growth of cellular forms[J]. Simulation,1978,31:90–96.
    [3] Hesper B., Hogeweg P. Bioinformatica: een werkconcept[J]. Kameleon,1970,1(6):28–29.
    [4] Nurse P. Life, logic and information[J]. Nature,2008,454:424–426.
    [5] Szekely M. From deoxyribonucleic acid to protein: transfer of geneticinformation[M]. Wiley,1980.
    [6] Wagner A. From bit to it: How a complex metabolic network transformsinformation into living matter[J]. BMC Sys. Biol.,2007,1:33.
    [7] Thomson M., Gunawardena J. Unlimited multistability in multisite phosphoryla-tion systems[J]. Nature,2009,460:274–277.
    [8] Turner B. Cellular memory and the histone code[J]. Cell,2002,111:285–291.
    [9] Von Bertalanffy L. An outline of general system theory[J]. Br. J. Philos. Sci.,1950,1:134–165.
    [10] Von Bertalanffy L. General system theory[M]. New York: George Braziller,1973.
    [11] Waddington C.H. Towards a theoretical biology[M]. Volumes,1968–1972,1–4.Edinburgh: Edinburgh University Press.
    [12] Kauffman S. Metabolic stability and epigenesis in randomly constructed geneticnets[J]. J. Theor. Biol.,1969,22:437–467.
    [13] Huang S., Ingber D. Shape-dependent control of cell growth, differentiation, andapoptosis: switching between attractors in cell regulatory networks[J]. Exp. Cell. Res.,2000,261:91–103.
    [14] Huang S., Eichler G., Bar-Yam Y., Ingber D. Cell fates as high-dimensionalattractor states of a complex gene regulatory network[J]. Phys. Rev. Lett.,2005,94:128701.
    [15] Boiteux A., Goldbeter A., Hess B. Control of oscillating glycolysis of yeast bystochastic, periodic, and steady source of substrate: a model and experimental study[J].Proc. Natl. Acad. Sci.U. S.A.,1975,72:3829–3833.
    [16] Goodwin B. Temporal organization in cells: a dynamic theory of cellularcontrol processes[M]. London: Academic Press,1963.
    [17] Wolpert L. Positional information and the spatial pattern of cellulardifferentiation[J]. J. Theor. Biol.,1969,25:1–47.
    [18] Griffith J. Mathematics of cellular control processes II. Positive feedback to onegene[J]. J. Theor. Biol.,1968,20:209–216.
    [19] Turing A. The chemical basis of morphogenesis[J]. Philos. Trans. R. Soc. Lond.B. Biol. Sci.,1952,237:37.
    [20] Crick F. Diffusion in embryogenesis[J]. Nature,1970,225:420–422.
    [21] Rosenblatt F. Principles of neurodynamics: perceptrons and the theory of brainmechanisms[M]. Washington (D.C.): Spartan Books.1962.
    [22] Minsky M., Papert S. Perceptrons[M]. Cambridge (Massachusetts): MIT Press.1969.
    [23] Holland J. Adaptation in natural and artificial system: an introduction withapplication to biology, control and artificial intelligence[M]. Ann Arbor (Michigan):University of Michigan Press.1975.
    [24] Hewitt C. Viewing control structures as patterns of passing messages[J].Artificial Intelligence,1977,8:323–364.
    [25] Abelson H., DiSessa A. Turtle geometry: the computer as a medium for exploringmathematics[M]. Cambridge (Massachusetts): MIT Press.1986.
    [26] Papert S. Mindstorms: children, computers, and powerful ideas[M]. New York:Basic Books.1993.
    [27] G rg A., Weiss W., Dunn M.J. Current two-dimensional electrophoresistechnology for proteomics[J]. Proteomics,2004,4(12):3665–85.
    [28] Conrotto P., Souchelnytskyi S. Proteomic approaches in biological and medicalsciences: principles and applications[J]. Experimental Oncology,2008,30(3):171–80.
    [29] Joos T., Bachmann J. Protein microarrays: potentials and limitations[J]. Frontiersin Bioscience,2009,14(14):4376–85.
    [30] Koegl M., Uetz P. Improving yeast two-hybrid screening systems[J]. Briefings inFunctional Genomics&Proteomics,2007,6(4):302–12.
    [31] Plewczyński D., Ginalski K. The interactome: predicting the protein–proteininteractions in cells[J]. Cellular&Molecular Biology Letters,2009,14(1):1–22.
    [32] Zhang C., Kim S.H. Overview of structural genomics: from structure tofunction[J]. Current Opinion in Chemical Biology,2003,7(1):28–32.
    [33]. Zhang Y. Progress and challenges in protein structure prediction[J]. CurrentOpinions in Structural Biology,2008,18(3):342–48.
    [34] Xiang Z. Advances in homology protein structure modeling[J]. Current Proteinand Peptide Science,2006,7(3):217–27.
    [35] Zhang Y., Skolnick J. The protein structure prediction problem could be solvedusing the current PDB library[J]. Proceedings of the National Academy of SciencesU.S.A.,2005,102(4):1029–34.
    [36] Kuhlman B., Dantas G., Ireton G.C., Varani G., Stoddard BL., Baker D. Design ofa novel globular protein fold with atomic-level accuracy[J]. Science,2003,302(5649):1364–68.
    [37] Ritchie D.W. Recent progress and future directions in protein–protein docking[J].Current Protein and Peptide Science,2008,9(1):1–15.
    [38] FLETCHER S., CUMMINGS C. G., RIVAS K., et al. Potent,plasmodium-selective farnesyltransferase inhibitors that arrest the growth of malariaparasites: Structure-activity relationships of ethylenediamine-analogue scaffolds andhomology model validation [J].2008,51:5176-5197.
    [39] MOEGLICH A., WEINFURTNER. D., MAURER T., et al. A RestraintMolecular Dynamics and Simulated Annealing Approach for Protein HomologyModeling Utilizing Mean Angles [J].BMC Bioinformatics,2005,8:91.
    [40] RICHARTZ A., HOLTJE M., BRANDT B., et al. Targeting human DNApolymerase alpha for the inhibition of keratinocyte proliferation. Part1. Homologymodel, active site architecture and ligand binding [J]. Journal of Enzyme Inhibitionand Medicinal Chemistry,2008,23:94-100.
    [41] HARIHARAN R., PILLAI M. R. Homology modeling of the DNA-bindingdomain of human Smad5: A molecular model for inhibitor design [J]. Journal ofMolecular Graphics&Modeling,2006,24:271-277.
    [42] YASAR F., CELIK S., KOKSEL H. Molecular modeling of various peptidesequences of gliadins and low-molecular-weight glutenin subunits [J]. Die Nahrung,2003,47:238-242.
    [43] TAKEDA-SHITAKA M., TAKAYA D., CHIBA C., et al. Protein structureprediction in structure based drug design [J]. Current Medicine in Chemistry,2004,11:551-558.
    [44] CHIVIAN D., BAKER D. Homology modeling using parametric alignmentensemble generation with consensus and energy-based model selection [J]. NucleicAcids Research,2006,34: e112-e130.
    [45] ANDREINI C., BANCI L., BERTINI I., et al. Bioinformatic comparison ofstructures and homology-models of matrix metalloproteinases [J]. J. Proteome. Res.,2004,3:21-31.
    [46] LISUREK M., SIMGEN B., ANTES I., et al. Theoretical and experimentalevaluation of a CYP106A2low homology model and production of mutants withchanged activity and selectivity of hydroxylation [J]. Chembiochem,2008,9:1439-1449.
    [47] BADER R., BETTIO A., BECK-SICKINGER A. G., et al. Structure anddynamics of micelle-bound neuropeptide Y: comparison with unligated NPY andimplications for receptor selection [J]. Journal of Molecular Biology,2001,305:307-329.
    [48] PIETRA F. Binding of ciguatera toxins to the voltage-gated Kv1.5potassiumchannel in the open state. Docking of gambierol and molecular dynamics simulationsof a homology model [J]. Journal of Physical Organic Chemistry,2008,21:997-1001.
    [49] LEE S. C., RUSSELL A. F., LAIDIG W. D. Three-dimensional structure ofbradykinin in SDS micelles. Study using nuclear magnetic resonance, distancegeometry, and restrained molecular mechanics and dynamics [J]. Intentional Journalof Peptide Protein Research,1990,35:367-377.
    [50] PELLEGRINI M., MIERKE D. F. Threonine6-bradykinin: molecular dynamicssimulations in a biphasic membrane mimetic [J]. Journal of Medicinal Chemistry,1997,40:99-104.
    [51] SCHLEGEL B., LAGGNER C., MEIER R., et al. Generation of a homologymodel of the human histamine H-3receptor for ligand docking andpharmacophore-based screening [J]. Journal of Computer-Aided Molecular Design,2007,21:437-453.
    [52] KUBALA M., OBSIL T., OBSILOVA V., et al. Protein modeling combined withspectroscopic techniques: an attractive quick alternative to obtain structuralinformation [J]. Physiological Research,2004,53Suppl1: S187-S197.
    [53] BAKHRAT A., JURICA M. S., STODDARD B. L., et al. Homology modelingand mutational analysis of Ho endonuclease of yeast [J]. Genetics,2004,166:721-728.
    [54] FANO A., RITCHIE D. W., CARRIERI A. Modeling the structural basis ofhuman CCR5chemokine receptor function: From homology model building andmolecular dynamics validation to agonist and antagonist docking [J]. Journal ofChemical Information and Modeling,2006,46:1223-1235.
    [55] MALHERBE P., KRATOCHWIL N., ZENNER M T., et al. Mutational analysisand molecular modeling of the binding pocket of the metabotropic glutamate5receptor negative modulator2-methyl-6-(phenylethynyl)-pyridine [J]. MolecularPharmacology,2003,64:823-832.
    [56] MASUDA S., PROSSER D. E., GUO Y. D., et al. Generation of a homologymodel for the human cytochrome P450, CYP24A1, and the testing of putativesubstrate binding residues by site-directed mutagenesis and enzyme activity studies[J]. Archives of Biochemistry and Biophysics,2007,460:177-191.
    [57] BEN-TAL N., SITKOFF D., BRANSBURG-ZABARY S., et al. Theoreticalcalculations of the permeability of monensin-cation complexes in modelbio-membranes [J]. Biochimica et biophysica acta,2000,1466:221-233.
    [58] SIVOZHELEZOV V., NICOLINI C., KARPINSKI S., et al. Toward a blueprintfor UDP-glucose pyrophosphorylase structure/function properties:homology-modeling analyses [J]. Plant Molecular Biology,2004,56:783-794.
    [59] LEE K W., BRIGGS J. M. Molecular modeling study of the editing active site ofEscherichia coli leucyl-tRNA synthetase: two amino acid binding sites in the editingdomain [J]. Proteins,2004,54:693-704.
    [60] ROY S., SEN S. Homology Modeling Based Solution Structure of Hoxc8-DNAComplex: Role of Context Bases Outside TAAT Stretch [J]. Journal of BiomolecularStructure&Dynamics,2005,22:707-718.
    [61] ROHL C. A., STRAUSS C. E., CHIVIAN D., et al. Modeling structurallyvariable regions in homologous proteins with rosetta [J]. Proteins,2004,55:656-677.
    [62] Chothia C. One thousand families for the molecular biologist [J]. Nature,1992,357:543-544.
    [63] Wang Z. X. A re-estimation for the total numbers of protein folds andsuperfamilies [J]. Protein Engineering,1998,11(8):621-626.
    [64] THOMAS P. D., DILL K. A. An iterative method for extracting energy-likequantities from protein structures [J]. Proceedings of the National Academy ofSciences of the United States of America,1996,93(21):11628-11633.
    [65] LATHROP R. H., SMITH T. F. Global optimum protein threading with gappedalignment and empirical pair score functions [J]. Journal of Molecular Biology,1996,255(4):641-665.
    [66] FISCHER D., EISENBERG D. Protein fold recognition using sequence-derivedpredictions [J]. Protein Science,1996,5(5):947-955.
    [67]沈同,王镜岩.生物化学(上册)[M].北京:人民教育出版社,1990,1(9):8.
    [68] Tsou C.L. The role of active site flexibility in enzyme catalysis [J]. Biochemistry.Biokhimii a,1998,63(3):253.
    [69] Toth M.J., M.S. Miller, K.A. Ward, P.A. Ades. SKELETAL MUSCLEMITOCHONDRIAL DENSITY, GENE EXPRESSION AND ENZYMEACTIVITIES IN HUMAN HEART FAILURE: MINIMAL EFFECTS OF THEDISEASE AND RESISTANCE TRAINING [J]. Journal of Applied Physiology,2012.
    [70] Chien Y.H., N.C. Lee, S.C. Chiang, R.J. Desnick, W.L. Hwu. Fabry Disease:Incidence of the Common Later-Onset-Galactosidase A IVS4+919G> A Mutationin Taiwanese Newborns--Superiority of DNA-Based to Enzyme-Based NewbornScreening for Common Mutations [J]. Molecular medicine (Cambridge, Mass.),2012.
    [71] Macedo M.F., R. Quinta, C.S. Pereira, M.C. Sa Miranda. Enzyme replacementtherapy partially prevents invariant Natural Killer T cell deficiency in the Fabrydisease mouse model [J]. Molecular Genetics and Metabolism,2012.
    [72] Ayebazibwe C., F.N. Mwiine, S.N. Balinda, K. Tj rneh j, S. Alexandersen.Application of the Ceditest FMDV type O and FMDV-NS enzyme-linkedimmunosorbent assays for detection of antibodies against Foot-and-mouth diseasevirus in selected livestock and wildlife species in Uganda [J]. Journal of VeterinaryDiagnostic Investigation,2012,24(2):270-276.
    [73] Vassar R. BACE1, the Alzheimer's beta-secretase enzyme, in health and disease[J]. Molecular Neurodegeneration,2012,7:1-1.
    [74] Banugaria S.G., T.T. Patel, J. Mackey, S. Das, A. Amalfitano, A.S. Rosenberg, J.Charrow, Y.T. Chen, P.S. Kishnani. Persistence of high sustained antibodies to enzymereplacement therapy despite extensive immunomodulatory therapy in an infant withPompe disease: Need for agents to target antibody-secreting plasma cells [J].Molecular Genetics and Metabolism,2012.
    [1]谈国霞,吴磊磊.量子化学发展综述[J].高校理科研究,2007.
    [2]常进.量子化学方法在计算化合物物理,化学,生物学性质中的应用[J].
    [3]刘文剑.新一代相对论量子化学方法[J].中国基础科学,2007(002):10-11.
    [4] Jug K. Quantum chemical methods and their applications to chemical reactions [J].Theoretical Chemistry Accounts: Theory, Computation, and Modeling (TheoreticaChimica Acta),1980,54(4):263-300.
    [5]陈光巨,黄元河.量子化学[M].华东理工大学出版社.2008.
    [6] Small D.W., M. Head-Gordon. Post-modern valence bond theory for stronglycorrelated electron spins [J]. Phys. Chem. Chem. Phys.,2011,13(43):19285-19297.
    [7] De Marco G., P. Várnai. Molecular simulation of conformational transitions inbiomolecules using a combination of structure-based potential and empirical valencebond theory [J]. Phys. Chem. Chem. Phys.,2009,11(45):10694-10700.
    [8] Truhlar D.G. Valence bond theory for chemical dynamics [J]. Journal ofcomputational chemistry,2007,28(1):73-86.
    [9] Raimondi M., M. Simonetta, G. Tantardini. AB initio valence bond theory [J].Computer Physics Reports,1985,2:171-216.
    [10] Balint-Kurti Gg. Reply to``Ab initio valence-bond theory''[J]. Physical ReviewA,1986,34:674.
    [11] Nakai H., M. Hoshino, K. Miyamoto, S. Hyodo. Elimination of translational androtational motions in nuclear orbital plus molecular orbital theory [J]. The Journal ofchemical physics,2005,122:164101.
    [12] Mohr M., J.P. Mcnamara, H. Wang, S.A. Rajeev, J. Ge, C.A. Morgado, I.H.Hillier. The use of methods involving semi-empirical molecular orbital theory to studythe structure and reactivity of transition metal complexes [J]. Faraday Discuss.,2003,124(0):413-428.
    [13] Maranón J., J.L. Pousa. Path integral, collective coordinates, andmolecular-orbital theory [J]. Physical Review A,1987,36(12):5530.
    [14] Hagiwara Y., M. Tateno. Recent advances in jointed quantum mechanics andmolecular mechanics calculations of biological macromolecules: schemes andapplications coupled to ab initio calculations [J]. Journal of Physics: CondensedMatter,2010,22:413101.
    [15] Picardi E., G. Pesole. Computational methods for ab initio and comparative genefinding [J]. Methods in Molecular Biology,2010,609:269-284.
    [16] Mulder F.A.A., M. Filatov. NMR chemical shift data and ab initio shieldingcalculations: emerging tools for protein structure determination [J]. Chem. Soc. Rev.,2010,39(2):578-590.
    [17] Liu L.A., J.S. Bader. Structure-based ab initio prediction of transcriptionfactor-binding sites [J]. Methods Mol. Biol,2009,541:1-19.
    [18] Friesner R.A., V. Guallar. Ab initio quantum chemical and mixed quantummechanics/molecular mechanics (QM/MM) methods for studying enzymatic catalysis[J]. Annu. Rev. Phys. Chem.,2005,56:389-427.
    [19] Chivian D., T. Robertson, R. Bonneau, D. Baker. Ab initio methods [J]. Structuralbioinformatics,2003:547-557.
    [20] Ghosh A., P.R. Taylor. High-level ab initio calculations on the energetics oflow-lying spin states of biologically relevant transition metal complexes: a firstprogress report [J]. Current Opinion in Chemical Biology,2003,7(1):113-124.
    [21] Bailey W.C. B3LYP calculation of deuterium quadrupole coupling constants inmolecules [J]. Journal of molecular spectroscopy,1998,190(2):318-323.
    [22] Carbonniere P., T. Lucca, C. Pouchan, N. Rega, V. Barone. Vibrationalcomputations beyond the harmonic approximation: Performances of the B3LYPdensity functional for semirigid molecules [J]. Journal of computational chemistry,2005,26(4):384-388.
    [23] Kolboe S., S. Svelle. Does an ethene/benzenium ion complex exist? Adiscrepancy between B3LYP and MP2predictions [J]. The Journal of PhysicalChemistry A,2008,112(29):6399-6400.
    [24] Payne P.W. Analytic construction of Hartree-Fock density matrices [J].Proceedings of the National Academy of Sciences,1980,77(11):6293.
    [25] Goldman Sp, A. Dalgarno. Finite-basis-set approach to the Dirac-Hartree-Fockequations [J]. Physical review letters,1986,57(4):408-411.
    [26] Bushmaker A.W., V.V. Deshpande, S. Hsieh, M.W. Bockrath, S.B. Cronin. DirectObservation of Born Oppenheimer Approximation Breakdown in Carbon Nanotubes[J]. Nano letters,2009,9(2):607-611.
    [27] Hijikata Y., H. Nakashima, H. Nakatsuji. Solving non-Born–OppenheimerSchr dinger equation for hydrogen molecular ion and its isotopomers using the freecomplement method [J]. The Journal of chemical physics,2009,130:024102.
    [28] Lemus R., A. Frank. Constrained calculations in the electron-vibron model andthe Born-Oppenheimer approximation [J]. Physical review. A,1993,47(6A):4920-4933.
    [29] Blümel R., B. Esser. Quantum chaos in the Born-Oppenheimer approximation [J].Physical review letters,1994,72(23):3658-3661.
    [30] Rozsnyai Bf, F. Martino, J. Ladik. Calculation of the Energy Band Structures ofComplicated Periodic DNA Models in the Semiempirical SCF–LCAO–Crystal‐Orbital Approximation [J]. The Journal of chemical physics,1970,52:5708.
    [31] De Andrada E Silva Ea, Ic Da Cunha Lima, A. Ferreira Da Silva.Two-dimensional hydrogen molecule and the alternant-molecular-orbitalapproximation [J]. Phys. Rev. A;(United States),1986,33(4).
    [32] Gross E.K.U., R.M. Dreizler. Density functional theory [M]. Vol.337: Springer.1995.
    [33] Tse J.S. Ab initio molecular dynamics with density functional theory [J]. Annualreview of physical chemistry,2002,53(1):249-290.
    [34]林梦海.量子化学计算方法与应用[M].科学出版社.2004.
    [35]崔凤超.羟氰裂解酶及两类氧甲基转移酶催化机理的理论研究[D].2010.
    [36]张继龙.几类重要蛋白质的分子动力学模拟及相关抑制剂的改良[D].2010.
    [37]楚慧郢.蛋白质的分子动力学模拟和催化机理的理论研究[D].2009.
    [38]赵勇山.几类重要蛋白的结构及其催化机理的理论研究[D].2009.
    [39] Re S., Y. Sugita. Modeling the Transition State of Enzyme-catalyzed PhosphorylTransfer Reaction Using QM/MM Method [J]. Yakugaku zasshi: Journal of thePharmaceutical Society of Japan,2011,131(8):1171.
    [40] MartíS., J. Andrés, V. Moliner, E. Silla, I. Tu ón, J. Bertrán. TheoreticalQM/MM studies of enzymatic pericyclic reactions [J]. Interdisciplinary Sciences:Computational Life Sciences,2010,2(1):115-131.
    [41] Menikarachchi L.C., J.A. Gascón. QM/MM approaches in medicinal chemistryresearch [J]. Current Topics in Medicinal Chemistry,2010,10(1):46-54.
    [42] Senn H.M., W. Thiel. QM/MM methods for biomolecular systems [J].Angewandte Chemie International Edition,2009,48(7):1198-1229.
    [43] Garcia-Viloca M., J. Gao, M. Karplus, D.G. Truhlar. How enzymes work:analysis by modern rate theory and computer simulations [J]. Science,2004,303(5655):186-195.
    [44] Mulholland A.J. Modelling enzyme reaction mechanisms, specificity andcatalysis [J]. Drug Discovery Today,2005,10(20):1393-1402.
    [45] Warshel A., P.K. Sharma, M. Kato, Y. Xiang, H. Liu, M.H.M. Olsson.Electrostatic basis for enzyme catalysis [J]. Chemical reviews,2006,106(8):3210.
    [46] Bruice T.C., K. Kahn. Computational enzymology [J]. Current Opinion inChemical Biology,2000,4(5):540-544.
    [47] Siegbahn P.E.M., T. Borowski. Modeling enzymatic reactions involvingtransition metals [J]. Accounts of chemical research,2006,39(10):729-738.
    [48] Gao J., D.G. Truhlar. Quantum mechanical methods for enzyme kinetics [J].Annual review of physical chemistry,2002,53(1):467-505.
    [49] Mulholland A.J. Computational enzymology: modelling the mechanisms ofbiological catalysts [J]. Biochemical Society Transactions,2008,36(1):22-26.
    [50] Ryde U. Combined quantum and molecular mechanics calculations onmetalloproteins [J]. Current Opinion in Chemical Biology,2003,7(1):136-142.
    [51] Senn H.M., W. Thiel. QM/MM studies of enzymes [J]. Current Opinion inChemical Biology,2007,11(2):182-187.
    [52] Zhang Y. Pseudobond ab initio QM/MM approach and its applications to enzymereactions [J]. Theoretical Chemistry Accounts: Theory, Computation, and Modeling(Theoretica Chimica Acta),2006,116(1):43-50.
    [53] MSI manual, Forcefield-Based Simulations General Theory&Methodology,1997.
    [54] ANDREWS D H. The Relation Between the Raman Spectra and the Structure ofOrganic Molecules [J]. Phys. Rev.,1930,36:544-554.
    [55] WESTHEIMER F H, MEYER J E. Theory of the racemization of optically activederivatives of biphenyl [J]. J. Chem. Phys.1946,14:733.
    [56] HENDRICKSON J B. Molecular geometry. I. machine computation of thecommon rings [J]. J. Am. Chem. Soc.,1961,83:4537-4547.
    [57] ALLINGER N L, MILLER M A, CATLEDGE F A, et al. Conformationalanalysis L VII. The calculation of the conformational structures of hydrocarbons bythe Westheimer-Hendrick-son-Weberg method. J. Am. Chem. Soc.,1967,89:4345-4357.
    [58] LIFSON S, WARSHEL A. Consistent Force Field for Calculations ofConformations, Vibrational Spectra, and Enthalpies of Cycloalkane and n-AlkaneMolecules [J]. J. Chem. Phys.,49:5116.
    [59] HALL D, PAVITT N. Conformation of cyclic analogs of enkephalin. II. Analogscontaining a cystine bridge [J]. Biopolymers,1984,23:2325-2334.
    [60] WEINER S J, KOLLMAN P A, NGUYEN D T, et al. An all atom force field forsimulations of proteins and nucleic acids [J] J. Comp. Chem.1986,7:230-252.
    [61] BRUNCK T K, WEINHOLD F. Quantum-machanical studies on the origin ofbarriers to internal rotation about single bonds [J]. J. Am. Chem. Soc.1979,101:1700-1709.
    [62]陈凯先.计算机辅助药物设计:原理、方法及应用[M].上海:上海科学技术出版社,2000.
    [63] ANDREW R L. Molecular modeling: principles and applications [M]. AddisonWesley Longman Limited, London,1996.
    [64] MACKAY D H J, CROSS A J, HAGLER A T. Prediction of protein structureand the principles of protein conformation [M]. New York: Plenum Press,1989.
    [65] FLECHER R, REEVES C M. Function minimization by conjugate gradients [J].Comput. J.,1964,7:149-154.
    [66] FLECHER R, Practical Methods of Optimization, Vol.1, UnconstrainedOptimization [M]. New York: John Wiley&Sons,1980.
    [67] GUNSTEREN W F, KARPLUS M. A method for constrained energyminimization of macromolecules [J]. J. Comp. Chem.,1980:266-274.
    [68] ALDER B J, WAINWRIGHT T E. Studies in Molecular Dynamics. I. GeneralMethod [J]. J. Chem, Phys.,1959,31:459.
    [69] VERLET L. Computer "Experiments" on Classical Fluids. I. ThermodynamicalProperties of Lennard-Jones Molecules [J].Phys. Rev.,1967,159:98-103.
    [70] DUAN Y, KOLLMAN A. Pathways to a protein folding intermediate observed ina1-microsecond simulation in aqueous solution [J]. Science,1998,282,740.
    [71] ZHONG Q, JIANG Q, MOORE P B, et al. Molecular dynamics simulation of asynthetic ion channel. Biophys. J.,1998,74,3-10.
    [72] ZHONG Q, MOORE P B, NEWNS D M, et al. Molecular dynamics study of theLS3voltage-gated ion channel [J]. FEBS Lett.,1998,427,267-270
    [73] MI H, TUCKERMAN M E, SCHUSTER D I, et al. A molecular dynamics studyof HIV-1protease complexes with C60and fullerene-based anti-viral angens [J].Electrochem. Soc. Proc.,1999,99,256-269.
    [74] TUCHERMAN M E, MARTYNA G J. Understanding Modern MolecularDynamics: Techniques and Applications [J]. J. Phys. Chem. B,2000,104:159-178.
    [75] BEEMAN D. Some multistep methods for use in molecular dynamicscalculations [J]. J. Comp. Phys.,1976,20:130-139.
    [76] NOSE S. A molecular dynamics method for simulations in the canonicalensemble [J]. Molecular Physics,1984,53:255-268.
    [77] NOSE S, KLEIN M L. Constant pressure molecular dynamics for molecularsystems [J]. Molecular Physics,1983,50:1055-1076.
    [78] HOOVER W G. Canonical dynamics: Equilibrium phase-space distributions [J].Phys. Rev. A.,1985,31,1695-1697.
    [79] NOSE S, YONEZAWA F. Isothermal-isobaric computer simulations of meltingand crystallization of a Lennard-Jones system [J]. J. Phys. Chem.,1986,84,1803-1809.
    [80]陈正隆,徐为人,汤立达.分子生物学的理论与实践[M].北京:化学工业出版社,2007.
    [81] METROPOLIS N, ROSENBLUTH A W, ROSENBLUTH M N, et al. Equationof State Calculations by Fast Computing Machines [J]. J. Chem. Phys.,1953,21:1087.
    [82] ROSSKY P J, DOLL J D, FRIEDMAN H L. Brownian dynamics as smart MonteCarlo simulation [J]. J. Chem. Phys.,1978,69:4628.
    [83] KIRKPATRICK S, GELATT C D, VECCHI M P. Optimization by SimulatedAnnealing [J]. Science,1983,220:671-680.
    [1] Jakoby W.B., Habig W.H. In Enzymatic Basis of Detoxification[J]. AcademicPress, New York,1980, pp63-94.
    [2] Hayes J.D., Flanagan J.U., Jowsey I.R. Glutathione transferases[J]. Annu. Rev.Pharmacol. Toxicol.,2005,45:51–88.
    [3] Coles B., Ketterer B. The role of glutathione and glutathione transferases inchemical carcinogenesis[J]. CRC Crit. Rev. Biochem. Mol. Biol.,1990,25:47-70.
    [4] Waxman D.J. Glutathione S-transferases: role in alkylating agent resistance andpossible target for modulation chemotherapy--a review[J]. Cancer Res.,1990,50:6449-6454.
    [5] Tsuchida S., Sato K. Glutathione transferases and cancer[J], CRC Crit. Rev.Biochem. Mol. Biol.,1992,27:337-384.
    [6] Sheehan D., Meade G., Foley V.M., Dowd C.A. Structure, function and evolutionof glutathione transferases: implications for classification of non-mammalianmembers of an ancient enzyme superfamily[J]. Biochem. J.,2001,360:1–16.
    [7] Wilce M.C., Parker M.W. Structure and function of glutathione S-transferases.Biochim. Biophys[J]. Acta.,1994,1205:1–18.
    [8] Inoue T., Ishida T., Sugio K., Maehara Y., Sugimachi K. Glutathione S transferasePi is a powerful indicator in chemotherapy of human lung squamous-cell carcinoma[J].Respiration,1995,62:223–227.
    [9] Sato K.Glutathione transferases as markers of preneoplasia and neoplasia[J]. Adv.Cancer Res.,1989,52:205–255.
    [10] Ruiz-Gomez M.J., Souviron A., Martinez-Morillo M., Gil L. P-glycoprotein,glutathione and glutathione S-transferase increase in a colon carcinoma cell line bycolchicines[J]. J. Physiol. Biochem.,2000,56:307–312.
    [11] Green J.A., Robertson L.J., Clark A.H. Glutathione S-transferase expression inbenign and malignant ovarian tumours[J]. Br. J. Cancer,1993,68:235–239.
    [12] Katagiri A., Tomita Y., Nishiyama T., Kimura M., Sato S. Immunohistochemicaldetection of Pglycoprotein and GSTP1-1in testis cancer[J]. Br. J. Cancer,1993,68:125–129.
    [13] Singh S.V., Xu B.H., Gupta V., Emerson E.O., Zaren H.A., Jani J.P.Characterization of a human bladder cancer cell line selected for resistance to BMY25067, a novel analogue of mitomycin C[J]. Cancer Lett,1995,95:49–56.
    [14] Zhang L., Xiao Y., Priddy R. Increase in placental glutathione S-transferase inhuman oral epithelial dysplastic lesions and squamous cell carcinomas[J]. J. OralPathol. Med.,1994,23:75–79.
    [15] Grignon D.J., Abdel-Malak M., Mertens W.C., Sakr W.A., Shepherd R.R.Glutathione Stransferase expression in renal cell carcinoma: a new marker ofdifferentiation[J]. Mod. Pathol.,1994,7:186–189.
    [16] Brabender J., Lord R.V., Wickramasinghe K., Metzger R., Schneider P.M., ParkJ.M. Glutathione S-transferase-pi expression is downregulated in patients withBarrett's esophagus and esophageal adenocarcinoma[J]. J. Gastrointest. Surg.,2002,6:359–367.
    [17] Okuyama T., Maehara Y., Endo K., Baba H., Adachi Y., Kuwano M., SugimachiK. Expression of glutathione S-transferase-pi and sensitivity of human gastric cancercells to cisplatin[J]. Cancer,1994,74:1230–1236.
    [18] Reinemer P., Dirr H.W., Ladenstein R., Huber R., Lo Bello M., Federici G.,Parker M.W. Three-dimensional structure of class pi glutathione S-transferase fromhuman placenta in complex with S-hexylglutathione at2.8A resolution[J]. J. Mol.Biol.,1992,227:214-226.
    [19] Manoharan T.H., Gulick A.M., Reinemer P., Dirr H.D., Huber R., Fahl W.H..Mutational substitution of residues implicated by crystal structure in binding thesubstrate glutathione to human glutathione S-transferase pi[J]. J. Mol. Biol.,1992,226:319-322.
    [20] Widersten M., Kolm R.H., Bjornstedt R., Mannervik B. Contribution of fiveamino acid residues in the glutathione-binding site to the function of humanglutathione transferase P1-1[J]. Biochem. J.,1992,285:377-381.
    [21] Kong K.H., Inoue H., Takahashi K. Site-directed mutagenesis of amino acidresidues involved in the glutathione binding of human glutathione S-transferaseP1-1[J]. J. Biochem.,1992,112:725-728.
    [22] Zimniak P., Nanduri B., Pikula S., Bandorowicz-Pikula J., Singhal S.S.,Srivastava S.K., Awasthi S., Awasthi Y.C. Naturally occurring human glutathioneS-transferase GSTP1-1isoforms with isoleucine and valine in position104differ inenzymic properties[J]. Eur. J. Biochem.,1994,224:893-899.
    [23] Parker L.J., Ciccone S., Italiano L.C., Primavera A., Oakley A.J., Morton C.J.,Hancock1N.C., Bello M.L., Parker M.W. The Anti-cancer Drug Chlorambucil as aSubstrate for the Human Polymorphic Enzyme Glutathione Transferase P1-1: KineticProperties and Crystallographic Characterisation of Allelic Variants[J]. J. Mol. Biol.,2008,380:131-144.
    [24] Nagourney R.A., Messenger J.C., Kern D.H., Weisenthal L.M. Enhancement ofanthracycline and alkylator cytotoxicity by ethacrynic acid in primary cultures ofhuman tissues[J]. Proc. Am. Assoc. Cancer Res.,1989,30:574-580.
    [25] Hansson J., Berhane K., Castro V.M., Jungnelius U., Mannervik B., Ringborg U.Sensitization of human melanoma cells to the cytotoxic effect of melphalan by theglutathione transferase inhibitor ethacrynic acid[J]. Cancer Res.,1991,51:94-98.
    [26] Yang W.Z., Begleiter A., Johnston J.B., Israels L.G., Mowat M.R. Role ofglutathione and glutathione S-transferase in chlorambucil resistance[J]. Mol.Pharmacol.,1992,41:625-630.
    [27] Foon K.A., Rai K.R., Gale R.P. Chronic lymphocytic leukemia: new insights intobiology and therapy[J]. Ann. Intern. Med.,1990,113:525–539.
    [28] Ploemen J.H.T.M., Ommen B., Bladeren P.J. Inhibition of rat and humanglutathione S-transferase isoenzymes by ethacrynic acid and its glutathione conjugate.Biochem[J]. Pharmacol,1990,40:1631-1635.
    [29] Phillips M.F., Mantle T.J. The initial-rate kinetics of mouse glutathioneS-transferase YfYf. Evidence for an allosteric site for ethacrynic acid[J]. Biochem. J.,1991,275:703-709.
    [30] Awasthi S., Srivastava S.K., Ahmad F., Ahmad H., Ansari G.A.S. Interactions ofglutathione S-transferase-pi with ethacrynic acid and its glutathione conjugate[J].Biochim. Biophys. Acta.,1993,1164:173-178.
    [31] Ciaccio P.J., Tew K.D., LaCreta F.P. The spontaneous and glutathioneS-transferase-mediated reaction of chlorambucil with glutathione[J]. Cancer. Commun,1990,2:279–285.
    [32] Osman A.F., Akande O., Antoun G., Mao J.X., Buolamwini J. Molecular cloning,characterization, and expression in Escherichia coli of fulllength cDNAs of threehuman glutathione S-transferase Pi gene variants. Evidence for differential catalyticactivity of the encoded proteins[J]. J. Biol. Chem.,1997,272:10004–10012.
    [33] Reinemer P., Dirr H.W., Ladenstein R., Schaèffer J., Gallay O., Huber R. Thethree-dimensional structure of class pi glutathione S-transferase in complex withglutathione sulfonate at2.3resolution[J]. EMBO J.,1991,10:1997-2005.
    [34] Jones G., Willett P., Glen R.C., Leach A.R. Discovery Studio2.5. San Diego:Accelrys Inc.[G],2009.
    [35] Brooks B.R., Bruccoleri R.E., Olafson B.D., States D.J., Swaminathan S.,Karplus M. CHARMM: A program for macromolecular energy minimization anddynamics calculations[J]. J. Comp. Chem.,1983,4:187-217.
    [36] Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L., J.Chem. Phys.,198379:926.
    [37] Darden T., York D., Pedersen L. Particle mesh Ewald: An N·log (N) method forEwald sums in large systems[J]. J. Chem.Phys.,1993,98:10089–10092.
    [38] Essmann U., Perera L., Berkowitz M.L. A smooth particle mesh Ewald method[J].J. Chem. Phys.,1995,103:8577–8593.
    [39] Profile-3D User Guide, Accelrys Inc., San Diego,1999.
    [40] Laskowski R.A., MacArthur M.W., Moss D.S., Thornton J.M.. PROCHECK: aprogram to check the stereochemical quality of protein structures[J]. J. Appl.Cryst.,1993,26:283–291.
    [41] http://nihserver.mbi.ucla.edu/Verify_3D/
    [42] Oakley A.J., Bello M.L., Battistoni A., Ricci G., Rossjohn1J., Villar H.O., ParkerM.W.. The Structures of Human Glutathione Transferase P1-1in Complex withGlutathione and Various Inhibitors at High Resolution[J]. J. Mol. Biol.,1997,274:84-100.
    [43] Oakley A.J., Rossjohn J., Lo Bello M., Caccuri A.M., Federici G., Parker M.W.The three-dimensional structure of the human Pi class glutathione transferase P1-1incomplex with the inhibitor ethacrynic acid and its glutathione conjugate[J].Biochemistry,1997,36:576-585.
    [44] Oakley A.J., Lo Bello M., Mazzetti A.P., Federici G., Parker M.W. Theglutathione conjugate of ethacrynic acid can bind to human pi class glutathionetransferase P1-1in two different modes[J]. FEBS Lett,1997,419:32-36
    [45] Hess B., et al. GROMACS4: Algorithms for highly efficient, load-balanced, andscalable molecular simulation[J]. J. Comput. Chem.,2008,4:435-447.
    [46] Oostenbrink C., et al. A biomolecular force field based on the free enthalpy ofhydration and solvation: the GROMOS force-field parameter sets53A5and53A6[J].J. Comput. Chem.,2004,25:1656-1676.
    [47] http://davapc1.bioch.dundee.ac.uk/prodrg/
    [48] Hess B., Bekker H., Berendsen H.J.C., Fraaije J.G.E.M. LINCS: a linearconstraint solver for molecular simulations[J]. J. Comput. Chem.,1997,18:1463–1472.
    [49] Humphrey W., Dalke A., Schulten K. VMD: visual molecular dynamics[J]. J.Mol. Graph.,1996,14:33-27.
    [50] Mihaly M. Simulaid: A simulation facilitator and analysis program[J]. J. Comput.Chem.,2010,31:2658-2668.
    [51] Dirr H., Reinemer P., Huber R.. X-ray crystal structures of cytosolic glutathioneS-transferases. Implications for protein architecture, substrate recognition andcatalytic function[J]. Eur. J. Biochem.,1994,220:645-661.
    [52] Lo Bello M., Oakley A.J., Battistoni A., Mazzetti A.P., Nuccetelli M., MazzareseG., Rossjohn J., Parker M.W., Ricci G. Multifunctional role of Tyr108in the catalyticmechanism of human glutathione transferase P1-1, Crystallographic and kineticstudies on the Y108F mutant enzyme[J]. Biochemistry,1997,36:6207–6217.
    [53] Nuccetelli M., Mazzetti A.P., Rossjohn J., Parker M.W., Board P., Caccuri A.M.,Federici G., Ricci G. Shifting substrate specificity of human glutathione transferase(from class Pi to class alpha) by a single point mutation[J]. Biochem Biophys ResCommun,1998,252:184–189.
    [54] Ishimoto T.M., Osman A.F. Allelic variants of the human glutathioneS-transferase P1gene confer differential cytoprotection against anticancer agents inEscherichia coli[J]. Pharmacogenetics,2002,12:543–53.
    [55] Watson M.A., Stewart R.K., Smith G.B., Massey T.E., Bell D.A. Humanglutathione Stransferase P1polymorphisms: relationship to lung tissue enzymeactivity and population frequency distribution[J]. Carcinogenesis,1998,19:275–80.
    [56] Lu M., Xia L., Luo D., Waxman S., Jing Y. Dual effects ofglutathione-S-transferase pi on As2O3action in prostate cancer cells: enhancement ofgrowth inhibition and inhibition of apoptosis[J]. Oncogene,2004,23(22):3945-3952.
    [57] Berendsen C. L., Peters W. H., Scheffer P. G., Bouman A. A., Boven E., NewlingD. W. Glutathione S-transferase activity and subunit composition in transitional cellcancer and mucosa of the human bladder[J]. Urology,1997,49:644-651.
    [58] Dirven H. A., Ommen B., Bladeren P. J. Glutathione conjugation of alkylatingcytostatic drugs with a nitrogen mustard group and the role of glutathioneS-transferases[J].Chem. Res. Toxicol.,1996,9(2):351-360.
    [59] Tew K. D. Glutathione-associated enzymes in anticancer drug resistance[J].Cancer Res.,1994,54(16):4313-4320.
    [60] Townsend D. M., Tew K. D. The role of glutathione-S-transferase in anti-cancerdrug resistance[J]. Oncogene.2003,22(47):7369-7375.
    [61] Ji X., Blaszczyk J., Xiao B., O'Donnell R., Hu X., Herzog C., Singh S. V.,Zimniak P. Structure and function of residue104and water molecules in thexenobiotic substrate-binding site in human glutathione S-transferase P1-1[J].Biochemistry,1999,38(32):10231-10238.
    [62] Oakley A. J., Bello M. L., Nuccetelli M., Mazzetti A. P., Parker M. W. Theligandin (non-substrate) binding site of human Pi class glutathione transferase islocated in the electrophile binding site (H-site)[J]. J. Mol. Biol.,1999,291(4):913-926.
    [63] Prade L., Huber R., Manoharan T. H., Fahl W. E., Reuter W. Structures of class piglutathione S-transferase from human placenta in complex with substrate,transition-state analogue and inhibitor [J]. Structure,1997,5(10):1287-1295.
    [64] CHU Hui-Ying(楚慧郢), ZHENG Qing-Chuan(郑清川), ZHAO Yong-Shan(赵勇山), ZHANG Hong-Xing(张红星).[J]. Chem. J. Chinese Universities(高等学校化学学报),2008,29(12):2398-2402.
    [65] Meng X. Y., Li Z., Niu R.J., Zhang H. X., Zheng Q. C.[J]. Chem. Res. ChineseU.,2012,28(1):137-141.
    [66] Schüttelkopf A. W., Aalten D. M. F. PRODRG: a tool for high-throughputcrystallography of protein-ligand complexes[J]. Acta Crystallogr.,2004,60:1355–1363.
    [67] Mezei M. Simulaid: a simulation facilitator and analysis program[J]. J. Comput.Chem.,2010,31(14):2658-2668.
    [1] Hilmas C., Pereira E.F., Alkondon M., Rassoulpour A., Schwarcz R., AlbuquerqueE.X. The brain metabolite kynurenic acid inhibits alpha7nicotinic receptoractivity and increases non-alpha7nicotinic receptor expression:physiopathological implications[J]. J. Neurosci.,2001,21:7463-7473
    [2] Alkondon M., Pereira E.F., Yu P., Arruda E.Z., Almeida L.E., Guidetti P., FawcettW.P., Sapko M.T., Randall W.R., Schwarcz R., Tagle D.A., Albuquerque E.X.Targeted deletion of the kynurenine aminotransferase ii gene reveals a criticalrole of endogenous kynurenic acid in the regulation of synaptic transmission viaalpha7nicotinic receptors in the hippocampus[J]. J. Neurosci.,2004,24:4635–4648
    [3] Stone T.W. Kynurenic acid blocks nicotinic synaptic transmission to hippocampalinterneurons in young rats[J]. Eur.J.Neurosci.,2007,25:2656–2665
    [4] Wang J., Simonavicius N., Wu X., Swaminath G., Reagan J., Tian H., Ling L.Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35[J].J.Biol. Chem.,2006,281:22021–22028
    [5] Leeson P.D., Iversen L.L. The glycine site on the NMDA receptor:structure-activity relationships and therapeutic potential[J]. J. Med. Chem.,1994,37:4053–4067
    [6] Perkins M.N., Stone T.W. An iontophoretic investigation of the actions ofconvulsant kynurenines and their interaction with the endogenous excitantquinolinic acid[J]. Brain Res.,1982,247:184–187
    [7] Stone T.W., Perkins M.N. Actions of excitatory amino acids and kynurenic acid inthe primate hippocampus: a preliminary study[J]. Neurosci. Lett,1984,52:335–340
    [8] Birch P.J., Grossman C.J., Hayes A.G. Kynurenic acid antagonizes responses toNMDA via an action at the strychnine-insensitive glycine receptor[J]. Eur. J.Pharmacol.,1988,154:85–87
    [9] Pereira E.F., Hilmas C., Santos M.D., Alkondon M., Maelicke A., AlbuquerqueE.X. Unconventional ligands and modulators of nicotinic receptors[J].J.Neurobiol.,2002,53:479–500
    [10] Beal M.F., Matson W.R., Swartz K.J., Gamache P.H., Bird E.D. Kynureninepathway measurements in Huntington‘s disease striatum: evidence for reducedformation of kynurenic acid[J]. J. Neurochem.,1990,55:1327–1339
    [11] Guidetti P., Reddy P.H., Tagle D.A., Schwarcz R. Early kynurenergic impairmentin Huntington‘s disease and in a transgenic animal model[J]. Neurosci Lett,2000,283:233–235
    [12] Widner B., Leblhuber F., Walli J., Tilz G.P., Demel U., Fuchs D. Tryptophandegradation and immune activation in Alzheimer‘s disease[J]. J. Neural Transm,2000,107:343–353
    [13] Erhardt S., Blennow K., Nordin C., Skogh E., Lindstrom L.H., Engberg G.Kynurenic acid levels are elevated in the cerebrospinal fluid of patients withschizophrenia[J]. Neurosci Lett,2001,313:96–98
    [14] Erhardt S., Schwieler L., Nilsson L., Linderholm K., Engberg G. The kynurenicacid hypothesis of schizophrenia[J]. Physiol. Behav.,2007,92:203–209
    [15] Schwarcz R., Rassoulpour A.A., Wu H.Q., Medoff D., Tamminga C.A., RobertsR.C. Increased cortical kynurenate content in schizophrenia[J]. Biol. Psychiatry,2001,50:521–530
    [16] Guillemin G.J., Kerr S.J., Brew B.J. Involvement of quinolinic acid in AIDSdementia complex[J]. Neurotox Res.,2005,7:103–123
    [17] Guidetti P., Amori L., Sapko M.T., Okuno E., Schwarcz R. Mitochondrialaspartate aminotransferase: a third kynurenate-producing enzyme in themammalian brain[J]. J. Neurochem,2007,102:103-111
    [18] Yu P., Li Z., Zhang L., Tagle D.A., Cai T. Characterization of kynurenineaminotransferase III, a novel member of a phylogenetically conserved KATfamily[J]. Gene,2006,365:111-118
    [19] Okuno E., Nakamura M., Schwarcz R. Two kynurenine aminotransferases inhuman brain[J]. Brain Res.,1991,542:307-312
    [20] Guidetti P., Okuno E., Schwarcz R. Characterization of rat brain kynurenineaminotransferases I and II[J]. J. Neurosci Res.,1997,50:457-465
    [21] Schwarcz R., Pellicciari R. Manipulation of brain kynurenines: glial targets,neuronal effects, and clinical opportunities[J]. J Pharmacol Exp Ther,2002,303:1-10
    [22] Han Q., Li J., Li J. pH dependence, substrate specificity and inhibition of humankynurenine aminotransferase I[J]. Eur. J.Biochem.,2004,271:4804-4814
    [23] Han Q., Robinson H., Cai T., Tagle D.A., Li J. Biochemical and structuralproperties of mouse kynurenine aminotransferase III[J]. Mol. Cell. Biol.,2009,29:784-793
    [24] Goh D.L., Patel A., Thomas G.H., Salomons G.S., Schor D.S., Jakobs C.,Geraghty M.T. Characterization of the human gene encoding alpha-aminoadipateaminotransferase (AADAT)[J]. Mol. Genet. Metab.,2002,76:172–180
    [25] Martini F., Angelaccio S., Barra D., Pascarella S., Maras B., Doonan S., Bossa F.The primary structure of mitochondrial aspartate aminotransferase from humanheart[J]. Biochim. Biophys. Acta.,1985,832:46–51
    [26] Papadimitriou J.M., Duijn P. The ultrastructural localization of the isozymes ofaspartate aminotransferase in murine tissues[J]. J. Cell.Biol.,1970,47:84–98
    [27] Tanaka M., Takeda N., Tohyama M., Matsunaga T. Immunocytochemicallocalization of mitochondrial and cytosolic aspartate aminotransferase isozymesin the vestibular endorgans of rats[J]. Eur. Arch. Otorhinolaryngol,1990,247:119–121
    [28] Giannattasio S., Marra E., Abruzzese M.F., Greco M., Quagliariello E. The invitro-synthesized precursor and mature mitochondrial aspartate aminotransferaseshare the same import pathway in isolated mitochondria[J]. Arch. Biochem.Biophys.,1991,290:528–534
    [29] Faff-Michalak L., Albrecht J. Aspartate aminotransferase, malate dehydrogenase,and pyruvate carboxylase activities in rat cerebral synaptic and nonsynapticmitochondria: effects of in vitro treatment with ammonia, hyperammonemia andhepatic encephalopathy[J]. Metab. Brain Dis.,1991,6:187–197
    [30] McKenna M.C., Stevenson J.H., Huang X., Hopkins I.B. Differential distributionof the enzymes glutamate dehydrogenase and aspartate aminotransferase incortical synaptic mitochondria contributes to metabolic compartmentation incortical synaptic terminals[J]. Neurochem. Int.,2000,37:229–241
    [31] Cechetto J.D., Sadacharan S.K., Berk P.D., Gupta R.S. Immunogold localizationof mitochondrial aspartate aminotransferase in mitochondria and on the cellsurface in normal rat tissues[J]. Histol. Histopathol.,2002,17:353–364
    [32] Shrawder E., Martinez-Carrion M.. Evidence of phenylalanine transaminaseactivity in the isoenzymes of aspartate transaminase. J. Biol. Chem.,1972,247:2486–2492
    [33] Suzuki T., Kishi Y., Totani M., Kagamiyama H., Murachi T. Monoclonal andpolyclonal antibodies against porcine mitochondrial aspartate aminotransferase:their inhibition modes and application to enzyme immunoassay[J]. Biotechnol.Appl. Biochem.,1987,9:170–180
    [34] Mawal M.R., Mukhopadhyay A., Deshmukh D.R. Purification and properties ofalpha-aminoadipate aminotransferase from rat liver and kidney mitochondria[J].Prep. Biochem.,1991,21:151–162
    [35] Takeuchi F., Otsuka H., Shibata Y. Purification, characterization andidentification of rat liver mitochondrial kynurenine aminotransferase withalpha-aminoadipate aminotransferase[J]. Biochim. Biophys. Acta.,1983,743:323–330
    [36] Rossi F., Han Q., Li J., Li J., Rizzi M.. Crystal structure of human kynurenineaminotransferase I[J]. J. Biol. Chem.,2004,279:50214–50220
    [37] Xu Y., Zheng Q. C., Zhang H. X., Sun C.C. Homology modeling and substratebinding study of human kynurenine aminotransferase III[J]. J. Theor.Comput.Chem.,2012,11(4):855-870
    [38] Hess B., et al. GROMACS4: Algorithms for highly efficient, load-balanced, andscalable molecular simulation[J]. J. Comput. Chem.,2008,4(3):435-447
    [39] Oostenbrink C., Villa A., Mark A.E., Gunsteren W.F. A biomolecular force fieldbased on the free enthalpy of hydration and solvation: the GROMOS force-fieldparameter sets53A5and53A6[J]. J. Comput. Chem.,2004,25(13):1656-1676
    [40] http://davapc1.bioch.dundee.ac.uk/prodrg/
    [41] Darden T., York D., Pedersen L. Particle mesh Ewald: An N·log (N) method forEwald sums in large systems[J]. J. Chem. Phys.,1993,98:10089–10092
    [42] Essmann U., Perera L., Berkowitz M. L. A smooth particle mesh Ewaldmethod[J]. J. Chem. Phys.,1995,103:8577–8593
    [43] Hess B., Bekker H., Berendsen H.J.C., Fraaije J.G.E.M. LINCS: a linearconstraint solver for molecular simulations[J]. J. Comput Chem,1997,18:1463–1472
    [44] Humphrey W., Dalke A., Schulten K. VMD: visual molecular dynamics[J]. J.Mol. Graph.,1996,14(1):33-8,27-8
    [45] Eric F. Pettersen, Thomas D. Goddard, Conrad C. Huang, Gregory S. Couch,Daniel M. Greenblatt, Elaine C. Meng, Thomas E. Ferrin. UCSF Chimera—Avisualization system for exploratory research and analysis[J]. J. Comput. Chem.,2004,25(13):1605-1612
    [46] Mezei M. Simulaid: A simulation facilitator and analysis program[J]. J. Comput.Chem.,2010,31(14):2658-2668
    [47] Hu J.P., Chang C., Chen W.Z. Study on the drug resistance and the binding modeof HIV-1integrase with LCA inhibitor[J]. Sci. China Chem.,2007,50(5):665-674
    [48] Han Q., Cai T., Tagle D.A., Li J.Y. Structure, expression, and function ofkynurenine aminotransferases in human and rodent brains[J]. Cell Mol. Life Sci.,2010,67:353-368
    [49] http://www.ebi.ac.uk/Tools/msa/clusta lw2/
    [50] Colombari E., Sato M.A., Cravo S.L., Bergamaschi C.T., Campos R.R., LopesO.U. Role of the medulla oblongata in hypertension[J]. Hypertension,2001,38:549–554.
    [51] Beadle G.W., Mitchell H.K., Nyc J.F. Kynurenine as an intermediate in theformation of nicotinic acid from tryptophane by neurospora[J]. Proc Nat. AcadSci U S A,1947,33:155–158.
    [52] Okuno E., Schmidt W., Parks D.A., Nakamura M., Schwarcz R. Measurement ofrat brain kynurenine aminotransferase at physiological kynurenineconcentrations[J].1991, J Neurochem57:533–540.
    [53] Wishart D.S., Knox C., Guo A.C., Shrivastava S., Hassanali M., Stothard P.,Chang Z., Woolsey J. DrugBank: a comprehensive resource for in silico drugdiscovery and exploration[J]. Nucleic. Acids. Res.,2006,34:668–672.
    [54] Luthy R., Bowie U.J., Eisenberg D. Assessment of protein models with threedimensional profiles[J]. Nature,1992,356:83–85.
    [55] Profile-3D User Guide, Accelrys Inc., San Diego,1999.
    [56] Laskowski R.A., MacArthur M.W., Moss D.S., Thornton J.M. PROCHECK: aprogram to check the stereochemical quality of protein structures[J]. J.Appl.Cryst.,1993,26:283–291.
    [57] Baran H., Okuno E., Kido R., Schwarcz R. Purification and characterization ofkynurenine aminotransferase I from human brain[J]. J. Neurochem,1994,62:730–738.
    [58] Discovery Studio2.1. San Diego: Accelrys Inc.;2008.
    [59] Brooks B.R., Bruccoleri R.E., Olafson B.D., States D.J., Swaminathan S.,Karplus M. CHARMM: A program for macromolecular energy minimization anddynamics calculations[J]. J. Comp. Chem.,1983,4:187-217.
    [60] Wu G., Robertson D.H., Brooks C.L., Vieth M. Detailed Analysis of Grid-BasedMolecular Docking: A Case Study of CDOCKER-A CHARMm-Based MDDocking Algorithm[J]. J. Comp. Chem.,2003,24:1549-1562.
    [61] Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L., J.Chem. Phys.,1983,79:926.
    [62] www.ncbi.nlm.nih.gov/blast.
    [1] Robbins J., KCNQ potassium channels: physiology, pathophysiology, andpharmacology[J]. Pharmacology and Therapeutics,2001,90:1-19.
    [2] McCrossan Z. A., and Abbott, G. W. The MinK-related peptides[J].Neuropharmacology,2004,47:787-821.
    [3] Kapplinger J. D., Tester D. J., Salisbury B. A., Carr J. L., Harris-Kerr C., PollevickG. D., Wilde A. A. M., and Ackerman M. J. Spectrum and prevalence ofmutations from the first2500consecutive unrelated patients referred for theFAMILION long QT syndrome genetic test [J]. Heart Rhythm,2009,6:1297-1303.
    [4] Liu X.-S., Jiang M., Zhang M., Tang D., Higgins R. S. D., and Tseng G.-N.Electrical remodeling in a canine model of ischemic cardiomyopathy[J].American Journal of Physiology,2007,292: H560-H571.
    [5] Jiang M., Cabo C., Yao J.-A., Boyden P. A., and Tseng G.-N. Delayed rectifier Kcurrents have reduced amplitudes and altered kinetics in myocytes from infarctedcanine ventricle[J]. Cardiovascular Research,2000,48:34-43.
    [6] Chen Y.-H., Xu S.-J., Bendahhou S., Wang X.-L., Wang Y., Xu W.-Y., Jin H.-W.,Sun H., Su X.-Y., Zhuang Q.-N., Yang Y.-Q., Li Y.-B., Liu Y., Xu H.-J., Li X.-F.,Ma N., Mou C.-P., Chen Z., Barhanin J., and Huang W. KCNQ1gain-of-functionmutation in familial atrial fibrillation[J].Science,2003,299:251-254.
    [7] Hong K., Piper D. R., Diaz-Valdecantos A., Brugada J., Oliva A., Burashnikov E.,Santos-de-Soto J., Grueso-Montero J., Diaz-Enfante E., Brugada P., Saches F.,Sanguinetti M. C., and Brugada R. De novo KCNQ1mutation responsible foratrial fibrillation and short QT syndrome in utero[J].Cardiovascular Research,2005,68:433-440.
    [8] Morin T. J., Kobertz W. R. Counting membrane-embedded KCNE b-subunits infunctioning K+channel complexes[J]. PNAS,2008,105:1478-1482.
    [9] Tapper A. R., George A. L. Jr. Location and orientation of minK within the IKspotassium channel complex[J]. Journal of Biological Chemistry,2001,276:38249-38254.
    [10] Panaghie G., Tai K. K., Abbott, G. W. Interaction of KCNE subunits with theKCNQ1K+channel pore[J]. Journal of Physiology,2006,570:455-467.
    [11] Chen H. and Goldstein S. A. N. Serial perturbation of MinK in IKs implies ana-helical transmembrane span traversing the channel corpus[J]. BiophysicalJournal,2007,93:2332-2340.
    [12] Xu X.-L., Jiang M., Hsu K.-L., Zhang M., and Tseng G.-N. KCNQ1and KCNE1in the IKs channel complex make state-dependent contacts in their extracellulardomains[J]. Journal of General Physiology,2008,131:589-603.
    [13] Wang Y.-H., Jiang M., Xu X.-L., Hsu K.-L., Zhang M., and Tseng G.-N.Gating-related molecular motions in the extracellular domain of the IKs channel:implications for IKs channelopathy[J].J. Memb. Biol.,2011,239:137-156.
    [14] Nakajo K., Kubo Y. KCNE1and KCNE3stabilize and/or slow voltage sensingS4segment of KCNQ1channel[J]. Journal of General Physiology,2007,130:269-281.
    [15] Chung D. Y., Chan P. J., Bankston J. R., Yang L., Liu G., Marx S. O., Karlin A.,Kass R. S. Location of KCNE1relative to KCNQ1in the IKs potassium channelby disulfide cross-linking of substituted cysteines[J]. PNAS,2009,106:743-748.
    [16] Ghosh S., Nunziato D. A., Pitt G. S. KCNQ1assembly and function is blockedby long-QT syndrome mutations that disrupt interaction with calmodulin[J].Circulation Research,2006,98:1048-1054.
    [17] Haitin Y., Wiener R., Shaham D., Peretz A., Cohen E. B. T., Shamgar L., PongsO., Hirsch J. A., Attali B. Intracellular domains interactions and gating motionsof IKs potassium channel subunits[J]. EMBO Journal,2009,28:1994-2005.
    [18] Long S. B., Campbell E. B., MacKinnon R. Crystal structure of a mammalianvoltage-dependent Shaker family K+channel[J]. Science,2005,309:897-903.
    [19] Long S. B., Tao X., Campbell E. B., MacKinnon R. Atomic structure of avoltage-dependent K+channel in a lipid membrane-like environment [J]. Nature,2007,450:376-383.
    [20] Kang C., Tian C., Sonnichsen F. D., Smith J. A., Meiler J., George A. L. Jr.,Vanoye C. G., Kim H. J., Sanders C. R. Structure of KCNE1and implications forhow it modulates the KCNQ1potassium channel[J]. Biochemistry,2008,47:7999-8006.
    [21] Bas T., Gao G. Y., Lvov A., Chandrasekhar K. D., Gilmore R., Kobertz W. R.Post-translational N-glycosylation of type I transmembrane KCNE1peptides.Implications for membrane protein biogenesis and disease[J]. Journal ofBiological Chemistry,2011,286:28150-28159.
    [22] Ehrlich J. R., Zicha S., Coutu P., Hebert T. E., Nattel S. Atrialfibrillation-associated minK38G/S polymorphism modulates delayed rectifiercurrent and membrane localization[J]. Cardiovascular Research,2005,67:520-528.
    [23] Claessens M., Van Cutsem E., Lasters I., Wodak S. Modelling the polypeptidebackbone with 'spare parts' from known protein structures[J]. ProteinEngineering,1989,2:335-345.
    [24] Mezei M. Simulaid: a simulation facilitator and analysis program[J]. J. Comput.Chem.,2010,31:2658-2668.
    [25] Northrup S. H., Thomasson K. A., Miller C. M., Baker P. D., Eltis L. D.,Guillemette J. G., Mauk A. G. Effects of charged amino acid mutations on thebimolecular kinetics of reduction of yeast iso-1-ferricytochrome c by bovineferrocytochrome b[J]. Biochemistry,1993,32:6613-6623.
    [26] Cui M., Mezei M., Osman R. Modeling dimerizations of transmembrane proteinsusing Brownian dynamics simulations[J]. Journal of Computer-Aided MolecularDesign,2008,22:553-561.
    [27] Hess B., Kutzner C., van der Spoel D., Lindahl E. GROMACS4: Algorithms forhighly efficient, load-balanced, and scalable molecular simulation[J]. Journal ofChemical Theory and Computation,2008,4:435-447.
    [28] Oostenbrink C., Villa A., Mark A. E., van Gunsteren W. F. A biomolecular forcefield based on the free enthalpy of hydration and solvation: the GROMOSforce-field parameter sets53A5and53A6[J]. J. Comput. Chem.,2004,25:1656-1676.
    [29] Humphrey W., Dalke A., Schulten K. VMD-visual molecular dynamics[J]. J.Mole. Graphics.,1996,14:33-38.
    [30] Berendsen H. J. C., Postma J. P. M., Gunsteren W. F. V., Nola A. D., Haak J. R.Molecular dynamics with coupling to an external bath[J]. J. Chem. Phys.,1984,81:3684-3690.
    [31] Pettersen E. F., Goddard T. D., Huang C. C., Couch G. S., Greenblatt D. M.,Meng E. C., Ferrin T. E. UCSF Chimera-A Visualization System forExploratory Research and Analysis[J]. J. Comput. Chem.,2004,25:1605-1612.
    [32] Jiang M., Xu X-L., Wang Y.-H., Toyoda F., Liu X.-S., Zhang M., Robinson R. B.,Tseng G.-N. Dynamic partnership between KCNQ1and KCNE1and influenceon cardiac IKs current amplitude by KCNE2[J]. Journal of Biological Chemistry,2009,284:16452-16462.
    [33] Lee S.-Y., Banerjee A., MacKinnon R. Two separate interfaces between thevoltage sensor and pore are required for the function of voltage-dependent K+channels[J]. PLoS Biology,2009,7: e1000047.
    [34] Campos F. V., Chanda B., Roux B., Bezanilla F. Two atomic constraintsunambiguously position the S4segment relative to S1and S2segments in theclosed state of Shaker K channel[J]. PNAS,2007,104:7904-7909.
    [35] Schmitt N., Schwarz M., Peretz A., Abitbol I., Attali B., Pongs O. A recessiveC-terminal Jervell and Lange-Nielsen mutation of the KCNQ1channel impairssubunit assembly[J]. EMBO Journal,2000,19:332-340.
    [36]Haitin Y., Attali B. The C-terminus of Kv7channels: a multifunctional module[J].J. Physio.,2008,586:1803-1810.
    [37] Tao X., Lee A., Limapichat W., Dougherty D. A., MacKinnon R. A gating chargetransfer center in voltage sensors[J]. Science,2010,328:67-73.
    [38] Careaga C. L. Falke J. J. Thermal motions of surface a-helices in the D-galactosechemosensory receptor. Detection by disulfide trapping[J]. Journal of MolecularBiology,1992,226:1219-1235.
    [39] Castagnetto J. M., Hennessy S. W., Roberts V. A., Getzoff E. D., Tainer J. A.,Pique M. E. MDB: the mtalloprotein database and browser at the ScrippsResearch Institute[J]. Nucleic Acids Research,2002,30:379-382.
    [40] Chen H., Kim L. A., Rajan S., Xu S., Goldstein S. A. N. Charybdotoxin bindingin the IKs pore demonstrates two minK subunits in each channel complex[J].Neuron,2003,40:15-23.
    [41]Strutz-Seebohm N., pusch M., Wolf S., Stoll R., Tapken D., Gerwert K., Attali B.,Seebohm G. Structural basis of slow activation gating in the cardiac IKs channelcomplex[J]. Cell Physiol Biochem,2011,27:443-452.
    [42]Laine M., Lin M.-C. A., Bannister J. P. A., Silverman W. R., Mock A. F., Roux B.,Papazian D. M. Atomic proximity between S4segment and pore domain inShaker potassium channels[J]. Neuron,2003,39:467-481.
    [43] Gandhi C. S., Clark E., Loots E., Pralle A., Isacoff E. Y. The orientation andmolecular movement of a K+channel voltage-sensing domain[J]. Neuron,2003,40:515-525.
    [44] Misonou H., Trimmer J. S. Determinants of voltage-gated potassium channelsurface expression and localization in mammalian neurons[J]. Cricial Reviews inBiochemistry and Molecular Biology,2004,39:125-145.
    [45] Larsson H. P., Elinder F. A conserved glutamate is important for slowinactivation in K+channels[J]. Neuron,2000,27:573-583.
    [46] Gonzales C., Rosenman E., Bezanilla F., Alvarez O., Latorre R. Modulation ofthe Shaker K+channel gating kinetics by the S3-S4linker[J]. Journal of GeneralPhysiology,2000,115:193-207.
    [47] Seebohm G., Sanguinetti M. C., pusch M. Tight coupling of rubidiumconductance and inactivation in human KCNQ1potassium channels[J]. Journalof Physiology,2004,552:369-378.
    [48] pusch M., Bertorello L., Conti F. Gating and flickery block differentially affectedby rubidium in homomeric KCNQ1and heteromeric KCNQ1/KCNE1potassiumchannels[J]. Biophysical Journal,2000,78:211-226.
    [49] Meng X.-Y., Xu Y., Zhang H.-X., Mezei M., Cui M. Predicting proteininteractions by Brownian dynamics simulatons[J]. Journal of Biomedicine andBiotechnology,2011,121034.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700