用户名: 密码: 验证码:
食管鳞癌中TGF-β1与上皮—间质转化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
食管癌是一种高侵袭性的肿瘤,世界范围内,食管癌患者死亡率占肿瘤患者死亡率的第六位,我国是食管癌的高发国家,河南省是高发省份。随着治疗手段的发展,食管癌的预后有所改善,但是其五年生存率仍然不容乐观。浸润转移是引起食管癌患者死亡的主要原因,因此,对食管癌浸润转移机制的探讨已成为研究热点之一。
     近来研究发现,在多细胞生物胚胎发育过程中的胚层和组织重建中存在一种现象:上皮-间质转化(epithelial-mesenchymal transition,EMT)。最近研究认为它不仅存在于多细胞生物的胚胎发生过程中,同时也存在于多种慢性疾病以及肿瘤的进展过程中。Thiery这样描述上皮性肿瘤发生发展过程中的EMT:正常上皮细胞沿基底膜生长,通过表型遗传学的改变或基因突变,细胞发生转化生成原位癌(此时基底膜仍然保持完整);继续发展,癌细胞通过EMT形式局部扩散,基底膜变脆,细胞侵入淋巴管和血管,发生转移;在种植部位,癌细胞还可通过间质-上皮转化形成转移瘤。上皮细胞发生EMT,以间质特性获得、上皮细胞极性丧失及运动能力增强为主要特征。这些特点与肿瘤细胞的原位侵袭和远处转移密切相关。目前关于食管鳞癌中是否存在EMT及EMT在食管鳞癌浸润转移中的作用尚未见报道。
     EMT是一个极其复杂的过程,包括:(1)细胞间连接(黏附连接、紧密连接、桥粒连接)解体,细胞分散;(2)细胞骨架重排,形成细胞-基质黏附,细胞运动能力增强。(3)细胞基因型的改变:在EMT过程中表达上调的因子主要包括间叶细胞标志物如纤维连接蛋白(fibronectin)、波形蛋白(Vimentin)、神经钙黏素(N-cadherin)等,以及诱导EMT的细胞因子和转录调节因子,如snail、slug,转化生长因子-β(transforming growth factor-β,TGF-β),成纤维细胞生长因子(fibroblast growth factor,FGF);还有对诱导EMT有辅助作用的基质金属蛋白酶-2(MMP-2),基质金属蛋白酶-9(MMP-9)等。在EMT过程中表达下调的因子主要包括上皮细胞的标志物如上皮钙黏素(E-cadherin),β-连环素(β-catenin),γ-连环素(γ-catenin),细胞角蛋白18(cytokeratin18)等。已有研究发现TGF-β在诱发EMT中起关键作用。
     有关食管鳞癌中是否存在EMT以及食管鳞癌中TGF-β1引发的EMT是否与食管癌的浸润转移有关,目前尚未见报道。本研究探讨了食管癌组织及食管鳞癌细胞系EC9706中TGF-β1的表达及其与E-cadherin及Vimentin的关系;采用针对TGF-β1的反义寡核苷酸干扰技术,抑制食管鳞癌细胞EC9706中TGF-β1的转录活性,探讨抑制TGF-β1对E-cadherin及Vimentin表达的影响,观察转染反义寡核苷酸对细胞形态学的影响及对细胞运动能力的影响,从而探讨食管鳞癌细胞中TGF-β1诱导的EMT;并探讨TGF-β1对食管鳞癌细胞EC9706增殖及凋亡的影响。探讨食管鳞癌浸润转移的分子机制,为食管癌浸润转移的阻断治疗提供理论基础。
     材料和方法
     1.采用免疫组织化学技术检测了100例手术切除的食管鳞癌组织及其癌旁“正常”粘膜中TGF-β1、E-cadherin和Vimentin蛋白的表达情况。
     2.采用RT-PCR、免疫细胞化学、流式细胞术对食管鳞癌细胞系EC9706中的TGF-β1、E-cadherin和Vimentin蛋白及mRNA表达进行了检测。
     3.针对TGF-β1第一启动子的核苷酸片段设计合成反义寡核苷酸(ASODN),采用阳离子聚合物瞬时转染培养的人食管鳞癌EC9706细胞。
     ①观察TGFβ1-ASODN转染后细胞形态学的变化。
     ②采用RT-PCR、免疫细胞化学方法、流式细胞术方法观察TGFβ1-ASODN转染后细胞中TGF-β1mRNA及蛋白表达的变化。
     ③采用RT-PCR、免疫细胞化学、流式细胞术方法观察TGFβ1-ASODN转染后细胞中E-cadherine与Vimentin mRNA及蛋白表达的变化。
     ④采用细胞划痕试验检测TGFβ1-ASODN转染后细胞迁移能力的变化。
     4.采用流式细胞术、MTT观察转染TGFβ1-ASODN后,对细胞增殖、凋亡及细胞周期的影响。
     5.统计学处理:所有数据均经SPSS13.0软件进行统计分析。计数数据采用阳性率表示,阳性率之间的比较采用χ~2检验(Chi-square),阳性率间相关性采用Kendall相关进行比较;计量数据采用(?)±S表示,两组均数的比较用t检验(t-test),两组以上均数的比较用方差分析(ANVOA)。显著性水平α=0.05。
     结果
     1.TGF-β1蛋白在食管鳞癌中的表达(85.0%)明显高于其在癌旁“正常”粘膜中的表达(27.0%)(P<0.01),其在深层浸润组中的表达(90.6%)高于其在浅层浸润组中的表达(75.0%)(P<0.05)。
     2.E-cadherin蛋白在食管鳞癌中的表达(43%)明显低于其在癌旁“正常”粘膜中的表达(85%)(P<0.01);Vimentin蛋白在食管鳞癌中的表达(23%)高于其在癌旁“正常”粘膜中的表达(0%)(P<0.05)。
     3.在食管鳞癌组织中,TGF-β1的表达与E-cadherin的表达呈负相关关系(T_b=-0.257,P<0.05);TGF-β1的表达与Vimentin的表达呈正相关关系(T_b=0.163,P<0.05);Vimentin的表达与E-cadherin的表达呈负相关关系(T_b=-0.379,P<0.01)。
     4.RT-PCR结果显示EC9706细胞系中可检测到TGF-β1mRNA(0.43±0.09)、E-cadherin mRNA(0.22±0.06)、Vimentin mRNA(0.89±0.09)的表达;免疫细胞化学结果显示在EC9706中存在TGF-β1蛋白(43.57%)、E-cadherin蛋白(12.53%)和Vimentin蛋白(17.97%)的表达;流式细胞术结果也显示在EC9706中存在TGF-β1蛋白(41.4%)、E-cadherin蛋白(12.2%)和Vimentin(17.8%)蛋白的表达。
     5.转染TGFβ1-ASODN后,RT-PCR结果表明,TGF-β1mRNA的表达水平(0.25±0.681)明显低于转染前(0.43±0.09)(P<0.01);免疫细胞化学结果表明,转染后TGF-β1蛋白的表达(35.07%)明显低于转染前(43.57%)(P<0.01),且细胞浆着色减弱;流式细胞术结果表明,转染后TGF-β1蛋白的表达(35.4%)明显低于转染前(41.38%)(P<0.01)。
     6.RT-PCR结果表明,转染TGFβ1-ASODN后,E-cadherin mRNA的表达(0.38±0.09)明显高于转染前(0.22±0.06)(P<0.01);Vimentin mRNA的表达(0.73±0.07)低于转染前(0.89±0.09)(P<0.05)。免疫细胞化学结果表明,转染后,E-cadherin蛋白的表达(17.13%)明显高于转染前(12.53%)(P<0.01);Vimentin蛋白的表达(14.15%)明显低于转染前(17.97%)(P<0.01)。流式细胞术结果表明,转染后E-cadherin蛋白的表达率(17.8%)明显高于转染前(12.2%)(P<0.01);Vimentin蛋白的表达(14.9%)明显低于转染前(17.8%)(P<0.01)。
     7.转染后细胞形态变圆,颗粒增多,呈立方形或椭圆形;而对照组细胞贴壁生长良好,细胞轮廓清楚,呈纺锤形或长梭形。
     8.划痕试验结果显示,转染TGFβ1-ASODN的EC9706细胞的迁移距离在24h(0.14±0.02)、48h(0.30±0.06)、72h(0.45±0.05)均较转染前24h(0.23±0.02)、48h(0.69±0.12)、72h(0.81±0.11)减少(P<0.05)。
     9.流式细胞术结果表明,转染后细胞凋亡百分率(0.69%)低于转染前(0.96%)(P<0.05);转染后,G1期的细胞百分比(62.9%)明显低于转染前(66.5%)(P<0.01),S期细胞百分比(21.3%)明显低于转染前(23.7%)(P<0.01),G2期的细胞百分比(14.8%)明显高于转染前(9.8%)(P<0.01)。MTT结果表明,转染TGFβ1-ASODN后72h,细胞存活率(109.4%)高于转染前(100%)(P<0.05)。
     结论
     1.TGF-β1蛋白在食管鳞癌组织中及食管鳞癌细胞系EC9706中高表达,且在食管鳞癌中TGF-β1蛋白表达与E-cadherin蛋白表达的负相关关系,与Vimentin蛋白表达的正相关关系提示食管鳞癌发生发展过程中可能存在TGF-β1引发的EMT。
     2.转染TGFβ1-ASODN,可特异性地抑制食管鳞癌细胞EC9706中的TGF-β1表达。
     3.TGFβ1-ASODN转染EC9706细胞,可导致细胞上皮性标志物E-Cadherin表达上调、间质性标志物Vimentin表达下调、形态发生改变、移动能力减弱,提示阻断TGFβ1信号可抑制食管鳞癌细胞EC9706的EMT过程。
     4.TGFβ1-ASODN阻断TGFβ1表达后,可能解除了TGFβ1对食管鳞癌细胞EC9706的生长抑制作用和凋亡促进作用。
Esophageal cancer is a highly aggressive neoplasm. On a global basis, cancer of the esophagus is the sixth leading cause of cancer death worldwide, especially in Henan province of China. With advances in surgical techniques and treatment, the prognosis of esophageal cancer has slowly improved over the past three decades. However, the 5-year overall survival rate remains poor. The most important reason is the mechanism of invasion and metastasis is still unclear. To explore the mechanism of the invasion and metastasis of esophageal carcinoma has become a focus.
     Epithelial-mesenchymal transition (EMT) is an important mechanism for reorganizing germ layers and tissues during embryonic development. Originally EMT was defined by the formation of mesenchymal cells from epithelia in different embryonic territories, but recently, this process is also found reactivated in a variety of diseases including fibrosis and in the progression of carcinoma. Thiery describes EMTs in tumorigenesis like this : Normal epithelial cell grow along the basal membrane, then the phenotype gene change or mutation make the cell transfer to carcinoma in situ (now the basal membrane still maintains integrity); with development , cancer cells proliferation in region by Epithelial-mesenchymal transition, the basal membrane becomes crisply , cells invasion into lymph-vessels and bloodvessels and metastasis; In the planter spot, cancer cell could growth into metastatic tumor by mesenchymal- epithelial transition; For epithelial cells ,EMT involves loss of epithelial phenotype, or de-epithelialization, which would turn itself to non-epithelial, or nominal 'mesenchymal' cells, in place of what was an epithelium, and it involves a lot of remodeling of junctions, polarity, motility, adhesive properties as well. EMT includes changing of phenotypic markers, an increased capacity for migration and three-dimensional invasion, as well as apoptosis. So far, there is noreport about EMT in Esophageal Squamous Cell Carcinoma .
     EMT is a very complex process, including: (1) the cell-cell junction (sticking connection, tight junction, desmosome connection) disintegrates, and the cell becomes dispersible; (2) the cell skeleton rearrangement to cell - matrix attaches, cell movement ability enhancement. (3) gene change: In the EMT process, up-regulated factors involves mesenchymal cell marker such as fibronectin、Vimentin、N-cadherin and so on, as well as cell factors and transcription regulaters which can induce EMT, like snail, slug, TGF- beta(transforming growth factor- beta), FGF (fibroblast growthfactor) MMP-2 (matrix metal proteinase -2 ), MMP-9 (matrix metal proteinase -9); down-regulated factors involves E-cadherin、β-catenin、γ-catenin、cytokeratinl 8 and so on. It has found that TGF-βplay a critical role in EMT.
     We have not seen any report about EMT and relationship of EMT induced by TGF-P with invasion and metastasis of ESCC. In this study ,we detected the expression of TGF-βin ESCC tissue and ESCC cell line EC9706, and relationship of the expression of TGF-βwith E-cadherin and Vimentin; inhibited the expression of TGF-β1 by TGFβ1-ASODN in EC9706 to detect changes of expressions of E-cadherin and Vimentin、cell morphous, migration ability ,from these aspects to investigate EMT induced by TGF-β1 in ESCC, and investigate the effect of TGF-β1 to cell proliferation and Apoptosis.
     Materials and methods:
     1. Expressions of TGF-β1、E-cadherin and Vimentin proteins were detected in 100 cases of surgically resected esophageal squamous carcinoma specimens by the method of immunohistochemistry, which including carcinoma tissues and corresponding normal tissues.
     2. Expressions of TGF-β1、E-cadherin和Vimentin proteins and mRNA in the ESCC cell lines EC9706 were investigated by reverse transcription-polymerase chain reaction (RT-PCR)、immunocytochemistry and flowcytometry.
     3. The antisense oligodeoxynucleotides (ASODN) was complementary to the TGF-β1 sequences. EC9706 was transfected with chemical synthesised TGF-β1 oligodeoxynucleotides by transfection reagents.
     (1) Cell morphological changes were observed with inversphase microscope.
     (2)The changes of TGF-β1 protein and mRNA were tested by using immunohistochemistry、flowcytometry and RT-PCR.
     (3) The changes of E-cadherin and Vimentin were observed by using RT-PCR、 immunohistochemistry and flowcytometry.
     (4) Cell migration potentia were tested by scarification test.
     4. The apoptosis、cell cycles and proliferation of EC9706 were detected by flowcytometry and MTT.
     5. Statistical analysis: All the dates were analyzed by SPSS 13.0 statistical package, the count information calculated the positive rate, enumeration date are expressed by standard deviation [x|-±s]. The comparison of positive rates uses the Chi-square, the mean of two groups uses the t-test. The mean of more groups use the ANVOA. The relation of two variable groups is analyzed by the Kendall correlation analysis. The level of significant difference is a=0.05.
     Results
     1.The positive rate of expressions of TGF-β1 protein were higher significantly in carcinoma tissues 85.0%than that in normal tissues 27.0% (P <0.01) . The positive rate of expressions of TGF-β1 in deeper invasion group 90.6% were significantly higher than that in superficial invasion group 75.0% (P <0.05).
     2. The positive rates of E-cadherin protein were significantly higher in normal mucosa tissues 85.0% than that in cancer tissues43.0% (P <0.01). The positive rates of Vimentin protein were significantly lower in normal mucosa tissues 0 than that in cancer tissues 23.0% (P <0.05).
     3.There were negative correlations between the positive rate of TGF-β1 protein expression and that of E-cadherin protein expression in cancer tissues (T_b=-0.257, P<0.05), positive correlations between the positive rate of TGF-β1 protein expression and that of Vimentin protein expression in cancer tissues (T_b=0.163, P<0.05 ) , and negative correlations between the positive rate of E-cadherin protein expression and that of Vimentin protein expression in cancer tissues (T_b=-0.379, P<0.01) .
     4. Results of RT-PCR showed that expressions of mRNA of TGF-pl(0.43±0.09)、E-cadherin (0.22±0.06)and Vimentin(0.89±0.09) can be detected in EC9706.Results of ICC showed that proteins of TGF-β1(43.57%)、E-cadherin(12.53%) and Vimentin(17.97%) express in the ESCC cell line EC9706; results of flow cytometry showed that proteins of TGF-β1(41.4%). E-cadherin(12.2%) and Vimentin(17.8%) express in the ESCC cell line EC9706.
     5. After transfection of TGFβ1-ASODN, TGF-β1mRNA/β-actin mRNA half quantitation shows that expressions of TGF-β1 mRNA (0.250±0.681) were obviously lower than control group (0.425±0.093) (P <0.05) . ICC results shows that the positive rates of expressions of TGF-β1 protein were lower significantly in ASODN group (35.07%) than that in control group (43.57%) (P<0.01) , and protein in cytoplasm of transfered group obviously descend. Results of flowcytometry indicated that the positive rates of expressions of TGF-β1 protein were lower significantly in ASODN group (35.4%) than that in control group (41.38%) (P <0.01) .
     6. After transfection, results of RT-PCR showed that expressions of E-cadherin mRNA (0.3750±0.0925) were obviously higher than that in control group(0.2183±0.0646) (P <0.05), and expressions of Vimentin mRNA in ASODN group (0.7300±0.0669) were obviously lower than that in control group (0.8933±0.0894) (P<0.05). Results of ICC showed that expressions of E-cadherin protein in ASODN group (17.13%)were obviously higher than that in control group (12.53%) (P<0.01), and expressions of Vimentin protein in ASODN group (14.15%)were obviously lower than that in control group (17.97%) (P<0.01).Results of flowcytometry showed that expressions of epithelial marker E-cadherin protein in ASODN group (17.8%)were obviously higher than that in control group (12.2%) (P<0.01), and expressions of mesenchymal marker Vimentin protein in ASODN group (14.9%)were obviously lower than that in control group (17.8%) (P <0.01).
     7. After transfection by TGFβ1- ASODN, transfected cells display distinct biological behaviour, such as shape becoming shrink and round , and more grains . But control group cells were fusiform shape, adherence growth, and had clear layout among cells.
     8. Results of scratch test showed that after transfion, migration lenth of ASODN group in24 (0.14±0.02)、48 (0.30±0.06)、72h (0.45±0.05 ) were significantly shorter than control group 24h (0.23±0.02) , 48h (0.69±0.12 ) ,72h (0.81±0.11 ) (P<0.05).
     9. After transfection, apoptosis incidence rate in ASODN group (0.69%) was lower than that in control group (0.96%),and the compare has significant difference(P<0.05). Cells in G stage of ASODN group(19.3%) was lower than those of control group (23.7%) (P<0.01); cells in S stage of ASODN group(19.3%)was lower than those of control group (23.7%) (P<0.01); cells in G2 stage of ASODN group (14.8%) was higher than those of control group ( 9.8% ) (P<0.01); cell survival rate in ASODN group (109.4%) was higher than that in control group
     Conclutions
     1. Overexpressions of TGF-β1 in esophageal cancer tissue and in ESCC cell lines EC9706 ; in cancer tissues , negative correlations between the expression of TGF-β1 protein and that of E-cadherin protein , and positive correlations between the expression of TGF-(31 protein and that of Vimentin protein indicated that there may have TGF-β1 induced EMT in carcinogenesis and development of ESCC.
     2. After transfection by TGFβ1-ASODN , expressions of protein and mRNA of TGF-β1 were suppressed, which indicated that TGFβ1-ASODN can specific inhibit expressions of TGF-β1.
     3.After transfection by TGFβ1-ASODN, ESCC cell line EC9706 change in morphous, decrease capacity for migration , and up-regulate of E-cadherine and down-regulate of Vimentin, indicates that blockage of TGFβ1 can inhibit the EMT progress in ESCC cell line EC9706.
     4. After TGF-β1 inhibited by TGFβ1-ASODN , the effect of growth inhibition and Apoptosis promotion by TGF-β1 might be relieved.
引文
1. Shook D, Keller R. Mechanisms, mechanics and function of epithelial-mesenchymal transitions in early development. Mech Dev. 2003; 120(11): 1351-1383
    2. Thiery JP. Role of growth factor signaling in epithelial cell plasticity during development and in carcinogenesis. Bull Acad Natl Med. 2001; 185(7): 1279-92;
    3. Lagamba D, Nawshad A, Hay ED. Microarray analysis of gene expression during epithelial-mesenchymal transformation. Dev Dyn. 2005, 234(1): 132-142.
    4. E. Janda, K. Lehmann, I. Killisch, et al. Ras and TGFβ cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J Cell Biol. 2002; 156(2): 299-313
    5. Cho HJ, Baek KE, Saika S, et al. Snail is required for transforming growth factor-beta-induced epithelial-mesenchymal transition by activating PI3 kinase/Akt signal pathway. Biochem Biophys Res Commun. 2007; 353(2): 337-343.
    6.王医术,李玉林,李一雷,等.TGFβ1 在乳腺癌间质新生血管周细胞中的表达.吉林大学学报(医学版),2004;30(5):684-686
    7. Yutaka Yonemura, 1 Yoshio Endou, Keiichi Kimura, et al. Inverse Expression of S100A4 and E-Cadherin Is Associated with Metastatic Potential in Gastric Cancer. Clinical Cancer Research. 2002; 6: 4234-4242
    8. LUO Yong, HE Da-lin, NING Liang, et al. Hypoxia-inducible factor-1α induces the epithelial-mesenchymal transition of human prostatecancer cells. Chinese Medical Journal. 2006; 119(9): 713-718
    9. Romeo D, Allison RS, Kondaiah, et al. Recharacterization of the start sites for the major human transforming growth factor -β1 mRNA. Gene. 1997; 189: 289-295
    10.中华病理学会杂志编辑委员会.《全国免疫组织化学技术与诊断标准化专题研讨会》会议纪要.中华病理学杂志.1996;25 (6):326
    11. Sulzer MA, Leers MP, Van Moord JA. Reduced E-cadherin expression is associated with increased lymph node metastasis and unfavorable prognosis in non-small cell lung cancer. Respir Cri Care Med. 1998; 157: 1319-1323
    12. Tew WP, Kelsen DP, Ilson DH. Targeted therapies for esophageal cancer. Oncologist. 2005;. 10(8): 590-601
    13. Savagner P. Leaving the neighborhood: molecular mechanisms involved during epithelial-mesenchymal transition. Bioessays, 2001; 23 (10): 912-923
    14. Ando S, Otani H, Yagi Y, et al. Proteinase-activated receptor 4 stimulation-induced epithelial-mesenchymal transition in alveolar epithelial cells. Respir Res. 2007; 8: 31-45
    15. Han G, Lu SL, Li AG, et al. Distinct mechanisms of TGF-betal-mediated epithelial-to-mesenchymal transition and metastasis during skin carcinogenesis. J Clin Invest, 2005; 115(7): 1714-1723
    16. Vasko V, Espinosa AV, Scouten W, et al. Gene expression and functional evidence of epithelial-to-mesenchymal transition in papillary thyroid carcinoma invasion. Proc Natl Acad Sci U S A. 2007; 104(8): 2803-2808
    17. Assoian RK, Komoriyam a A, M eyers CA, et al. Transforming growth factor-beta in human platelets. Identification of a major storage site, purification, and Characterization. J BiolChem, 1983; 258(11): 7155-7160
    18. Derynck R, Jarrett JA, Chen EY, et al. Human transforming growth factor-beta complementary DNA sequence and expression in normal and transformed cells. Nature, 1985; 316 (6030): 701-705.
    19. Blobe G C, Schiermann W P, Lodish H F. Role of transforming growth factorin human disease. N Engl JM ed, 2000; 342(18): 1350-1358
    20. Shimizu T, Yokomuro S, Mizuguchi Y, et al. Effect of transforming growth factor-betal on human intrahepatic cholangiocarcinoma cell growth. World J Gastroenterol. 2006; 12(39): 6316-6324
    21. Inoue T, Ishida T, Takenoyama M, et al. The relationship between the immunodetection of transforming factor beta in lung adenocarcinoma and longer survival rates. Surg Oncol, 1995; 4 (1): 51-57
    22. Marrogi AJ, Munshi A, Merogi AJ, et al. Study of tumor infiltrating lymphocytes and transforming growth factor-beta as prognostic factors in breast carcinoma. Int J Cancer, 1997; 74 (5): 492-501
    23. Galliher AJ, Schiemann WP. Src phosphorylates Tyr284 in TGF-beta type Ⅱ receptor and regulates TGF-beta stimulation of p38 MAPK during breast cancer cell proliferation and invasion. Cancer Res. 2007; 67(8): 3752-3758
    24. Zavadil J, Bottinger EP. TGF-beta and epithelial-to-mesenchymal transitions. Oncogene. 2005; 24(37): 5764-5774
    25. Yang WF, Yu JM, Zuo WS, et al. Expression of CD80, CD86, TGF-betal and IL-10 mRNA in the esophageal carcinoma. Zhonghua Zhong Liu Za Zhi. 2006; 28(10): 762-765
    26.李景和.转化生长因子β及其下游分子Mad基因改变与肿瘤的关系 1999;19(6):438-441
    27. Ellenrieder V, Hendler SF, Ruhland C, et al. TGF-beta-induced invasiveness of pancreatic cancer cells is mediated by matrix metalloprotein-2 and the urokinase plasminogen acticator system. Int J Cancer, 2001, 93 (2): 204-214
    28. Lagamba D, Nawshad A, Hay ED. Microarray analysis of gene expression during epithelial-mesenchymal transformation. Dev Dyn. 2005; 234(1): 132-142
    29. Pincon-Raymond M. Cadherins: structure and signalisation protein of cell-cell junctions. Introduction and conclusions. J Soc Biol, 2004; 198 (4): 353-356
    30. Takeichi M. Morphogenetic roles of classic cadherins. Curr Opin Cell Biol 1995; 7 (5): 619-627
    31. Davies BR, Worsley SD, Ponder BA. Expression of E-cadherin, alpha-catenin and beta-catenin in normal ovarian surface epithelium and epithelial ovarian cancers. Histopathology. 1998; 32 (1): 69-80
    32. Gagliardi G Kandemir O, Liu D, et al. Changes in E-cadherin immunoreactivity in the adenoma carcinoma sequence of the large bowel. Virchows Arch. 1995; 426 (2): 149-154
    33. Cowin P, Rowlands TM, Hatsell SJ. Cadherins and catenins in breast cancer. Curr Opin Cell Biol. 2005; 17(5): 499-508
    34. Andersen H, Mejlvang J, Mahmood S, et al. Immediate and delayed effects of E-cadherin inhibition on gene regulation and cell motility in human epidermoid carcinoma cells. Mol Cell Biol. 2005; 25(20): 9138-9150
    35. Shaw RJ, Liloglou T, Rogers SN, et al. Promoter methylation of P16, RARbeta, E-cadherin, cyclin Al and cytoglobin in oral cancer: quantitative evaluation using pyrosequencing. Br J Cancer. 2006; 94(4): 561-568
    36. Ku NO, Zhou X, Toivola DM, et al. The cytoskeleton of digestive epithelia in health and disease. Am J Physiol. 1999; 277(6): G1108-1137
    37. Djabali K. Cytoskeletal proteins connecting intermediate filaments to cytoplasmic and nuclear periphery. Histol Histopathol. 1999; 14(2): 501-509
    38. Fraga CH, T rue LD, Kirk D. Enhanced expression of the mesenchymal marker, vimentin, in hyperplastic versus normal human prostatic epithelium. J U ro l, 1998; 159 (1): 270-274
    39.吴静,古建鼐.成纤维细胞和纤维肉瘤细胞的中等纤维构型特点及其意义.暨南大学学报(自然科学与医学版),1995;16(4):8-14
    40.曹文枫,张连郁.Vimentin 及Cyclin D1 蛋白在肾母细胞瘤中的表达及意义.中国肿瘤临床,2001;28(11):819-814
    41.刘光,丁华野,皋岚湘,等.乳腺癌中 Vimentin 与P-糖蛋白表达和其它预后指标的相关性研究.中国组织化学与细胞化学杂志,2001;10(2):179-182
    42.罗勇,贺大林,宁亮,等.前列腺癌细胞株 LNCaP 和IA8中转移相关蛋白的差异表达及意义.中华男科学杂志,2006;12(3):230-234
    43. Hwa JS, Park HJ , Jung JH, et al. Identification of proteins differentially expressed in the conventional renal cell carcinoma by proteomic analysis. J Ko rean Med Sci, 2005; 20 (3): 450-455
    44. Noguchi A, Hirashima N, Nakanishi M. Cationic cholesterol promotes gene transfection using the nuclearlocalization signalin protamine. P harm Res. 2002; 19 (7): 933-938
    45. Greenburg G, Hay ED. Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells. J Cell Biol. 1982; 95 (1): 333-339
    46. Boyer B, Valles AM, Edme N. Induction and regulation of epithelial mesenchymal transitions. Biochem Pharmacol. 2000; 60 (8): 1091-1099
    47. Gotzmann, Josef. Hepatocytes convert to a fibroblastoid phenotype through the cooperation of TGF-β1 and Ha-Ras: steps towards invasiveness. Mutation Research/Reviews in Mutation Research. 2004; 566 (1): 9-20.
    48. Hay E. D. An overview of epithelio-mesenchymal transformation. Acta Anat. 1995; 154(1): 8-20
    49. Vasiliev JM. Cytoskeletal mechanisms responsible for invasive migration of neoplastic cells. Int. J. Dev. Biol. 2004; 48 (5-6): 425-439
    50. Nawshad A, Lagamba D, Polad A, et al. Transforming growth factor-beta signaling during epithelial-mesenchymal transformation: implications for embryogenesis and tumor metastasis. Cells Tissues Organs. 2005; 179(1-2): 11-23.
    51. Thiery JP. Epithelial-mesenchymal transition in development and pathologies. Curr Opin Cell Biol, 2003; 15 (6): 740-746
    52. Schuldiner M, Yanuka O, Itskovitz-Eldor J, et al. Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Pros Natl Acad Sci USA. 2000; 97(21): 11307-11312
    53. Warner BJ, Blain SW, Seoane J, et al. Myc downregulation by transforming growth factor beta required for activation of the p15(Ink4b) G(1) arrest pathway. Mol Cell Biol, 1999; 19(9): 5913-5922.
    54. Hu X, Cress WD, Zhong Q, et al. Transforming growth factor beta inhibits the phosphorylation of pRB at multiple serine/ threonine sites and differentially regulates the formation of pRB family E2F complexes in human myeloid leukemia cells. Biochem Biophys Res Commun. 2000; 276 (3): 930-939.
    1. Nair KS, Naidoo R, Chetty R. Expression of cell adhesion molecules in oesophageal carcinoma and its prognostic value. J Clin Pathol. 2005; 58(4):343-351.
    2. Chen SC, Chou CK, Wong FH, et al. Overexpression of epidermal growth factor and insulin-like growth factor-Ⅰ receptors and autocrine stimulation in human esophageal carcinoma cells.Cancer Res. 1991; 51 (7): 1898-1903.
    3. Yilmaz O, Eroglu A, Dag E, et al. Serum levels of IGF-Ⅰ and IGFBP-Ⅲ and their relation with carcinoembryonic antigen and carbohydrate antigen 19-9 in cases of esophageal cancer. Int J Clin Pract. 2006; 60(12):1604-1608.
    4. Liu YC, Leu CM, Wong FH, et al. Autocrine stimulation by insulin-like growth factor Ⅰ is involved in the growth, tumorigenicity and chemoresistance of human esophageal carcinoma cells. J Biomed Sci. 2002; 9(6 Pt 2):665-674.
    5. Rustgi AK. Models of esophageal carcinogenesis, emin Oncol. 2006; 33 Suppl 11:57-58.
    6. Fu JH, Yang DK, Huang YC, et al. Expressions of epithelial growth factor receptor and E-cadherin in esophageal carcinoma and their correlation. Ai Zheng. 2005;24(2):241-245
    7. Kwak EL, Jankowski J, Thayer SP, et al. Epidermal growth factor receptor kinase domain mutations in esophageal and pancreatic adenocarcinomas. Clin Cancer Res. 2006;12(14 Pt 1):4283-4287
    8. Nie Y, Liao J, Zhao X, et al. Detection of multiple gene hypermethylation in the development of esophageal squamous cell carcinoma. Carcinogenesis. 2002; 23(10):1713-1720.
    9. Takeno S, Noguchi T, Fumoto S, et al. E-cadherin expression in patients with esophageal squamous cell carcinoma: promoter hypermethylation, Snail overexpression, and clinicopathologic implications.Am J Clin Pathol. 2004 ; 122(1):78-84.
    10. Uchikado Y, Natsugoe S, Okumura H, et al. Slug Expression in the E-cadherin preserved tumors is related to prognosis in patients with esophageal squamous cell carcinoma. Clin Cancer Res. 2005; 11 (3): 1174-1180
    11. Lin YC, Wu MY, Li DR, et al. Prognostic and clinicopathological features of E-cadherin, alpha-catenin, beta-catenin, gamma-catenin and cyclin D1 expression in human esophageal squamous cell carcinoma. World J Gastroenterol. 2004; 10(22):3235-3239.
    12. Kato H, Miyazaki T, Nakajima M, et al. Prediction of hematogenous recurrence in patients with esophageal carcinoma. Jpn J Thorac Cardiovasc Surg. 2003; 51 (11):599-608.
    13. Zhao XJ, Li H, Chen H, et al. Expression of e-cadherin and beta-catenin in human esophageal squamous cell carcinoma: relationships with prognosis. World J Gastroenterol. 2003; 9(2):225-232.
    14. Yoshinaga K, Inoue H, Utsunomiya T, et al. N-cadherin is regulated by activin A and associated with tumor aggressiveness in esophageal carcinoma. Clin Cancer Res. 2004; 10(17):5702-5707.
    15. Jones JL, Walker RA. Integrins: a role as cell signalling molecules. Mol Pathol 1999;52 (4): 208-213.
    16. Q Chen, MS Kinch, TH Lin, et al. Integrin mediated cell adhesion activates mitogen-activated protein kinases. J Biol Chem 1994; 269:26602-26605.
    17. Tanaka Y, Mimori K, Shiraishi T, et al. alpha6 integrin expression in esophageal carcinoma.Int J Oncol. 2000; 16(4):725-729.
    18. Miller SE, Veale RB. Environmental modulation of alpha(v), alpha(2) and beta(1) integrin subunit expression in human oesophageal squamous cell carcinomas.Cell Biol Int. 2001; 25(1):61-69.
    19. Pignatelli M. Integrins, cadherins, and catenins: molecular cross-talk in cancer cells. J Pathol 1998;186:1-2
    20. Hodivala KJ, Watt FM. Evidence that cadherins play a role in the downregulation of integrin expression that occurs during keratinocyte terminal differentiation. J Cell Biol 1994; 124:589-600.
    21. Samantaray S, Sharma R, Chattopadhyaya TK, et al. Increased expression of MMP-2 and MMP-9 in esophageal squamous cell carcinoma.J Cancer Res Clin Oncol. 2004; 130(1):37-44.
    22. Gu ZD, Chen KN, Li M, et al. Clinical significance of matrix metalloproteinase-9 expression in esophageal squamous cell carcinoma. World J Gastroenterol. 2005; 11 (6):871-874
    23. Sharma R, Chattopadhyay TK, Mathur M, et al. Prognostic significance of stromelysin-3 and tissue inhibitor of matrix metalloproteinase-2 in esophageal cancer.Oncology. 2004; 67(3-4):300-309.
    24. Yu C, Zhou Y, Miao X, et al. Functional haplotypes in the promoter of matrix metalloproteinase-2 predict risk of the occurrence and metastasis of esophageal cancer. Cancer Res. 2004;64(20):7622-7628
    25. Ishibashi Y, Matsumoto T, Niwa M, et al. CD147 and matrix metalloproteinase-2 protein expression as significant prognostic factors in esophageal squamous cell carcinoma.Cancer. 2004; 101 (9): 1994-2000.
    26. Tanioka Y, Yoshida T, Yagawa T, et al. Matrix metalloproteinase-7 and matrix metalloproteinase-9 are associated with unfavourable prognosis in superficial oesophageal cancer. Br J Cancer. 2003; 89(11):2116-2121.
    27. Yamamoto H, Vinitketkumnuen A, Adachi Y, et al. Association of matrilysin-2 (MMP-26) expression with tumor progression and activation of MMP-9 in esophageal squamous cell carcinoma. Carcinogenesis. 2004; 25(12):2353-2360
    28. Ahokas K, Karjalainen-Lindsberg ML, Sihvo E, et al. Matrix metalloproteinases 21 and 26 are differentially expressed in esophageal squamous cell cancer. Tumour Biol. 2006; 27(3): 133-141.
    29. Zhang XJ, Guo W, Wang N, et al. The association of MMP-13 polymorphism with susceptibility to esophageal squamous cell carcinoma and gastric cardiac adeno-carcinoma. Yi Chuan. 2006; 28(12): 1500-1504.
    30. Clement G, Braunschweig R, Pasquier N, et al. Methylation of APC, TIMP3, and TERT: a new predictive marker to distinguish Barrett's oesophagus patients at risk for malignant transformation.J Pathol. 2006; 208(1): 100-107
    31. Darnton SJ, Hardie LJ, Muc RS, et al. Tissue inhibitor of metalloproteinase-3 (TIMP-3) gene is methylated in the development of esophageal adenocarcinoma: loss of expression correlates with poor prognosis. Int J Cancer. 2005; 115(3):351-358
    32. Shiomi H, Eguchi Y, Tani T, et al. Cellular distribution and clinical value of urokinase-type plasminogen activator, its receptor, and plasminogen activator inhibitor-2 in esophageal squamous cell carcinoma. Am J Pathol. 2000; 156(2):567-575.
    33. Nomiya T, Nemoto K, Miyachi H, et al. Significance of plasminogen-activation system in the formation of macroscopic types and invasion in esophageal carcinoma.Anticancer Res. 2002; 22(5):2913-2916
    34. Yamashita K, Tanaka Y, Mimori K, et al. Differential expression of MMP and uPA systems and prognostic relevance of their expression in esophageal squamous cell carcinoma. Int J Cancer. 2004; 110(2):201-207.
    35. Conejo JR, Kleeff J, Koliopanos A, et al. Syndecan-1 expression is up-regulated in pancreatic but not in other gastrointestinal cancers. Int J Cancer. 2000; 88(1):12-20.
    36. Mikami S, Ohashi K, Usui Y, et al. Loss of syndecan-1 and increased expression of heparanase in invasive esophageal carcinomas. Jpn J Cancer Res. 2001; 92(10): 1062-1073
    37. Maruyama K, Watanabe H, Shiozaki H, et al. Expression of autocrine motility factor receptor in human esophageal squamous cell carcinoma. Int J Cancer. 1995; 64(5):316-321.
    38. Iwazawa T, Shiozaki H, Doki Y, et al. Primary human fibroblasts induce diverse tumor invasiveness: involvement of HGF as an important paracrine factor. Jpn J Cancer Res. 1996; 87(11):1134-1142.
    39. Ren Y, Cao B, Law S, et al. Hepatocyte growth factor promotes cancer cell migration and angiogenic factors expression: a prognostic marker of human esophageal squamous cell carcinomas. Clin Cancer Res. 2005; 11 (17) : 6190-6197.
    40. Herrera LJ, El-Hefnawy T, Queiroz de Oliveira PE, et al. The HGF receptor c-Met is overexpressed in esophageal adenocarcinoma. Neoplasia. 2005; 7(1) : 75-84.
    41. Watson GA, Zhang X, Stang MT, et al. Inhibition of c-Met as a therapeutic strategy for esophageal adenocarcinoma. Neoplasia. 2006 Nov; 8(11) : 949-955
    42. Miyazaki T, Kato H, Fukuchi M, et al. EphA2 overexpression correlates with poor prognosis in esophageal squamous cell carcinoma. Int J Cancer. 2003; 103(5) : 657-663.
    43. Kyriazanos ID, Tachibana M, Dhar DK, et al. Expression and prognostic significance of S100A2 protein in squamous cell carcinoma of the esophagus. Oncol Rep. 2002; 9(3) : 503-510.
    44. Imazawa M, Hibi K, Fujitake S, et al. S100A2 overexpression is frequently observed in esophageal squamous cell carcinoma. Anticancer Res. 2005; 25(2B) : 1247-1250
    45. Ninomiya I, Ohta T, Fushida S, et al. Increased expression of S100A4 and its prognostic significance in esophageal squamous cell carcinoma. Int J Oncol. 2001; 18(4) : 715-720
    46. Nie Y, Yang G, Song Y, et al. DNA hypermethylation is a mechanism for loss of expression of the HLA class I genes in human esophageal squamous cell carcinomas. Carcinogenesis. 2001; 22(10) : 1615-1623
    47. Rockett JC, Darnton SJ, Crocker J, et al. Lymphocyte infiltration in oesophageal carcinoma: lack of correlation with MHC antigens, ICAM-1, and tumour stage and grade. J Clin Pathol. 1996; 49(3) : 264-267.
    48. Rockett JC, Darnton SJ, Crocker J, et al. Expression of HLA-ABC, HLA-DR and intercellular adhesion molecule-1 in oesophageal carcinoma. J Clin Pathol. 1995; 48(6) : 539-544
    49. Hosch SB, Meyer AJ, Schneider C, et al. Expression and prognostic significance of HLA class I, ICAM-1, and tumor-infiltrating lymphocytes in esophageal cancer. J Gastrointest Surg. 1997; 1 (4) : 316-323.
    50. Wang M, Lu R, Fang D. The possible role of loss of heterozygosity at APC, MCC and DCC genetic loci in esophageal carcinoma. Zhonghua Zhong Liu Za Zhi. 1999; 21(1) : 16-18.
    51. McDonnell C O, Harney J H, Bouchier-hHayes D J, et al. Effect of multimodality therapy on circulating vascular endothelial growth factor levels in patients with oesophageal cancer. Br J Surg, 2001; 88(8) : 1105-1109.
    52. Sato F, Shimada Y, Watanabe G, et al. Expression of vascular endothelial growth factor, matrix metalloproteinase-9 and E-cadherin in the process of lymph node metastasis in oesophageal cancer. Br JCancer, 1999; 80 (9) : 1366-1372.
    53. Shih C H, Ozawa S, Ando N, et al. Vascular endothelial growth factor expression predicts outcome and lymph node metastasis in squamous cell carcinoma of the esophagus. Clin Cancer Res, 2000; 6(3) : 1161-1168.
    54. Shimada H, Takeda A, Nabeya Y, et al. Clinical significance of serum vasular endothelial growth factor in esophageal squamous cell carcinoma. Cancer, 2001; 92 (3) : 663-669.
    55. Uchida S, Shimada Y, Watanabe G, et al. In oesophageal squamous cell carcinoma vascular endothelial growth factor is associated with p53 mutation, advanced stage and poor prognosis. Br J Cancer, 1998; 77 (10) : 1704-1709.
    56. Shimada Y, Imamura M, Watanabe G, et al. Prognostic factor of oesophageal squamous cell carcinoma from the perspective of molecular biology. Br J Cancer, 1999; 80 (8) : 1281-1288.
    57. O'sullivan G C, Sheeban D, Clarke A, et al. Micrometastases in esophagogastric cancer high detection rate in resected rib segments. Gastroenterology, 1999; 116 (3): 543-548.
    58. Bruns C J, Liu W, Davis D W, et al. Vascular endothelial growth factor is an in vivo survival factor for tumor endothelium in a murine model of colorectal carcinoma liver metastasis. Cancer, 2000; 89(3) : 488-499.
    59. Kitadai Y, Haruma K, Tokutomi T, et al. Significance of vessel count and vascular endothelial growth factor in human esophageal carcinomas. Clin Cancer Res, 1998; 4 (5) : 2195-2200.
    60. Inoue K, Ozeki Y, Suganuma T, et al. Vascular endothelial growth factor expression in primary esophageal squamous cell carcinoma. Cancer, 1997; 79 (2) : 206-213.
    61. Nagata J, Kijima H, Hatanaka H, et al. Angiopoietin-1 and vascular endothelial growth factor expression in human esophageal cancer. Int J Mol Med, 2002; 10 (4) : 423-426.
    62. Nakamura T, Ozawa S, Kitagawa Y, et al. Expression of basic fibroblast growth factor is associated with a good outcome in patients with squamous cell carcinoma of the esophagus. Oncol Rep. 2005; 14(3) : 617-623
    63. Han B, Liu J, Ma MJ, et al. Clinicopathological significance of heparanase and basic fibroblast growth factor expression in human esophageal cancer. World J Gastroenterol. 2005; 11 (14) : 2188-2192.
    64. Mikami S, Ohashi K, Katsube K, et al. Coexpression of heparanase, basic fibroblast growth factor and vascular endothelial growth factor in human esophageal carcinomas. Pathol Int. 2004; 54(8) : 556-563
    65. Lord RV, Park JM, Wickramasinghe K, et al. Vascular endothelial growth factor and basic fibroblast growth factor expression in esophageal adenocarcinoma and Barrett esophagus. J Thorac Cardiovasc Surg. 2003; 125(2) : 246-253
    66. Li Z, Shimada Y, Uchida S, et al. TGF-alpha as well as VEGF, PD-ECGF and bFGF contribute to angiogenesis of esophageal squamous cell carcinoma. Int J Oncol. 2000; 17(3) : 453-460.
    67. Li DM, Li SS, Zhang YH, et al. Expression of human chorionic gonadotropin, CD44v6 and CD44va/5 in esophageal squamous cell carcinoma. World J Gastroenterol. 2005; 11 (47) : 7401-7404.
    68. Liu WK, Chu YL, Zhang F, et al. The relationship between HPV16 and expression of CD44v6, nm23H1 in esophageal squamous cell carcinoma. Arch Virol. 2005; 150(5) : 991-1001.
    69. Nozoe T, Kohnoe S, Ezaki T, et al. Significance of immunohistochemical over-expression of CD44v6 as an indicator of malignant potential in esophageal squamous cell carcinoma. J Cancer Res Clin Oncol. 2004; 130(6) : 334-338.
    70. Gotoda T, Matsumura Y, Kondo H, et al. Expression of CD44 variants and prognosis in oesophageal squamous cell carcinoma. Gut. 2000; 46(1) : 14-19
    71. Mitra P, Shibuta K, Mathai J, et al. CXCR4 mRNA expression in colon, esophageal and gastric cancers and hepatitis C infected liver. Int J Oncol. 1999; 14(5) : 917-925.
    72. Gockel I, Schimanski CC, Heinrich C, et al. Expression of chemokine receptor CXCR4 in esophageal squamous cell and adenocarcinoma. BMC Cancer. 2006; 6: 290-297
    73. Ohta M, Kitadai Y, Tanaka S, et al. Monocyte chemoattractant protein-1 expression correlates with macrophage infiltration and tumor vascularity in human esophageal squamous cell carcinomas. Int J Cancer. 2002; 102(3) : 220-224
    74. Wang B, Hendricks DT, Wamunyokoli F, et al. A growth-related oncogene/CXC chemokine receptor 2 autocrine loop contributes to cellular proliferation in esophageal cancer. Cancer Res. 2006; 66(6) : 3071-3077
    75. Ding Y, Shimada Y, Maeda M, et al. Association of CC chemokine receptor 7 with lymph node metastasis of esophageal squamous cell carcinoma. Clin Cancer Res. 2003; 9 (9) : 3406-3412.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700