用户名: 密码: 验证码:
腹腔镜胃癌手术相关炎症因子对胃癌细胞腹膜粘附的影响及机制的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的:
     胃癌是消化系统常见的恶性肿瘤,死亡率居恶性肿瘤第二位。腹膜转移是胃癌转移的常见方式,也是胃癌术后复发、死亡的主要原因之一。胃癌腹腔转移的发生机制目前尚不清楚,根据经典的“种子-土壤”学说,胃癌腹腔转移包括如下三个重要环节:1.胃癌细胞从原发灶脱落;2.腹腔游离胃癌细胞与腹膜间皮细胞粘附;3.胃癌细胞突破腹膜间皮屏障进入间皮下基质。任何影响上述三个环节的因素都将对胃癌腹腔转移产生影响。其中在适宜的局部微环境下,游离癌细胞与腹膜间皮细胞相互粘附是其发生的基础。而在众多影响肿瘤局部微环境的因素中,炎症与肿瘤的关系目前已得到国内外学者的广泛认同,近年已将炎症视为肿瘤所具有的七类重要特征之一。
     手术创伤会刺激机体发生反应性炎症应答,进而引起腹腔内多种细胞释放一系列炎症因子和生长因子,其中最常见的为肿瘤坏死因子-α(TNF-α)和白介素-1β(IL-1β)。这些炎症因子通过趋化巨噬细胞、中性粒细胞向创伤处迁移从而有利于创伤的愈合。然而目前的研究也发现TNF-α和IL-1β参与肿瘤生长、侵袭以及转移等多个过程。TNF-α和IL-1β作为体内两类多功能细胞因子均可激活细胞内核转录因子-κB(NF-κB)信号通路,而该通路活化后可促进不同的基因转录。其中细胞间粘附分子-1(ICAM-1)、血管细胞粘附分子-1(VCAM-1)等粘附分子的启动子区既有NF-κB的结合位点,因此TNF-α和IL-1β可能具有调节ICAM-1、VCAM-1等粘附分子表达的作用。粘附分子的异常过量表达能促进肿瘤细胞与其它的肿瘤细胞、正常细胞以及细胞外基质成分粘附从而有利于游离癌细胞转移,然而关于TNF-α和IL-1β是否会促进胃癌细胞与腹膜间皮细胞粘附,以及它们对胃癌腹腔转移是否有影响目前尚未见报道。
     目前根治性手术切除仍然是胃癌患者获得治愈的惟一途径,腹腔镜手术治疗恶性肿瘤能达到开腹手术的根治效果,且具有腹壁切口小、术中失血少、术后恢复快等微创优势,因此是近年来微创胃肠外科研究热点。在日本早期胃癌行腹腔镜手术治疗已成为标准术式之一,但是对于进展期胃癌行腹腔镜手术治疗是否会促进胃癌术后腹膜转移仍是目前外科医师关注的焦点。TNF-α和IL-1β在由创伤刺激引起的急性期反应中发挥重要作用,并且这两种炎症因子的表达改变与手术创伤程度的大小及术后相关并发症的发生具有密切联系。因而目前普遍认为TNF-α和IL-1β可以作为评估手术创伤程度的两个重要指标。那么腹腔镜手术的微创特点是否具有对因创伤引起的炎症因子释放影响小的优势,进而可能有利于减轻炎症因子所介导的胃癌腹膜转移呢?
     为此本课题首先体外原代培养人腹膜间皮细胞,利用不同浓度的TNF-αIL-1β分别处理腹膜间皮细胞,然后观察其对腹膜间皮细胞与胃癌细胞粘附的影响,并采用Real-time PCR方法检测TNF-α和IL-1β对腹膜间皮细胞不同粘附分子mRNA表达的影响。为进一步阐述粘附分子及其配体对胃癌腹膜转移过程的影响,本研究采用免疫组化染色方法检测胃癌组织和腹膜组织中粘附分子及其配体表达情况。同时通过ELISA法检测腹腔镜胃癌手术和开腹胃癌手术患者血液及腹腔冲洗液中TNF-α和IL-1β浓度的变化。期望通过以上研究初步探讨TNF-α和IL-1β对胃癌细胞腹膜粘附的影响,进而为临床防治胃癌腹膜转移的发生提供新的理论和实验依据。
     方法:
     1.以体外原代培养腹膜间皮细胞为实验对象,实验分为处理组和对照组,其中处理组又分为炎症因子处理组和抗炎症因子处理组。在炎症因子处理组中人腹膜间皮细胞经不同浓度TNF-αIL-1β处理后与胃癌细胞共培养,通过流式细胞仪检测细胞间黏附率。在抗炎症因子处理组中不同浓度的TNF-αIL-1β抑制剂分别阻断TNF-αIL-1β后再处理人腹膜间皮细胞,处理后的人腹膜间皮细胞与胃癌细胞共培养并通过流式细胞仪检测细胞间黏附率。对照组中以PBS代替TNF-αIL-1β。
     2.人腹膜间皮细胞经不同浓度TNF-αIL-1β处理后,采用Real-time PCR方法检测腹膜间皮细胞中CD44、ICAM-1以及VCAM-1mRNA表达情况。
     3.采用Real-time PCR方法检测人胃腺癌细胞株中ICAM-1配体:淋巴细胞功能相关抗原-1(LFA-1)、VCAM-1配体:极迟抗原-4(VLA-4)以及CD44mRNA的表达;
     4.收集本中心胃癌手术患者的腹膜组织及胃癌组织。通过免疫组化染色检测腹膜组织中ICAM-1、VCAM-1、CD44v6的表达;同时检测胃癌组织中LFA-1、VLA-4以及CD44v6的表达。
     5.以本中心57例行胃癌根治术患者为研究对象。其中32例患者行腹腔镜手术治疗(腹腔镜手术组),同期25例患者行开腹手术治疗(开腹手术组)。通过ELISA法检测两组手术患者腹腔冲洗液及血液中TNF-α和IL-1β浓度的变化。两组病人的腹腔冲洗液均收集3次,即开腹后建立气腹后和术后24、48小时;血液标本均收集5次,即麻醉诱导后和术后2、4、24及48小时。
     结果:
     1.原代培养人腹膜间皮细胞经不同浓度TNF-αIL-1β处理后,其与胃癌细胞的黏附率逐渐升高,与对照组比较差异有统计学意义(P<0.05)。并且这种作用与炎症因子的浓度之间呈明显量效关系,当TNF-αIL-1β浓度达到10ng/ml时细胞间粘附率达到最大值,随后粘附率并不因炎症因子浓度的增加而升高。同时这种作用可以分别被TNF-αIL-1β的抑制剂所阻断。
     2. TNF-α和IL-1β均可促进人腹膜间皮细胞中ICAM-1、VCAM-1及CD44mRNA表达上调,并且呈明显量效关系即随着TNF-αIL-1β浓度增加,这些粘附分子mRNA表达水平逐渐增高。与对照组比较差异有统计学意义(P<0.01)。
     3.人胃腺癌细胞株AGS、SGC-7901、MKN-45中CD44、LFA-1和VLA-4mRNA均呈阳性表达。
     4.免疫组化染色结果表明人腹膜组织中ICAM-1、VCAM-1及CD44v6表达阳性;胃癌组织中LFA-1、VLA-1及CD44v6表达阳性。
     5.手术后两组患者腹腔冲洗液中TNF-α和IL-1β浓度均显著升高,在术后24小时达到高峰,其中开腹组患者腹腔冲洗液中IL-1β浓度高于腹腔镜组,两组比较差异有统计学意义(P<0.05)。而两组患者腹腔冲洗液中TNF-α浓度比较无明显差异(P>0.05)。随后两组患者腹腔冲洗液中TNF-α和IL-1β浓度逐渐下降,在术后48小时开腹组患者腹腔冲洗液中TNF-α和IL-1β浓度均高于腹腔镜组,两组比较差异有统计学意义(P<0.05)。
     6.手术后两组患者血液中TNF-α和IL-1β浓度均显著升高,在术后4小时达到高峰,然后开始逐渐下降。其中开腹组患者血液中IL-1β浓度高于腹腔镜组,两组比较差异有统计学意义(P<0.05)。而两组患者血液中TNF-α浓度比较无明显差异(P>0.05)。
     结论:
     1.炎症因子TNF-α和IL-1β通过上调人腹膜间皮细胞粘附分子ICAM-1、VCAM-1及CD44的表达,促进胃癌细胞与腹膜间皮细胞间相互黏附,从而在胃癌细胞腹腔种植转移中发挥正性促进作用。这可能是炎症因子促进胃癌腹腔转移的重要机制之一。
     2. TNF-α和IL-1β抑制剂可阻断TNF-α和IL-1β对腹膜间皮细胞与胃癌粘附的促进作用,因而可能具有预防胃癌术后发生腹膜转移的作用。
     3.与传统开腹胃癌手术相比,腹腔镜胃癌手术具有腹壁切口小、术中出血少、术后恢复快等优势。并且其对腹腔局部和机体系统炎症反应影响小,炎症因子分泌水平较传统开腹手术低,因此腹腔镜胃癌手术相关炎症因子可能对胃癌腹膜转移的影响小于传统开腹手术。
Background and objectives:
     Gastric cancer is one of the most common digestive malignant tumors and its mortality is in the second rank of the malignant diseases. Peritoneal metastasis is a major route after radical gastrectomy for the treatment of gastric cancer, which is the leading cause of recurrence and death in patients with gastric cancer. However, there still remain unknown about the exact mechanism of peritoneal metastasis. According to“seeds and soil”theory, the mechanism of peritoneal metastasis may include three steps: 1. gastric cancer cell spill from the original organ; 2. free gastric cancer cells in the peritoneal cavity adhere to peritoneal mesothelial cells; 3.gastric cancer cell transmigrate through the peritoneal mesothelial layer, and subsequently colonize in the submesothelial extracellular matrix. Therefore, any pathogenic factors which have an effect on the above process will affect peritoneal metastasis. While under a suitable local environment, tumor spill and subsequent adhesion of these cells in the peritoneal cavity is an important mechanism accounting for tumor metastasis. The association of inflammation and cancer has been well recognized in many types of cancer and inflammation has been regarded as the‘seventh hallmark of cancer’.
     After abdominal surgery, there is a reactive inflammatory response, during which cytokines and growth factors are produced, such as Tumor necrosis factor-alpha (TNF-α) and interleukin-1beta (IL-1β). These inflammatory cytokines are known to be conducive to wound healing by initiating the cellular cascade in the course of which macrophages and leukocytes migrate to the injured site. Meanwhile, they construct the first line of defense within the abdominal cavity to prevent bacterial infection. But, many recent studies have confirmed that these inflammatory mediators are also beneficial for tumor cells proliferation, infiltration and metastasis. TNF-αand IL-1βare both key cytokines involved in inflammation and have multifunction though convergence of the nuclear factor (NF)-kB signaling pathways, and thereby enhance different genes translation by translocation of NF-kB from cytoplasm to nucleus. Meanwhile, several adhesion molecules such as intercellular adhesion molecule-1(ICAM-1) and vascular cell adhesion molecule-1(VCAM-1), have been found that their promoter have the binding site of NF-kB. Therefore TNF-αand IL-1βhave the potential ability to stimulate a sort of adhesion molecules genes translation. While the overproduction or dysfunction of adhesion molecules is associated with tumor cell adhere to other tumor cell, surrounding normal cells and component of extracellular matrix. However whether TNF-αand IL-1βhave the effect on promoting spill gastric cancer cell to mesothelial cells, and therefore may support peritoneal metastasis of gastric cancer are still unknown.
     At present, distal gastrectomy is still the only way for curing gastric cancer patients. Laparoscopy-assisted distal gastrectomy (LADG) for gastric cancer has the same effect comparing with conventional open distal gastrectomy (CODG). Moreover, LADG for gastric cancer has the advantage of less invasive trauma such as less abdominal scar, reduced blood loss and faster postoperative recovery. Therefore, there is uncontroversial in the treatment of early gastric cancer by laparoscopy-assisted gastrectomy which has been regarded as a standard procedure in Japan. With regard to advanced gastric cancer, one of the greatest concerns is whether performing laparoscopic-assisted gastrectomy will enhance the possibility of peritoneal metastasis, as compared with conventional open gastrectomy. Thus, the role of laparoscopy surgery remains controversial, and this controversy is highlighted by the issue of tumor dissemination and recurrence. TNF-αand IL-1βare the major mediators of the acute phase response in humans. The post-operative levels of these cytokines have been found to correlate with the magnitude of the surgery and the presence of complications. Owing to less impact on the postoperative abdominal regional and systemic immune responses, whether laparoscopic surgery may not only shows clinically relevant advantages but also causes less effect of inflammatory factors on peritoneal metastasis of gastric cancer than conventional operations?
     Therefore, in this study primary cultured peritoneal mesothelial cells(HPMCs) were used to investigate the effects of the different concentration of inflammatory cytokines, TNF-αor IL-1β, on the interaction between gastric cancer cells and mesothelial cells. Moreover, after incubation with TNF-αor IL-1β, several adhesion molecules mRNA in mesothelial cells were detected by Real-time PCR. In order to further elucidate the influence by adhesion molecules and their ligand on the process of peritoneal metastasis for gastric cancer, immunohistochemistry staining were used to detect these adhesion molecules and ligand in peritoneal or gastric cancer tissue. Finally, ELISA immunoassay were used to evaluate differences in both the peritoneal and systemic cytokine (TNF-αand IL-1β) concentrations after laparoscopic and conventional surgical approaches. Thus, we hope to offer a novel theoretical and experimental basis for clinical prevention and treatment by the consequences of above experiments.
     Methods:
     1. A reproducible human in vitro assay was developed to study the adhesion of human gastric cancer cells to monolayers of primary cultured peritoneal mesothelial cells. Tumor cell adhesion to a mesothelial monolayer was assessed after preincubation of the monolayer with TNF-αand IL-1βby using flow cytometry. To inactivate TNF-αand IL-1β, preincubation was performed with anti-human TNF-αor anti-human IL-1βhomeochronous prior to the adhesion assay. In negative control, PBS was used to substitute inflammatory cytokines.
     2. After incubation with TNF-αor IL-1β, several adhesion moleculesCD44, ICAM-1 amd VCAM-1 mRNA in mesothelial cells were detected by Real-time PCR.
     3. mRNA of lymphocyte function-associated antigen-1(LFA-1), very late antigen-4(VLA-4), and CD44 in different gastric cancer cell lines were detected by Real-time PCR.
     4. The expression of adhesion molecules (ICAM-1, VCAM-1, and CD44v6) and their counterparts (LFA-1, VLA-4 and CD44v6) in peritoneal and gastric cancer tissue were investigated by means of immunocytochemical staining.
     5. 57 patients with gastric cancer in our center were selected as objects. Radical gastrectomy was performed for 32 cases by LADG and 25 cases by CODG. In both groups, the peritoneal fluid was collected at the beginning and at 24 h and 48 h after surgery from a suction drain, while venous blood samples were collected from a central venous catheter after the induction of anesthesia (baseline) and at 2, 4, 24, and 48 h perioperatively. Then the proinflammatory cytokines TNF-αand IL-1βwere measured by enzyme immunoassay.
     Results:
     1. The percentage of gastric cancer cells adhering to mesothelial cells that were preincubated with TNF-αor IL-1βwas significantly higher than that to non-preincubated mesothelial cells (p<0.05). Moreover, this effect was dose-dependent, and maximum stimulation was achieved at 10ng/ml, meanwhile this effect was completed inhibited by stimulation with a hundred-fold excess of anti-TNF-αand. anti-IL-1βrespectively.
     2. As HPMCs were preincubated with increasing concentrations of TNF-αand IL-1β, the mRNA expression of ICAM-1, VCAM-1, and CD44 increased, and this effect was dose-dependent. This represented a significant difference compared with the group that did not receive preincubation (p<0.01).
     3. ICAM-1, LFA-1, and VLA-4 mRNA expression in AGS, SGC-7901 and MKN-45 human gastric cancer cells were observed by Real-time reverse transcriptase polymerase chain reaction.
     4. The results of immunohistochemical staining show that peritoneal tissues stained positive for ICAM-1, VCAM-1, and CD44v6, and the gastric cancer tissues were positive for LFA-1, VLA-4, and CD44v6.
     5. Peritoneal fluid levels of TNF-αand IL-1βincreased rapidly after operation in both groups, peaking for both at 24 hours. The level of IL-1βin the peritoneal fluid from the CODG group was significantly higher than that in the LADG group (p<0.05), whereas there was no significant difference in TNF-αlevels in the peritoneal fluid in both groups (p>0.05). And then levels of TNF-αand IL-1βgradually decreased. At 48 hours after operations, the level of TNF-αand IL-1βin the peritoneal fluid from the CODG group was significantly higher than that in the LADG group (p<0.05).
     6. After gastrectomy TNF-αand IL-1βlevels in serum increased rapidly and peaked at 4 h in both groups. IL-1βlevels were significantly higher after CODG than after LADG (p<0.05). TNF-αlevels did not change significantly in both groups (p>0.05).
     Conclusion:
     1. The presented results prove that TNF-αand IL-1βare significant stimulating factors in gastric cancer cells adhesion in vitro and may, therefore, partly account for peritoneal metastasis in vivo because they promote several adhesion molecules expression in peritoneal mesothelial cells, including ICAM-1, VCAM-1 and CD44.
     2. Anti-TNF-αand Anti-IL-1βcan completely inhibit the effect of TNF-αor IL-1βon the adhesion of gastric cancer cell to mesothelial cells respectively and thus may have the ability to prevent peritoneal metastasis after gastrectomy.
     3. Owing to less impact on the postoperative abdominal regional and systemic inflammatory responses, laparoscopic surgery may not only shows clinically relevant advantages such as less abdominal scar, reduced blood loss and faster postoperative recovery, but also causes less effect of inflammatory factors on peritoneal metastasis of gastric cancer than conventional operations.
引文
1. Kamangar F, Dores GM, Anderson WF. Patterns of cancer incidence, mortality, and prevalence across fi ve continents: defining priorities to reduce cancer disparities in diff erent geographic regions of the world. J Clin Oncol. 2006; 24(14): 2137–2150.
    2. Yamaoka Y, Kato M, Asaka M. Geographic differences in gastric cancer incidence can be explained by differences between Helicobacter pylori strains. Intern Med. 2008; 47(12): 1077–1083.
    3. Jun Yamada, Joji Kitayama, Nelson H, et al. Intra-peritoneal administration of paclitaxel with non-animal stabilized hyaluronic acid as a vehicle– A new strategy against peritoneal dissemination of gastric cancer. Cancer Letters. 2008, 272(2)307-315.
    4. Hashimoto I, Koizumi K, Tatematsu M, et al. Blocking on the CXCR4/mTOR signalling pathway induces the anti-metastatic properties and autophagic cell death in peritoneal disseminated gastric cancer cells. Eur J Cancer. 2008; 44(7):1022-1029.
    5. Mantovani A, Allavena P, Sica A, et al. Cancer-related inflammation. Nature. 2008; 454(7023): 436–444.
    6. Mantovani A. Cancer: Inflaming metastasis. Nature. 2009; 457(7225): 36-37.
    7. Hanahan D, Weinberg RA. The Hallmarks of Cancer. Cell. 2000; 100(1): 57–70.
    8. Holmdahl L, Ivarsson ML. The role of cytokines, coagulation, and fibrinolysis in peritoneal tissue repair. Eur J Surg. 1999; 165(11):1012-1019.
    9. Baier PK, Wolff-Vorbeck G, Eggstein S, et al. Cytokine expression in colon carcinoma. Anticancer Res. 2005; 25(3B):2135-2139.
    10. Zarbock A, Ley K. Neutrophil adhesion and activation under flow. Microcirculation. 2009; 16 (1):31-42.
    11. Schetter AJ, Heegaard NH, Harris CC. Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways. Carcinogenesis. 2010; 31(1): 37-49.
    12. Keibel A, Singh V, Sharma MC. Inflammation, microenvironment, and the immune system in cancer progression. Curr Pharm Des. 2009; 15(17): 1949-1955.
    13. Xu J, Xu F, Lin Y. Cigarette Smoke Synergizes LPS-induced IL-1{beta} and TNF{alpha} Secretion from Macrophages via SP-mediated NF-{kappa}B activation. Am J Respir Cell Mol Biol. 2010; 16
    14. Balkwill F. Tumour necrosis factor and cancer. Nat Rev Cancer. 2009; 9(5):361–371.
    15.刘文韬. 2002年版日本胃癌治疗规范[J].中华胃肠外科杂志. 2003;6(2):131-132.
    16. Kojima K, Yamada H, Inokuchi M, et a1. Current status and evaluation of laparoscopic surgery for gastric cancer [J]. Nippon Geka Gakkai Zasshi. 2006; 107(2):77-80.
    17.余佩武,王自强,钱锋,等.腹腔镜辅助胃癌根治术105例.中华外科杂志. 2006; 44(19): 1303-1306.
    18. Nakagoe T, Tsuji T, Sawai T, et al. Minilaparotomy may be independently associated with reduction in inflammatory responses after resection for colorectal cancer. Eur Surg Res. 2003; 36(5):477-485.
    19. Schwenk W, Jacobi C, Mansmann U, et al. Inflammatory response after laparoscopic and conventional colorectal resections-results of a prospective randomized trial. Langenbecks Arch Surg. 2000; 385(1):2-9.
    20. Hildebrandt U, Kessler K, Plusczyk T, et al. Comparison of surgical stress between laparoscopic and open colonic resections. Surg Endosc. 2003; 17(2):242-246.
    1. ten Raa S, van Grevenstein HM, ten Kate M, et al. The influence of reactive oxygen species on the adhesion of pancreatic carcinoma cells to the peritoneum. Cell Adh Migr. 2007; 1(2):77-83.
    2. Yung S, Li FK, Chan TM. Peritoneal mesothelial cell culture and biology. Perit Dial Int. 2006; 26(2):162-173.
    3. Pronk A, Leguit P, Hoynck van Papendrecht AA, et al. A cobblestone cell isolated from the human omentum: the mesothelial cell; isolation, and growth characteristics. In Vitro Cell Dev Biol. 1993; 29A(2):127–134.
    4. Connell ND, Rheinwald JG. Regulation of the cytoskeleton in mesothelial cells: reversible loss of keratin and increase in vimentin during rapid growth in culture. Cell. 1983; 34(1): 245–253.
    5. Paprocka M, Dus S, Mitterrand M, et al. Flow cytometric assay for quantitative and qualitative evaluation of adhesive interactions of tumor cells with endothelial cells. Microvasc Res. 2008; 76(2): 134-138.
    6.胃癌病理诊断的诊断规范。沈阳:辽宁人民出版社,1980:18-20.
    7. Hashimoto I, Koizumi K, Tatematsu M, et al. Blocking on the CXCR4/mTOR signalling pathway induces the anti-metastatic properties and autophagic cell death in peritoneal disseminated gastric cancer cells. Eur J Cancer. 2008; 44(7):1022-1029.
    8. Saba AA, Godziachvili V, Mavani AK, et al. Serum levels of interleukin 1 and tumor necrosis factor alpha correlate with peritoneal adhesion grades in human after major abdominal surgery. Am Surg. 1998; 64(8):734-737.
    9. Sharpe-Timms KL, Keisier LW, Mclntush EW, et al. Tissue inhibitor of metalloproteinase-1 concentrations are attenuated in peritoneal fluid and sera of women with endometriosis and restored in sera by gonadotrophin-releasing hormone agonist therapy. Fertil Steril. 1998; 69(6):1128-1134.
    10. Holmdahl L. The plasmin system, a marker of the propensity to develop adhesions. Peritoneal Surgery. Springer-Verlag, New York, pp. 2000; 117-131.
    11. Holmdahl L, Ivarsson ML. The role of cytokines, coagulation, and fibrinolysis in peritoneal tissue repair. Eur J Surg. 1999; 165(11):1012-1019.
    12. Baier PK, Wolff-Vorbeck G, Eggstein S, et al. Cytokine expression in colon carcinoma. Anticancer Res. 2005; 25(3B):2135-2139.
    13. Sammour T, Kahokehr A, Soop M, et al. Peritoneal damage: the inflammatory response and clinical implications of the neuro-immuno-humoral axis. World J Surg. 2010; 34(4):704–720.
    14. Cheong YC, Shelton JB, Laird SM, et al. IL-1, IL-6 and TNF-alpha concentrations in the peritoneal fluid of women with pelvic adhesions. Hum Reprod. 2002; 17(1): 69-75.
    15. Stephen F, Lowry S. Cytokines mediators of immunity and inflammation. Arch Surg. 1993; 128(11):1235-1241.
    16. Efron PA, Moldawer LL. Cytokines and wound healing: the role of cytokine and anticytokine therapy in the repair response. J Burn Care Rehabil. 2004; 25(2):149-160.
    17. Dinarello CA. Biologic basis for interleukin-1 in disease. Blood. 1996; 87(6): 2095-2147.
    18. Latz E. The inflammasomes: mechanisms of activation and function. Curr Opin Immunol. 2010; 22(1):28-33.
    19. Ferroni P, Basili S, Davi G. Platelet activation, inflammatory mediators and hypercholesterolemia. Curr Vasc Pharmacol. 2003;1(2):157-69
    20. Page CE, Smale S, Carty SM, et al. Interferon-gamma inhibits interleukin-1beta- induced matrix metalloproteinase production by synovial fibroblasts and protects articular cartilage in early arthritis. Arthritis Res Ther. 2010; 12(2): R49.
    21. Pelletier M, Siegel RM. Wishing away inflammation? New links between serotonin and TNF signaling. Mol Interv. 2009; 9(6):299-301
    22. Rahman MM, Lucas AR, McFadden G.Viral TNF inhibitors as potential therapeutics. Adv Exp Med Biol. 2009; 666:64-77.
    23. Shishodia S, Aggarwal BB. Nuclear factor-kappaB activation mediates cellular transformation, proliferation, invasion angiogenesis and metastasis of cancer. Cancer Treat Res. 2004; 119: 139–173.
    24. Kulbe H, Hagemann T, Szlosarek PW, et al. The inflammatory cytokine tumor necrosis factor-alpha regulates chemokine receptor expression on ovarian cancer cells. Cancer Res. 2005; 65(22): 10355–10362.
    25. Hofer SO, Shrayer D, Reichner JS, et al. Wound-induced tumor progression. A probablerole in recurrence after tumor resection. Arch Surg. 1998; 133(4):383–389.
    26. Lessan K, Aguiar DJ, Oegema T, et al. CD44 and beta1 integrin mediate ovarian carcinoma cell adhesion to peritoneal mesothelial cells. Am J Pathol. 1999; 154(5): 1525-1537.
    27. ten Kate M, Hofland LJ, van Grevenstein WM, et al. Influence of proinflammatory cytokines on the adhesion of human colon carcinoma cells to lung microvascular endothelium. Int J Cancer. 2004; 112(6): 943-950.
    28. Naot D, Sionov RV, Ish-Shalom D. CD44: structure, function, and association with the malignant process. Adv Cancer Res. 1997; 71: 241-319.
    29. Masaki T, Goto A, Sugiyama M, et al. Possible contribution of CD44 variant 6 and nuclear beta-catenin expression to the formation of budding tumor cells in patients with T1 colorectal carcinoma. Cancer. 2001; 92(10): 2539-2546.
    30. Yamaguchi A, Goi T, Yu J, et al. Expression of CD44v6 in advanced gastric cancer and its relationship to hematogenous metastasis and long-term prognosis. J Surg Oncol. 2002; 79(4): 230-235.
    31. Wissink S, van de Stolpe A, Caldenhoven E, et al. NF-kappa B/Rel family members regulating the ICAM-1 promoter in monocytic THP-1 cells. Immunobiology. 1997; 198(1-3):50-64.
    32. Lee YW, Kuhn H, Hennig, et al. IL-4-induced oxidative stress upregulates VCAM-1 gene expression in human endothelial cells. J Mol Cell Cardiol. 2001; 33(1): 83-94.
    33. Xu J, Xu F, Lin Y. Cigarette Smoke Synergizes LPS-induced IL-1{beta} and TNF{alpha} Secretion from Macrophages via SP-mediated NF-{kappa}B activation. Am J Respir Cell Mol Biol. 2010; 16
    34. Wu Y, Zhou BP. TNF-alpha/NF-kappaB/Snail pathway in cancer cell migration and invasion. Br J Cancer. 2010; 102(4):639–644
    1.陈峻青.日本胃癌处理规约第十三版重要修改内容简介.中国胃肠外科杂志. 1999; 2(3):Ⅰ-Ⅳ.
    2.中华医学会外科分会腹腔镜与内镜外科学组.腹腔镜胃癌手术操作指南(2007版).中华消化外科杂志. 2007; 6(6):476-480.
    3. The Southern Surgeons Club. A prospective analysis of 1518 laparoscopic cholecystectomies. N Engl J Med. 1991; 324(16):1073–1078.
    4. Soper NJ, Brunt LM, Kerbl K: Laparoscopic general surgery. N Engl J Med. 1994; 330(6):409–419.
    5. Kitano S, Shiraishi N, Uyama I, et al. Japanese Laparoscopic Surgery Study Group. A multicenter study on oncologic outcome of laparoscopic gastrectomy for early cancer in Japan. Ann Surg. 2007; 245(1):68–72.
    6. Clinical Outcomes of Surgical Therapy Study Group. A comparison of laparoscopically assisted and open colectomy for colon cancer. N Engl J Med. 2004; 350(20): 2050–2059.
    7.余佩武,王自强,钱锋,等.腹腔镜辅助胃癌根治术105例.中华外科杂志. 2006; 44(19): 1303-1306.
    8. Bo T, Zhihong P, Peiwu Y, et al. General complications following laparoscopic-assisted gastrectomy and analysis of techniques to manage them. Surg Endosc. 2009; 23(8):1860-1865.
    9. Kiyama T, Fujita I, Kanno H, et al. Laparoscopy-assisted distal gastrectomy for gastric cancer. J Gastrointest Surg. 2008; 12(10):1807-1811.
    10. Sheen-Chen SM, Chen HS, Eng HL, et al. Systemic immune response after laparoscopic and open cholecystectomy. World J Surg. 2002; 26(12):1418-1422.
    11. Tang CL, Eu KW, Tai BC, et al. Randomized clinical trial of the effect of open versus laparoscopically assisted colectomy on systemic immunity in patients with colorectal cancer. Br J Surg. 2001; 88(6): 801-807.
    12. Whelan RL, Franklin M, Holubar SD, et al. Postoperative cell mediated immuneresponse is better preserved after laparoscopic vs open colorectal resection in humans. Surg Endosc. 2003; 17(6):972-978.
    13. Carter JJ, Whelan RL: The immunologic consequences of laparoscopy in oncology. Surg Oncol Clin N Am. 2001; 10(3):655-677.
    14. Hazebroek EJ, Color Study Group. COLOR: a randomized clinical trial comparing laparoscopic and open resection for colon cancer. Surg Endosc. 2002; 16(6): 949-953.
    15.刘文韬. 2002年版日本胃癌治疗规范[J].中华胃肠外科杂志. 2003; 6(2):131-132.
    16. Kojima K, Yamada H, Inokuchi M, et a1. Current status and evaluation of laparoscopic surgery for gastric cancer [J]. Nippon Geka Gakkai Zasshi. 2006; 107(2):77-80.
    17. Perko Z, Srsen D, Pogoreli? Z, et al Laparoscopic subtotal gastrectomy for gastric carcinoma treatment. Hepatogastroenterology, 2008; 55(82-83):814-816.
    18.余佩武,钱锋,罗华星,等.腹腔镜胃癌手术临床疗效分析.中华消化外科杂志. 2008; 7(1):38-40.
    19.徐晓武,牟一平,严加费,等.应用腹腔镜辅助D2根治术治疗进展期胃癌的临床观察.中华医学杂志. 2008; 88(31):2195-2197.
    20. Kuhry E, Schwenk WF, Gaupset R, et al. Long-term results of laparoscopic colorectal cancer resection. Cochrance Database Syste Rev. 2008; 16(2):CD003432.
    21. Baier PK, Wolff-Vorbeck G, Eggstein S, et al. Cytokine expression in colon carcinoma. Anticancer Res 2005; 25(3B):2135-2139.
    22. Nakagoe T, Tsuji T, Sawai T, et al. Minilaparotomy may be independently associated with reduction in inflammatory responses after resection for colorectal cancer. Eur Surg Res. 2003; 35(6):477-485.
    23. Hildebrandt U, Kessler K, Plusczyk T, et al. Comparison of surgical stress between laparoscopic and open colonic resections. Surg Endosc. 2003; 17(2):242-246.
    24. Sido B, Teklote JR, Hartel M, et al. Inflammatory response after abdominal surgery. Best Pract Res Clin Anaesthesiol. 2004; 18(3):439–454.
    25. Leung KL, Lai PB, Ho RL, et al. Systemic cytokine response after laparoscopic-assisted resection of rectosigmoid carcinoma: A prospective randomized trial. Ann Surg. 2000; 231(4):506–511.
    26. Glaser F, Sannwald GA, Buhr HJ, et al. General stress response to conventional and laparoscopic cholecystectomy. Ann Surg. 1995, 221(4):372–380.
    27. Yahara N, Abe T, Morita K et al. Comparison of interleukin-6, interleukin-8, and granulocyte colonystimulating factor production by the peritoneum in laparoscopic and open surgery. Surg Endosc. 2002; 16(11): 1615–1619.
    28. Wu FP, Sietses C, von Blomberg BM et al. Systemic and peritoneal inflammatory response after laparoscopic or conventional colon resection in cancer patients: a prospective, randomized trial. Dis Colon Rectum. 2003; 46(2):147–155.
    1. Wajant H, Pfizenmaier K, Scheurich P.Tumor necrosis factor signaling. Cell Death Differ. 2003; 10(1): 45-65.
    2. Hayden MS, Ghosh S. Shared principles in NF-kappa B signaling. Cell. 2008; 132(3): 344-362.
    3. Han D, Ybanez MD, Ahmadi S, et al. Redox regulation of tumor necrosis factor signaling. Antioxid Redox Signal. 2009; 11(9): 2245-2263.
    4. Stylianou E, Saklatvala J. Interleukin-1. Int J Biochem Cell Bio. 1998; 30(10): 1075-1079.
    5. Suzawa M, Takada I, Yanagisawa J, et al. Cytokines suppress adipogenesis and PPAR-gamma function through the TAK1/TAB1/NIK cascade. Nat Cell Biol. 2003; 5(3): 224-230.
    6. Ferroni P, Basili S, Davi G. Platelet activation, inflammatory mediators and hypercholesterolemia. Curr Vasc Pharmacol. 2003;1(2):157-169.
    7. Jurisic V, Stojacic-Djenic S, Colovic N, et al. The role of cytokine in regulation of the natural killer cell activity. Srp Arh Celok Lek. 2008; 136(7-8):423-429.
    8. Auron PE. The interleukin 1 receptor: ligand interactions and signal transduction. Cytokine Growth Factor Rev. 1998; 9(3-4): 221-237.
    9. Balkwill F. Tumour necrosis factor and cancer. Nat Rev Cancer. 2009; 9(5):361-371.
    10. Karin M, Greten FR. NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol. 2005; 5(10): 749-759.
    11. Hsu TC, Nair R, Tulsian P, et al. Transformation nonresponsive cells owe their resistance to lack of p65/nuclear factor-kappaB activation. Cancer Res 2001; 61(10): 4160-4168.
    12. Shishodia S, Aggarwal BB. Nuclear factor-kappaB activation mediates cellular transformation, proliferation, invasion angiogenesis and metastasis of cancer. Cancer Treat Res. 2004; 119: 139-173.
    13. Johnston DA, Dong B, Hughes CC. TNF induction of jagged-1 in endothelial cells is NF kappaB-dependent. Gene. 2009; 435(1-2): 36-44.
    14. Leibovich SJ, Polverini PJ, Shepard HM, et al. Macrophage-induced angiogenesis is mediated by tumor necrosis factor-alpha. Nature. 1987; 329(6140): 630-632.
    15. Orosz P, Echtenacher B, Falk W, et al. Enhancement of experimental metastasis by tumor necrosis factor. J Exp Med. 1993; 177(5): 1391-1398.
    16. Tomita Y, Yang X, Ishida Y, et, al. Spontaneous regression of lung metastasis in the absence of tumor necrosis factor receptor p55. Int J Cancer. 2004; 112(6): 927-933.
    17. Montesano R, Soulie P, Eble JA, et al. Tumour necrosis factor alpha confers an invasive, transformed phenotype on mammary epithelial cells. J Cell Sci. 2005; 118(15): 3487-3500.
    18. Kulbe H, Hagemann T, Szlosarek PW, et al. The inflammatory cytokine tumor necrosis factor-alpha regulates chemokine receptor expression on ovarian cancer cells. Cancer Res. 2005; 65(22): 10355-10362.
    19. Stathopoulos GT, Sherrill TP, Han W, et al. Host nuclear factor-kappaB activation potentiates lung cancer metastasis. Mol Cancer Res. 2008; 6(4): 364-371.
    20. Liang M, Zhang P, Fu J. Up-regulation of LOX-1 expression by TNF-alpha promotes trans-endothelial migration of MDA-MB-231 breast cancer cells. Cancer Lett. 2007; 258(1): 31-37.
    21. Dinarello CA. Biologic basis for interleukin-1 in disease. Blood. 1996; 87(6): 2095-2147.
    22. Stetler-Stevenson WG, Yu AE. Proteases in invasion: matrix metalloproteinases. Semin Cancer Biol. 2001; 11(2): 143-152.
    23. Apte RN, Voronov E. Interleukin-1-a major pleiotropic cytokine in tumor-host interactions. Semin Cancer Biol. 2002; 12(4): 277-290.
    24. Radisky D, Hagios C, Bissell MJ. Tumors are unique organs defined by abnormal ignaling and context. Semin Cancer Biol. 2001; 11(2): 87-95.
    25. Vidal-Vanaclocha F, Amezaga C, Asumendi A., et al. Interleukin-1 receptor blockade reduces the number and size of murine B16 melanoma hepatic metastases. Cancer Res. 1994; 54(10): 2667-2672.
    26. Vidal-Vanaclocha F, Alvarez A, Asumendi, A, et al. Interleukin 1 (IL-1)-dependent melanoma hepatic metastasis in vivo; increased endothelial adherence by IL-1-induced mannose receptors and growth factor production in vitro. J Natl Cancer Inst. 1996; 88(3-4): 198-205.
    27. Vidal-Vanaclocha F, Fantuzzi G, Mendoza L, et al. IL-18 regulates IL-1beta-dependent hepatic melanoma metastasis via vascular cell adhesion molecule-1. Proc Natl Acad Sci U S A. 2000; 97(2): 734-739.
    28. Carrascal MT, Mendoza L, Valcarcel M, et al. Interleukin-18 binding protein reduces b16 melanoma hepatic metastasis by neutralizing adhesiveness and growth factors of sinusoidal endothelium. Cancer Res. 2003; 63(2): 491-497.
    29. Scherbarth S, Orr FW. Intravital videomicroscopic evidence for regulation of metastasis by the hepatic microvasculature: effects of interleukin-1alpha on metastasis and the location of B16F1 melanoma cell arrest. Cancer Res. 1997; 57(18): 4105-4110.
    30. McKenzie RC, Oran A, Dinarello CA, et al. Interleukin-1 receptor antagonist inhibits subcutaneous B16 melanoma growth in vivo. Anticancer Res. 1996; 16(1): 437-441.
    31. Apte RN, Krelin Y, Song X, et al. Effects of micro-environment- and malignant cell-derived interleukin-1 in carcinogenesis, tumour invasiveness and tumour–host interactions. Eur J Cancer. 2006; 42(6): 751-759.
    32. Dvorkin T, Song X, Argov S, et al. Immune phenomena that are involved in the in vivo regression of fibrosarcoma cells expressing cellassociated IL-1a. J Leukoc Biol. 2006; 80(1): 96-106.
    33. Saijo Y, Tanaka M, Miki M, et al. Proinflammatory cytokine IL-1 beta promotes tumor growth of Lewis lung carcinoma by induction of angiogenic factors: in vivo analysis of tumor– stromal interaction. J Immunol. 2002; 169(1): 469-475.
    34. Tomimatsu S, Ichikura T, Mochizuki H. Significant correlation between expression of interleukin-1alpha and liver metastasis in gastric carcinoma. Cancer 2001; 91(7): 1272-1276.
    35. Badia JM, Whawell SA, Scott-Coombes DM, et al. Peritoneal and systemic cytokine response to laparotomy. Br J Surg. 1996; 83(3): 347–348.
    36. Riese J, Schoolmann S, Beyer A, et al. Production of IL-6 and MCP-1 by the human peritoneum in vivo during major abdominal surgery. Shock. 2000; 14(2): 91-94.
    37. Sendt W, Amberg R, Schoffel U, et al. Local inflammatory peritoneal response to operative trauma: studies on cell activity, cytokine expression, and adhesion molecules. Eur J Surg. 1999; 165(11): 1024-1030.
    38. Yahara N, Abe T, Morita K, et al. Comparison of interleukin-6, interleukin-8, and granulocyte colonystimulating factor production by the peritoneum in laparoscopic and open surgery. Surg Endosc. 2002; 16(11): 1615-1619.
    39. Little D, Regan M, Keane RM, et al. Perioperative immune modulation. Surgery. 1993; 114(1): 87-91.
    40. Wildbrett P, Oh A, Naundorf D, et al. Impact of laparoscopic gases on peritoneal microenvironment and essential parameters of cell function. Surg Endosc. 2003; 17(1): 78–82.
    41. Neuhaus SJ, Watson DI, Ellis T, et al. Influence of gases on intraperitoneal immunity during laparoscopy in tumor-bearing rats. World J Surg. 2000; 24(10): 1227-1231.
    42. West MA, Hackam DJ, Baker J, et al. Mechanism of decreased in vitro murine macrophage cytokines release after exposure to carbon dioxide: relevance to laparoscopic surgery. Ann Surg. 1997; 226(2): 179–190.
    43. Watson RW, Redmond HP, McCarthy J, et al. Exposure of the peritoneal cavity to air regulates early inflammatory responses to surgery in a murine model. Br J Surg. 1995; 82(8): 1060-1065.
    44. Strohlein MA, Grutzner KU, Jauch KW, et al. Comparison of laparoscopic vs.open access surgery in patients with rectal cancer: a prospective analysis. Dis Colon Rectum 2008; 51(4): 385-391.
    45. Kitano S, Shiraishi N, Uyama I, et al. Japanese Laparoscopic Surgery Study Group. A multicenter study on oncologic outcome of laparoscopic gastrectomy for early cancer inJapan. Ann Surg. 2007, 245(1): 68-72.
    46. Jung IK, Kim MC, Kim KH, et al Cellular and peritoneal immune response after radical laparoscopy-assisted and open gastrectomy for gastric cancer. J Surg Oncol. 2008;98(1): 54-9.
    47. Wu FP, Sietses C, von Blomberg BM, et al. Systemic and peritoneal inflammatory response after laparoscopic or conventional colon resection in cancer patients: a prospective, randomized trial. Dis Colon Rectum. 2003; 46(2): 147-155.
    48. Biffl WL, Moore EE, Moore FA, et al. Interleukin-6 in the injured patient. Marker of injury or mediator of inflammation? Ann Surg. 1996; 224(5): 647-664.
    49. Cruickshank AM, Fraser WD, Burns HJ, et al. Response of serum interleukin-6 in patients undergoing elective surgery of varying severity. Clin Sci (Lond). 1990; 79(2): 161-165.
    50. Mehigan BJ, Hartley JE, Drew PJ, et al. Changes in T cell subsets, interleukin-6 and C-reactive protein after laparoscopic and open colorectal resection for malignancy. Surg Endosc. 2001; 15(11): 1289-1293.
    51. Stage JG, Schulze S, Moller P, et al. Prospective randomized study of laparoscopic versus open colonic resection for adenocarcinoma. Br J Surg. 1997; 84(3): 391-396.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700