用户名: 密码: 验证码:
部分亚麻属植物遗传多样性及分子进化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
亚麻是最早被人类利用的作物之一,亚麻属共有200多个种,遗传资源丰富。栽培种亚麻包括油用和纤维用两种类型,纤维类型在纺织、材料、造纸等领域具有重要的经济价值,而油用类型的亚麻子中含有大量不饱和脂肪酸和木脂素(lignan),对心脑血管疾病具有很好的疗效,具有巨大的商业开发价值。然而,尽管亚麻具有悠久的栽培历史,亚麻属植物的研究却处于初级阶段,对亚麻属植物资源还知之甚少,对亚麻栽培种的起源、演化和亚麻属植物的亲缘关系问题还存在很多分歧。
     本研究从形态标记、蛋白质标记、DNA标记三个角度探讨了部分亚麻属(Linum)植物(17个种)遗传多样性及栽培种亚麻(Linum usitatissimum L.)的演化,利用纤维素合酶编码区基因片段(CesA)及硬脂酰基载体蛋白脱氢酶基因(Sad2),来探讨栽培亚麻的进化途径,同时,采用野亚麻群体(Linum stelleroides)为样本,来探讨野生亚麻居群的遗传丰富程度及基因流向,从而为研究栽培亚麻的进化途径和野生亚麻属资源的合理利用及保护提供理论依据和参考。本研究结果如下:
     1.亚麻的最佳SRAP-PCR反应体系为:总体系25μl,模板25ng、buffer1×、Mg~(2+) 2.5mmol/L、dNTPs 0.3mmol/L、引物0.2μmol/L、TaqDNA聚合酶2U/25μl体系。最佳反应程序为:94℃预变性3min,1个循环,94℃变性10s,35℃复性20s,72℃延伸1min,4个循环,94℃变性10s,54.5℃20s,72℃延伸1min,38个循环,最后72℃延伸7min,4℃保存。
     2.亚麻属植物具有丰富的遗传变异,17个种65份亚麻属材料的21个性状的种间平均变异系数为0.47,变幅为0.12-1.36,其中,变异系数>0.5的性状为:分枝习性>花冠颜色、花粉囊颜色>种皮颜色>叶主脉导管数>生长习性>叶形,观察性状的变异要大于测量性状,种内变异系数为0.02-0.25,种间变异大于种内变异。
     3.研究的65份材料的相似指数在0.577-0.993之间,野生种之间的相似系数变化范围为0.583-0.950,栽培品种间相似系数变化范围为0.841-0.993,其中,纤维用类型在0.897-0.993之间,而油用类型在0.841-0.987之间,野生种间具有更大的遗传差异,纤维用亚麻比油用类型具有更加狭窄的遗传基础。
     4.从形态、酶及基因水平证明,三种亚麻类型中,野生种与栽培种的油用类型具有更近的亲缘关系,而与纤维用类型关系最远,同时,在聚类上,油用类型不但有自己的小聚类群也与纤用类型聚在一起。
     5.对野亚麻Linum stelleroides群体及栽培亚麻(Linum usitatissimum L.)群体的分析发现,种群内部具有较小的遗传差异。种群间强烈分化,种群间具有较小的基因流动和较大的基因分化系数。
     6. Linum grandiflorum、Linum bienne、Linum angustifolium、Linum tenuifolium分别在不同的水平上距离栽培亚麻(Linum usitatissimum L.)亲缘关系最近,其中,在形态水平上Linum grandiflorum与栽培种最近,在酶水平上,Linum bienne、Linum angustifolium与栽培亚麻关系最近,在SRAP标记水平上,Linum angustifolium、Linum tenuifolium、Linum bienne与栽培亚麻关系最近。
     7.本研究支持栽培亚麻的多起源观点,不支持Robin G.等人提出的栽培亚麻单一起源于Linum bienne的观点,且初步认为Linum bienne种对栽培亚麻的演化有一定贡献。
Genus Linum L. was one of crops used by human firstly, and it comprises more than 200 species, there are abundant genetic resources. The cultivated species comprises two types, one is fibre flax, the other is linseed(oil flax). Fibre flax had important economic value in textile industry, materials, paper industry,and so on, so was the linseed in business for its abundant insaturated fatty acid and lignan content, which resist against cardiovascular and cerebrovascular diseases. Although has a long cultivated history, the research to Genus Linum L. was at initial phase. The little understanding was knewn to Genus Linum L., and there are many different views to origin, evolution of cultivated flax and relationship within Genus Linum L.
     Genetic diversity within part of Genus Linum L.and the evolution of cultivated flax(Linum usitatissimum L.) were analysised from phenotypes, peroxidase polymorphism and DNA polymorphism of SRAP markers in the study. Evolutionary pathway of the cultivated flax was disscussed by analysising homologous sequence of gene CesA CDS section and gene Sad2. Otherwise, local wild flax(Linum stelleroides) was taken as sample to understand the genetic diversity and gene flow(Nm) of population, and it could supply theoretical basis for evolutionary pathway of cultivated flax and wild flax utilization reasonable. The results was as follows from the study:
     1. the optimal SRAP-PCR reaction system in flax were made certain as follows: 1×buffer, 2.5mmol/L Mg2+, 0.3mmol/L each dNTP, 0.2μmol/L primer, 0.08U/μl Taq DNA polymerase, and 1.2ng/μl flax DNA template in a final volume of 25μl, and the optimal amplification protocol was: 94℃3min, (94℃10s,35℃20s,72℃1min)×4,(94℃10s,54.5℃20s,72℃1min)×38, 72℃7min,held at 4℃.
     2. Genus Linum L.had abundant genetic variation, the average mean of variation coefficient based on 21 phenotype characters from 65 accesions within 17 species was at 0.47, the range was at 0.12-1.36, in which, variation coefficient value of several characters >0.5, the order was: branching habit>corolla color, anther color> seed color>the number of vascular cells in main nervation>growing habit>shape of leaf. The variation of observed characters was higher than that of measured characters. The range of variation coefficient in species was at 0.02-0.25, and the variation among species was higher than that of in the species.
     3. Similarity index range among 65 accessions was at 0.577-0.993, and among wild species was at 0.583-0.950, and among cultivated varieties was at 0.841-0.993, in which, that of fibre flax was at 0.897-0.993, the linseed was at 0.841-0.987. From above, the highest variation was among wild species, fibre flax had narrower genetic basis than linseed. 4. Wild flax had closer relationship with linseed than fibre flax from the evidence of phenotype
     characters, isozyme polymorphism and DNA polymorphism amplified by SRAP marker. Linseed not only had its own clustering group, but also existed in fibre flax clustering group.
     5. It was found that differentiation was strong between the local wild flax species population(Linum stelleroides) and cultivated species population(Linum usitatissimum L), there was little gene flow and big gene dirrerentiation coefficient between two species population.
     6. Linum grandiflorum、Linum bienne、Linum angustifolium、Linum tenuifolium were close to cultivated flax in similarity, in which, Linum grandiflorum was close to cultivated flax at phenotype, Linum bienne、Linum angustifolium was at isozyme, and Linum angustifolium、Linum tenuifolium、Linum bienne was at DNA polymorphism amplified by SRAP marker.
     7. It supported the view that cultivated flax had many origins, and didin’t support the only origin from Linum bienne, and Linum bienne was considered that contributed to envolvement of cultivated flax
引文
David W. Mount著,2003,生物信息学(钟杨,王莉,张亮主译),高等教育出版社
    N.M.西蒙,1987,54.亚麻,作物进化,农业出版社,401-407
    陈万秋,叶新太,李思光,薛喜文,2001,猕猴桃酯酶同工酶和过氧化物酶同工酶分析及遗传多样性研究,南昌大学学报(理科版),25(3):269-272
    陈阅增,1999,普通生物学,高等教育出版社,P470
    程远辉,周昌华,马爱芬,石小刚,张兴翠,2007.4,重庆何首乌遗传多样性的SRAP研究,中国中药杂志,32(8):661-663
    仇志军,郑素秋,王鸣,1994,西瓜品种资源亲缘关系的同工酶分析,湖南农学院学报,20(3):222-227
    邓欣,陈信波,龙松华,2007,10个亚麻品种亲缘关系的RAPD分析,中国麻业科学,29(4):
    樊守金,2007,盐芥居群遗传多样性及分子进化研究,山东师范大学博士学位论文,方宣钧,吴为人,唐纪良,2002,作物DNA标记辅助育种,科学出版社
    付立忠,魏海龙,李海波,吴庆其,吴大丰,吴学谦,2006,香菇SRAP扩增体系的建立与优化,食用菌学报, 13(4):10~15。
    傅渝滨,景淑华,尚京川,欧阳渝,吴崇荣,1996,亚麻籽油中α-亚麻酸等不饱和脂肪酸的HPLC测定,重庆医科大学学报,21(3):223-225
    葛颂,1994,酶电泳资料和系统与进化植物学研究综述,武汉植物学研究,12(1):71-84
    葛颂,洪德元,1994,遗传多样性及其检测方法,见:钱迎倩主编,1994,生物多样性研究的原理与方法,北京中国科学技术出版社
    根井正利,库马编著,2000,分子进化与系统发育,吕宝忠,钟扬,高莉萍译,2002.北京:高等教育出版社
    根井正则,1983年6月,《分子群体遗传学与进化论》,农业出版社,
    郭大龙,罗正荣,2006,部分柿属植物SRAP- PCR反应体系的优化,果树学报,23(1): 138-141
    国植,徐莉,2000,亚麻:从古代草药到现代医药,国外医药:植物药分册,15(1):2-4
    郝柏林,张淑誉,2002.生物信息学手册.第二版,上海:上海科学技术出版社
    何希贤,世界纤维亚麻小史,经济作物,310-311
    贺福初,1994,分子水平的减速进化与绝对进化速率的计算方法,科学通报,39(2):179-182
    黄建军,1997,干旱资源-油用亚麻籽的综合利用,内蒙古农业科技,第4期,31-32
    姜树坤,马慧,刘君,何晶,郭志富,陈丽静,钟鸣,张立军,王学英,张丽, 2007,
    利用SRAP标记分析玉米遗传多样,分子植物育种,第5卷,第3期,412-416
    李典谟,徐汝梅,马祖飞等,2005,物种濒危机制和保育原理,北京:科学出版社,42-59
    李明,2007,亚麻进化与近缘种研究回顾与展望,中国麻业科学,29(3):113-117
    李双双,赵瑞华,闫桂琴,郜刚,2007年12月,马铃薯基因组SRAP反应体系的建立和优化,山西师范大学学报(自然科学版),第21卷第4期, 79-83
    李延邦,刘汝温,油用亚麻史略,农业考古,86-88
    梁景霞,祁建民,吴为人,周东新,陈顺辉,王涛,陶爱芬,2005年8月,烟草DNA
    的提取与SRAP反应体系的建立,中国烟草学报,第11卷第4期,33-38
    林忠旭,张献龙,2004,聂以春.新型分子标记SRAP在棉花F2分离群体及遗传多样性评价中的适用性分析.遗传学报,31(6):622-626
    刘大川,庞美霞,吴波,2001,亚麻木脂素的开发研究,中国油脂,26(6):38-40
    刘建丰,王志德,刘艳华,牟建民,2007,应用SRAP标记研究烟草种质资源的遗传多样性,中国烟草科学,28(5):49-53
    刘三军,孔庆山,顾红,刘彦,1998,我国野生葡萄过氧化物酶同工酶研究,15(4):322-326
    刘绍华,1997,富含γ-亚麻油酸的月见草油籽,中草药,28(2):105
    刘月光,滕永勇,潘辰,2006,应用标记对莲藕资源的聚类分析,氨基酸和生物资源,28(1):29~32
    刘月光,滕永勇,潘辰,韩延闯,周明全,胡中立,2006,应用SRAP标记对莲藕资源的聚类分析,氨基酸和生物资源,28(1):29~32
    路颖,2006,亚麻种质资源的研究与利用,黑龙江农业科学,(1):13-15
    庞瑞媛,韦一能,2001,荔枝过氧化物酶同工酶的分析比较,广西师范大学学报(自然科学版),19(3):75-78
    钱韦,葛颂,2001,居群遗传结构研究中显性标记分析方法初探,遗传学报,28(3):244-255
    邰付菊,李学宝,2004,植物纤维素生物合成及其相关酶类,细胞生物学杂志,26:490-494
    汪松,马克平译,1992,世界资源研究所,国际自然与自然资源保护联盟,联合国环境规划署,全球生物多样性策略。北京:中国标准出版社
    汪小全,邹玉苹,张大明等,1996,银杉遗传多样性的RAPD分析,中国科学(C辑),26(5):718-724
    王刚,潘俊松,李效尊等,2004,黄瓜SRAP遗传连锁图的构建及侧枝基因定位,生命科学(中国科学C辑), 34(6):510~516
    王关林,方红筠主编,2004年1月,植物基因工程,科学出版社
    王晓华,朱文渊主编,2008年2月,生物化学与分子生物学实验技术,化学工业出版社
    王燕,龚义勤,赵统敏,刘广,郁樊敏,叶海龙,柳李旺,番茄SRAP-PCR体系优化与品种分子鉴定,南京农业大学学报2007,30 (1): 23~29
    王映强,赖炳森,颜晓林,路萍,郑成贵,谭亚芳,1999,GC/MS分析紫苏子与亚麻子脂肪酸成分,中国生化药物杂志,20(2):62-64
    王中仁主编,1996,植物等位酶分析北京科学出版社,
    吴洁,谭文芳,阎文昭,钟昌松,王大一,2007年8月,甘薯种质资源亲缘关系SRAP标记分析,四川大学学报(自然科学版),第44卷第4期,878-882
    吴洁,谭文芳,何俊蓉等,2005,甘薯SRAP连锁图构建淀粉含量QTL检测,分子植物育种,6(3):841~845
    袁菊红,权俊萍,胡绵好,孙视,彭峰,夏冰,2007,石蒜SRAP-PCR扩增体系的建立与优化,植物资源与环境学报,16(4): 1-6
    张正,王振华,海力其布,2006,新疆昭苏野生亚麻,中国麻业,28(3):125-127
    赵晓明、宋秀英著,2003,生物遗传进化学,中国林业出版社
    钟章成,2000,植物种群生态适应机理研究,北京:科学出版社,9-14
    朱有勇,2007,遗传多样性与作物病害持续控制,科学出版社
    A. Diederichsen & K. Hammer,1995, Variation of cultivated flax (Linum usitatissimum L. subsp, usitatissimum) and its wild progenitor pale flax (subsp. angustifolium (Huds.) Thell.), Genetic Resources and Crop Evolution ,42: 263-272
    Ahmad R.,Potter D.,Southwick S.M.,2004,Genotyping of peach and nectarine cultivars with SSR and SRAP molecularmarker, Journal of American Society for Horticultural Science, 129(2):204~210.
    Axel Diederichsen and Yong-Bi Fu,2006,Phenotypic and molecular(RAPD)defferentiation of four infraspecific groups of cultivated falx(Linum usitatissimum L.subsp. usitatissimum),Gnetic Resources and Crop Evolution, 53:77-90
    Axel Diederichsen, 2007, Ex situ collection of cultivated flax (Linum usitatissimum L.) and other species of the Genus Linum L., Genet Resour Crop Evol.
    Barnes D.K., Culbertson J.O. and Lambert J.W., 1960, Inheritance of seed and flower colors in flax, Agronomy Journal, 52:456-459
    Barns S.M., Delwiche C.F.,Palmer J.D.,and Pace N.R.,1996,Perspectives on archaeal diversity, thermophily and monophyly from enviromental Rrna sequences, Proc. Natl. Acad. Sci,93:9188-9193
    Bretting P.K.and Widrlechner M.P.,1995, Genetic markers and plant genetic resource management, Plant Breeding Reviews, 13:11-16
    Budak H.,Shearman R.C.,Gaussoin R.E.,et.al.,2004, Application of sequence-related amplified polymorphism makers for characterization of turfgrasss pecies, Hortscience, 39(5):955-958.
    Budak H.,Shearman R.C.,Parmaksiz I.,et.al,2004,Comparative analysis of seeded and vegetative biotype buffalograsses based on phytogenetic relationship using ISSRs,SSRs,RAPDs and SRAPs, Theor Appl Gene, 109:280~288.
    C.M.Rogers,1969,Relationships of the north American species of Linum(flax),Bulletin of the torrey botanical club,96(2):176-190
    Chaudhary B.D., Singh V.P. and Kumari R., 1986, Genetic divergence in species of genus Linum , Acta Agronomica Hungarica,35:235-238
    Christopher A.Cullis,Sashi Swami and Yonggen Song,RAPD polymorphisms detected among the flax genotrophs,Plant Molecular Biology,41:795-800
    D.Wiesnerováand I.Wiesner,1999,ISSR-based clustering of cultivated flax germplasm is statistically correlated to thousand seed mass,Molecular Biotechnology,2004,26:207-214
    Doolittle W.F.,1999,Evolutionary trees from DNA sequences: A maximum likelihood approach, J.Mol. Evol., 17:368-376
    E.M?nsby et al., O. Díaz and R. von Bothmer, 2000, Preliminary study of genetic diversity in Swedish flax (Linum usitatissimum), Genetic Resources and Crops Evolution, 47:417-424
    Ferriol M,Pico B,Nuez F.,2003,Genetic diversity of a germplasm collection of cucurbit apepousing SRAP and AFLP markers,Theor Appl Gene, 107:271-282.
    Ferriol M.,Pico B.,Nuez F.,2003,Genetic diversity of some accessions of Cucurbit a maxima from Spain using RAPD and SRAP markers, Genetic Resources and Crop Evolution , 50(3):227
    G.Li,C.F.Quiros, 2001,sequence—related amplified polymorphism (SRAP),a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor appl genet, 103:455-461
    Gill K.S.and Yermanos D.M.,1967, Cytogenetic studies on the genus Linum I. Hybrids among taxa with 15 as the haploid chromosome number, Crop Sci. 7:623-627
    Gill K.S.and Yermanos D.M.,1967, Cytogenetic studies on the genus Linum I. Hybrids among taxa with 9 as the haploid chromosome number, Crop Sci. 7:627-631
    Gizem Dinler AE HikmetBudak,Analysis of Expressed Sequence Tags(ESTs) from Agrostis Species Obtained Using Sequence Related Amplified Polymorphism,Biochem Genet (2008) 46: 663–676
    Gorman N.B., Cullis C.A. and Aldridge N., 1993, Genetic and linkage analysis of isozyme polymorphism in flax, Journal of Heredity, 84:73-78
    H. Tyson,September,1973,Cytoplasmic effects on activity of individual anionic isoenzymes of peroxidase in crosses between two genotypes of flax (Linum usitatissimum L.),Biochemical Genetics, Volume 10, 13-21
    H.Budak, R.C.Shearman, I.Parmaksiz, R.E.Gaussoin, T.P.Riordan, I.Dweikat, 2004, Molecular characterization of Buffalograss germplasm using sequence-related amplified polymorphism marker, Theor appl genet, 108:328-334
    Hamrick J L, Isozymes and the analysis of genetic strueture in Plant populations,1989, In:Soltis D E, Soltis P S.eds. Isozymes in Plant biology, Portland:Dioseorides Press, 87-105
    Hamrick J L, Loveless M D,1989,The genetic structure of tropical tree populations:association with reproductive biology,In:Bock J H, Linhart Y B, eds., The Evolutionary Ecology of Plants, Boulder: Westview Press,129-146
    Hamrik J L, Godt M J W. Allozyme diversity in plant species. In Brown A H D,Clegg M T.,Kahler A C et al eds.. 1990,Plant Population Geneties,Breeding and Genetic Resources,Sunderland. Mass:Sinauer, 43-63
    Harris J.,1993,the Ancient World. In Harris,Textiles,5000 years:An International History and Illustrated Survey,Harry N. Abrams,New York,54-74
    Heer O., 1872,über den Flachs und die Flachskultur im Altertum. Neujahrsblatt der Naturforschenden Gesellschaft Zurich, 74:1–26
    Helbaek H.,1969, Plant collecting,dry-farming and irrigation agriculture in prehistoric Deh Luran. In Hile F.,Flannery K.V. and Neely J.F.(eds),Prehistory and Human Ecology of the Deh Lurah Plain,Memoirs of the Museum of Anthropology,University of Michigan,Ann Arbor,MI,386-426
    I.Wiesner and D.Wiesnerová,2003,Effect of resolving medium and staining procedure on inter-simple-sequence-repeat (ISSR) patterns in cultivated flax germplasm,Genetic Resource and Crop Evolution, 50:849-853
    Jain R.K.,Thompson G., Taylor D.C., MacKenzie S.L., McHughen A., Rowland G.G., Tenaschuk D., Coffey M., 1999, Isolation and characterization of two promoters from linseed for genetic engineering, Crop Sci., 39:1696–1701
    Judd A., 1995, Flax-some historical considerations, In Cunnane S.C., and Thompson L.U.,(eds),Flaxseed in Human Nutrition, AOCS Press, Champaign,IL, 1-10
    K.KRULíCVá, Z. PO?VEC, and M. GRIGA, 2002,Identification of flax and linseed cultivars by isozyme markers,Biologia Plantarum,45:327-336
    Knutzon D.S., Thompson G.A., Radke S.E., Johnson W.B., Knauf V.C., Kridl A.C., 1992, Modification of Brassica oil by antisense expression of astearoyl-acyl carrier protein desaturase gene, Proc. Natl. Acad. Sci. USA, 89:2624–2628
    Market C.L.,Moller F.,1959,Multiple forms of enzymes:tissue,ontogenetic,and species-specific patterns, Proc. Natl. Acad. Sci.,USA.45:753-763
    O.V. Muravenko, V.A. Lemesh, T. E. Samatadze, A. V. Amosova, Z. E. Grushetskaya, K. V. Popov, O. Yu.Senenova, L.V.Khotyuleva and A.V. Zelenin, 2003, Genome comparisons with chromosomal and molecular markets for three closely related flax species and their hybrids, Plant Genetics, 39(4):510-518
    Ohlrogge and Jaworski, 1997, Regulation of fatty acid synthesis, Ann Rev Plant Physiol Plant Mol Bio, l48:109–136
    Orhan KURT,1998,Genetic basis of variation in Linseed(Linum usitatissimum L.)cultivars, Tr. J. of Agriculture and Forestry, 22:373-379
    Pan Q.,1990, Flax production, utilization and research in China, Proc. of the Flax Institute of the United States, Flax Institure of the United States, Fargo, ND, 59-63
    R. van Treuren, L.J.M.van Soest, Th.J.L.van Hintum,2001,Marker-assisted rationalisation of genetic resource collections:a case study in flax using AFLPs,Theor. Appl. Genet.,103:144-152
    Robin G., Allaby A.E., GregoryW., Peterson A.E., David Andrew Merriwether A.E., Yong-Bi Fu,2005, Evidence of the domestication history of flax(LinumusitatissimumL.) from genetic diversity of the sad2 locus, Theor Appl Genet, 112:58–65
    S. I. Yurenkova,S. V. Kubrak,V. V. Titok and L. V. Khotyljova,2005, Flax species polymorphism for isozyme and metabolic markers, Russian Journal of Genetics, Volume 41,256-261
    Saxena I M, Brown R MJr , 1995. Identificationof a second cellulose synthase gene acsAII in Acetobacter xylinum. J Bacteriol,177 (18) :5276~5283
    Saxena I M, Lin F C, Brown R MJr , 1991. Identification of a new gene in an operon for cellulose biosynthesis in Acetobacter xylinum. Plant Mol Biol , 16(6):947-954
    Schick T.,1988, Nahal Hemar cave:Cordage, basketry and fabrics, Atiqot, 38:31-43
    Shanklin J., Sommerville C., 1991, Stearoyl-acyl-carrier-protein desaturase from higher plants is structurally unrelated to the animal and fungal homologs, Proc. Natl. Acad. Sci., USA., 88: 2510–2514
    Shu-JingSun,WeiGao Shu-QianLin,JianZhu Bao-GuiXie Zhi-BinLin,Analysis of genetic diversity in Ganoderma population with a novel molecular marker SRAP,Appl Microbiol Biotechnol (2006) 72: 537–543
    Singh S.,McKinney S.,Green A.,1994,Sequence of a cDNA from Linum usitatissimum encoding thestearoyl-acyl carrier protein desaturase,Plant Physiol,104:1075
    Smith B.D., 1995, the Emengence of Agriculture., Scientific American Libarary, New York, 11-13
    T.J.Oh , M.Gorman , C.A.Cullis , 2000 , RFLP and RAPD mapping in flax (Linum usitatissimum),Theor Appl Genet, 101:590-593
    Tyson H.,Fieldes M.A., Chung C. and Starobin C., 1985, Isozyme relative mobility(Rm) changes related to leaf position; apparently smooth Rm trends and some implications, Biochemical Genetics, 23:643-654
    van Zeist W., 1970, the Oriental Institution excavations at Murebit, Syria:Preliminary report on the 1965 campaign. Part III,Palaeobotany. J. Near East Studies 29:67-176
    van Zeist W.,1972, Palaeobotanical results in the 1970 seasons at Cayonu, Turkey. Helinium 12:3-19
    van Zeist W.,and Bakker-Heeres J.A.H., 1975,Evidence for linseed cultivation before 6000 BC., J. Archaeological Sci.,2,215-219
    Vavilov N.I., and Dorofeyev V.F., 1992, Origin and Geography of Cultivation Plants, L?ne,D.(Trans).Cambridge University Press, Cambridge,67,113
    Winkler,H., 1931, Linaceae,Die natürlichen Pflanzenfamílìen,19:82-120
    Wright S,1931,Evolution in Mendelian populations,Genetics, 16:97-159
    Yong-Bi Fu,2005,Geographic patterns of RAPD variation in cultivated flax,Crop Science, 45:1084-1091
    Yong-Bi Fu,Axel Diederichsen, K.W.Richards and Gregory Peterson,2002,Genetic diversity within a range of cultivars and landraces of flax (Linum usitatissimum L.) as revealed by RAPDs,Genetic Resource and Crop Evolution, 00:1-8
    Yong-Bi Fu,Gregory Peterson,Axel Diederichsen and K.W.Richards,2002,RAPD analysis of genetic relationships of seven flax species in the genus Linum L.,Genetic Resource and CropEvolution,49:253-259
    Zohary D. and Hopf M.,1993, Oil and fibre crops, In Domestication of Plants in the Old World-the Origin and Spread of Cultivated Plants in Wwst Asia, Europe, and the Nile Valley, Clarendon Press, Oxford, 118-126
    Zohary D., 1999, Monophyletic and polyphyletic origin of the crops on which agriculture was formed in the NearEast, Genet.Resear. Crop Evol., 46:133–142

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700