用户名: 密码: 验证码:
多孔阳极氧化铝膜内交流电沉积金属粒子的历程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔阳极氧化铝膜是理想的合成纳米线结构的模板材料。然而通常的氧化铝模板制备较困难,合成纳米线的工艺复杂。采用交流电沉积的方法,在未去处铝基体的情况下,使金属沉积到氧化膜孔中合成纳米线的工艺较简单,可省去减薄氧化膜阻挡层并与基体分离、喷镀导电金属层等工序。然而施加交流电时,金属离子在氧化膜孔中的沉积过程变得复杂。所以,交流电沉积条件下,探讨金属离子在多孔氧化膜的沉积历程具有重要的意义。
     本文采用电化学技术,在硫酸、草酸和磷酸溶液中通过对铝及其合金实施阳极氧化处理,制备了多孔阳极氧化铝膜。在上述三种溶液里恒压氧化过程中,初始阶段电流密度迅速下降,随后转为升高,最后趋于平稳。20℃时,稳定时的电流密度值与氧化电压均呈指数变化关系。硫酸溶液中电流密度i与电压V的关系为:i=1.056e~(0.1676V);草酸为:i=2.763e~(0.037V);磷酸为:i=0.446e~(0.024V)。
     高纯铝经电化学抛光后,通过阳极氧化得到有序的多孔结构的氧化膜。硫酸氧化膜的平均孔径约为20nm,草酸氧化膜的约为40nm,而磷酸氧化膜的孔径为50nm到120nm。经XRD分析,铝合金在硫酸溶液中所得到的氧化膜为非晶的α-Al_2O_3。
     U-I特性曲线测试发现,高纯铝阳极氧化膜具有单向导通的性质。氧化膜的阴极极化过程可分为三个阶段:初始时,电流密度变化较小而电位迅速负移,为克服氧化膜阻挡层电阻阶段;电流密度迅速增大而电位变化较小的析氢阶段;之后电流密度变化较小而电位迅速负移的受氢离子扩散控制阶段。氧化膜阻抗的大小由氧化膜阻挡层决定,阻挡层愈厚,氧化膜阻抗愈大。氧化电压与阻挡层的厚度成正比,在硫酸、草酸和磷酸溶液中的阻挡层成长率约为1nm/V。
     LY12铝合金磷酸氧化膜和复合氧化膜在含25g/L的ZnSO_4·7H_2O、25g/LH_3BO_3、1g/L的(NH_4)_2SO_4与N(CH_2COOH)_3的溶液中,施加15V交流电压,室温下制备了含锌粒子的复合膜。其中,LY12铝合金复合氧化膜在溶液中交流电沉积300s时,沉积在氧化膜孔中的锌粒子为单质锌,主要分布在氧化膜孔底约2μm内,沉积量为31.404μg/cm~2。沉积过程中,沉积量C与沉积时间s呈对数关系:C=7.6537ln(s)-12.388。
     首次采用交流电沉积的方法在LY12铝合金硫酸氧化膜上制备了Ce复合膜。工艺条件为:在1 g/L CeCl_3·7H_2O和10 mL/L H_2O_2的水溶液,施加10 V电压,室温下沉积5 min。实验发现,只有氧化膜的厚度大于6.8μm时,才能形成均匀的Ce复合膜,Ce复合膜表面稀土Ce的平均含量为1.70(wt)%,且分布均匀,Ce主要以非晶态的Ce~(3+)和Ce~(4+)氢氧化物分布在氧化膜多孔层的表层,分布深度约为1.51μm。
     采用交流电沉积的方法,1235铝合金硫酸氧化膜在硫酸铜溶液中电沉积得到金属Cu,草酸氧化膜在硝酸银溶液中电沉积得到金属Ag。Cu和Ag主要沉积于氧化膜孔底,氧化膜其他地方分布相对较少。交流电沉积过程中发现,峰值电流发生剧烈变化区域,发生金属离子和氢离子的还原反应,峰值电流稳定时则发生金属离子的还原反应,而氢离子的还原反应受到抑制。而且,电沉积过程中,阴极的峰值电流比阳极的峰值电流大。
Porous anodic alumina films are used as the ideal templates to synthesize the nanowire arrays materials. However, the common synthetic processes are long and complex through direct current(D.C) deposition into the porous alumina films. If the direct currentdeposition method is replaed by an alternative current (A.C).ones, a simple process will be obtained for some procedures are canceled, such as separation from the barrier layer and aluminum, spray conductive metal on the film. However, the reactions become more complex during the application of A.C. deposition. Therefore, it is of great significance to study the process of metal ions A.C. deposited into the porous alumina film.
     In this paper, electrochemical technique is applied on aluminum and its alloy to anodize in sulfuric, oxalic and phosphoric acid solution to form porous anodic alumina films. During the constant voltage process of anodize, the current densities decline rapidly in the initial stage, then rise and finally become steady.
     When the high pure aluminum is anodized in the given solution at 20℃, current densities i change with voltage V are index relationship. For sulfate acid: i = 1.056e~(0.1676V); for the oxalic acid: i= 2.763e~(0.037V); and for phosphoric acid: i= 0.446e~(0.024V).
     After electrochemical polishing and anodization, the anodic alumina films of high pure aluminum appear orderly porous structure. The average pore diameter is about 20nm, about 40nm, and 50-120nm, respectively, for anodizing in sulfuric, oxalic and phosphoric acid solution. Analysis by XRD, the film is the amorphousα-Al_2O_3 for anodizing in sulfate acid solution.
     U-I curve testt finds that the porous anodic alumina film has a semiconductor performance. The cathode polarization process applied on the films can be divided into three stages. Initially, current densities change slightly and potentials shift to negative rapidly. It is the stage of overcoming the barrier resistors of oxide film. Secondly, current densities grow quickly while potentials increase little. It is the hydrogen evolution stage. And the last stage is the current densities are nearly changed but potentials shift to negative rapidly. Is is the diffusing control step of hydrogen ions. The impedance of alumina film depends on the thickness of the barrier layer. The impedance increases with the barrier layer becoming thicker. The anodizing voltage proportional to the thickness of the barrier layer, and the anodizing ratio is about 1nm / V in sulfuric, phosphoric and oxalic acid solutions.
     The composite film contained zinc particle is prepared by A.C.deposition method. The solution contains 25g/LZnSO_4 ? 7H_2O, 25g/LH_3BO_3 and 1g/L additives((NH_4)_2SO_4 and N(CH_2COOH)_3 ) . When the alumina film is applied 15V A.C. deposition in the given solution for 300s the deposition sediment in the pores of oxide film is metal zinc, which is mainly distributed at the bottom of porous anodic alumina film with the thickness about 2um. And the amount of deposited zinc is about 31.404μg/cm~2. During A.C. deposition process, the amount of sediment C and the time s are fit to the formula: C = 7.6537 ln(s) -12.388.
     It is the first time to prepare Ce composite film in porous anodic alumina film by A.C. deposition method. Process conditions are as follows: the solution containing 1g/LCeCl_3·7H_2O and 10 mL/L H_2O_2, 10V(A.C) voltage applied at room temperature for 5 min. It is found that to obtain a uniform Ce composite film the thickness of the porous anodic alumina film must over 6.8μm. Ce sediment is distributed evenly on the inner surface of porous alumina film with the average content of 1.70 (wt)%. And Ce is mainly at the form of the amorphous Ce~(3+) and Ce~(4+) hydroxide, with the depth about 1.5μm.
     Ag and Cu composite films are prepared by A.C. deposition method. The metal of Ag and Cu are mainly deposition at the bottom of porous alumina film and there are some metal being distributed in the other place. It is found in the process of A.C. deposition, the region of the peak current dramatic changes, reduction of metal ions and hydrogen ions take place at the same time. When the peak current stable the mainly reaction is metal ions reduction, while, hydrogen ions reduction would be inhibited, In addition, during A.C. deposition process, the cathodic peak current is larger than that of anodic current.
引文
[1]梁成浩.现代腐蚀科学与防护技术.上海:华东理工大学出版社,2007.
    [2]张承忠.金属腐蚀与防护(第一版).北京:冶金出版社,1985.
    [3]黄奇松.铝的阳极氧化和染色(第一版).香港万里出版社:香港,1985.
    [4]Palibroda E. Aluminum porous oxide growth-Ⅱ: On the rate determining step. Electrochimica Acta, 1995, 40(8):1051-1055.
    [5]Patermaks G, Karayamis H S. The mechanism of growth of porous anodic Al_2O_3 films on aluminum at high thickness. Electrochimica Acta, 1995, 40(16):2647-2656.
    [6]Patermaks G, Houssoutzanis K. Mathematical models for the anodization condition and structural features of porous anodic Al_2O_3 films on aluminum. Journal of Electrochemical Society, 1995, 142(3):737-743.
    [7]Patermaks G, Moussoutzanis K. Electrochemical kinetic study on the growth of porous anodic oxide films on aluminum. Electrochimica Acta, 1995, 40(6):699-708.
    [8]Patermaks G, Papaiidreadis N. Effect of the structure of porous anodic A1203 films on the mechanism of their hydrothermal treatment. Electrochimica Acta. 1993, 38(10):1413-1420.
    [9]Patermaks G, Karayamis H S. Effect of the Cl~- and SO_4~(2-) ions on the selective orientation and structure of Ni electrodeposits. Electrochimica Acta, 1995, 40(9):1079-1092.
    [10]Thompson G E, . Furnerux R C, Wood G C. Nucleation and growth of porous anodic films on aluminum. Nature, 1978, 272(30):433-435.
    [11]Heber K V. Studies on porous Al_2O_3 growth Physical Model. Electrochimica Acta, 1978, 23(2): 127-133.
    [12]O'Sullivan J P, Wood G C. The morphology and mechanism of formation of porous anodic films on aluminum. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1970, 317: 511-543.
    [13]Shimizu K, Kobayashi K, Thompson G E. Development of porous anodic films on aluminium. Philosophical Magazine, 1992, 66(4):643-652.
    [14]Daskf C, Caterry H. Anion incorporation and migration during barrier film formation on aluminum. Corrosion Science, 1987, 27(1):83-102.
    [15]Jessensky 0, Muller F, Gosele U. Self-organized formation of hexagonal pore arrays in anodic alumina. Apply Physics Letter, 1998, 72(10):1173-1175.
    [16]徐源,Thompson G E,Bethune B B.壁垒型铝阳极氧化膜成份及电解质离子在膜中的漂移.中国腐蚀与防护学报。1987,7(3):161-169.
    [17]Xu Y, Thompson G E, Wood G C. The growth mechanisms of anodic films on aluminum. Transactions of the Institute of Metal Finishing, 1985, 63:98-102.
    [18]徐源,Thompson G E,Wood G C.多孔型铝阳极氧化膜孔洞形成过程的研究.中国腐蚀与防护学报,1989,(9):1-10.
    [19]Setoh A M. Sci. Pap. Inst. Phys.Chem. Res. (Tokyo), 1932, 273:19.
    [20]Diggle J W, Downie T C, Goulding C W. Anodic oxide films on aluminum. Chemical review, 1969, 69:365-405.
    [21]Keller F, Hunter M S, Robinsio D L. Structural Features of Anodic Oxide Films on Aluminum. Journal of Electrochemical Society, 1953, 100:411-419.
    [22]Yakovleva N M, Yakovlev A N, Chupakhina E A. Structural analysis of alumina films produced by two-step electrochemical oxidation. Thin Solid Films, 2000, 366:37-42.
    [23]Vrublevsky I, Parkoun V, Schreckenbach J. Analysis of porous oxide film growth on aluminum in phosphoric acid using re-anodizing technique. Applied Surface Science, 2005, 242: 333-338
    [24]Murphy J F, Michelson C E. Conf. Ando. Al. . Oniv, 1961, 85.
    [25]Bogoyavlenskii. A F, On the Mechanisms of Anodic Coating Formation on Aluminum. Moscow: Mashinostroenie, 1964: 22-30
    [26]刘金章.一维纳米功能材料的制备与特性研究:(博士学位论文).兰州:兰州大学, 2006.
    [27]王爱华,管获华,周维亚等.多孔氧化铝有序膜的制备研究.无机化学学报,2002,22:447-450.
    [28]Li A P, Muller F, Birner A. et al. Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina. Journal of Applied Physics, 1998, 84:6023-6026.
    [29]刘复兴,夏正才.铝阳极氧化膜膜孔微观结构研究.材料保护,1994,27(1):19-22.
    [30]曾华梁,杨加吕译,电解和化学转化膜(第一版).北京:轻工业出版社,1987: 306-323.
    [31]S.维而利克,R.皮聂耳吉.铝及铝合金的化学与电解处理(第一版).北京:国防工业出版社:1965
    [32] Ginsberg K W. Metall(Berlin), 1965, 202:17.
    [33] Kumar S N, Chopra K L Nickel pigmented anodized aluminium as solar selective absorbers. Solar Energy Materials 1983, 7(4):439-452.
    [34]姚士冰,张智良,周绍民.用正电子淹没技术研究铅阳极氧化膜.物理化学学报,1989,5(4):427-431.
    [35]巩运兰,王为,高俊丽.铬酸浓度对阳极氧化多孔膜阻挡层形成过程的影响.电镀与环保,1999,19(2):20-22.
    [36]于幼玲,袁战恒.高压铝阳极氧化膜形成技术.电子元器件应用,2000,2(7):15-18.
    [37]周建军,蒋忠锦,施东娥等.铸造铝合金硬质阳极氧化工艺研究.材料保护,1998,31(9):15-17.
    [38]来永春,施修龄,华铭.铝合金表面等离子微弧氧化处理技术.电镀与涂饰,2003,22(3):1-3.
    [39]来永春.铝合金表面微弧氧化处理.轻合金加工技术,2002,30(10):31-34.
    [40]刘宜汉,于晓中,苑洁明.铝合金换向电流法氧化着色工艺的研究.电镀与精饰,2000,22(2):16-18.
    [41]张祥生,张文辉,张宏祥.铝及铝合金换向脉冲阳极氧化染色工艺.材料保护,1999,32(2):15-16.
    [42]Strazzi E, Yincenzi F, Bellei S. Multicolour Electrolytic Colours. Aluminium Finishing, 1997, 17(1): 20-23.
    [43]food G C. A model for the incorporation of electrolyte species into anodic alumina. Journal of electrochemical Society, 1996, 143(1):74-83.
    [44]Echeverria F. Formation of anodic oxides on A10. 2Ga0. 8As and A10. 2Ga0. 8As in tungstate electrolytes. Corrosion Science, 2000, 42:1839-1851.
    [45]Baizuldin B M. Thin anodic aluminum oxide films with unusual morphology. Metal Finishing, 1993, 91(12):27-29.
    [46]Habazaki H, Shimizu K, Skeldon P. Effects of alloying elements in anodizing of aluminum. Transactions of the Institute of Metal Finishing, 1997, 75(1):18-23.
    [47]Shimizu K, Broron G M , Habazaki H. Impurity distribution in barrier anodic films on Aluminum: a GDOES depth profiling Study. Electrochimica Acta, 1999, 44(13): 2297-2306.
    [48]Wu H Q, Zhang X, Hebert K R. Atomic force microscopy study of the initial stages of anodic oxidation of aluminum in phosphoric acid solution. Journal of the Electrochemical Society, 2000, 147(6):2126-2132.
    [49]Zhou X, Thompson G E. Anodic oxidation of an AI-2wt%Cu alloy effect of grain orientation. Corrosion Science, 1999, 41(6):1089-1094.
    [50]Saito M, Shign Y, Miyagi M. Unoxidized aluminum particles in anodic aluminum films. Journal of the Electrochemical Society, 1993, 140(7):1907-1911.
    [51]Ono S. Lchnose H. Defects in porous anodic films formed on high purity aluminum. Journal of the Electrochemical Society, 1991, 138(12):3705-3710.
    [52]Zhou X. Thompson G E, Habazaki H. Morphological development of oxygen bubbles anodic aluminum. Journal of the electrochemical Society, 2000, 147(5):1747-1750.
    [53]Macdonald D D. On the information of voids in anodic oxide films on aluminum. Journal of the electrochemical Society, 1993, 140(3):27-30.
    [54]Li Yan, Sun Xiaowei, Wang Jian et al. Comparison between the optical properties of Ni/AAO and Co/AAO nano array composite. Acta Optica Sinica, 2005, 25(1):77-82.
    [55]Bao J, Tie C, Xu Z et al. Template synthesis of an array of nickel nanotubules and its magnetic. Journal of Advanced Materials, 2001, 13(21):1631.
    [56]Wu M T, Leu I C, Yen J H et al. Novel electrodeposition behavior of Ni on porous anodic alumina templates without a conductive Interlayer. Journal of Physical Chemistry B, 2005, 109:9575-9578.
    [57]Foss C A, Gabor L, Hornyak, Stockert J A et al. Optical properties of composite membranes containing arrays of nanoscopic gold cylinders. Journal of Physical Chemistry, 1992, 96:7497.
    [58]Strijkers G J, Dalderop J H J, Broeksteeg M A A et al. Structure and magnetization of arrays of electrodeposited Co wires in anodic alumina. Journal of Applied Physics, 1999, 86(9): 5141-5145.
    [59]Foss C A, Gabor L, Hornyak, Stockert J et al. A Template-synthesized nanoscopic gold particles: Optical spectra and the effects of particle size and shape. Journal of Physical Chemistry, 1994, 98:2963-2971.
    [60]Gao T, Meng G W, Zhang J et al. Templates synthesis of single-crystal Cu nanowire arrays by electrodeposition. Journal of Applied Physics, 2001, 73:251-254.
    [61]Wang C Z, Meng G W, Fang Q Q et al. Structure and magnetic property of Ni-Cu alloy nanowires electrodeposited into the pores of anodic alumina. Journal of Physics D: Applied Physics, 2002, 35:738-741.
    [62]Cao H, Xu Z, Sang H et al. Template synthesis and magnetic behaviour of an array of cobalt nanowires encapsulated in polyaniline nanotubules. Journal of Advanced Materials, 2001, 13(2): 121.
    [63]Li Y, Cheng G S, Zhang L D et al. Fabrication of highly ordered ZnO nanowire arrays in anodic alumina membranes. Journal of Materials Research, 2000, 15:2305-2308.
    [64]Hoyer P, Baba N, Masuda H. Small quantum-sized CdS particles assemble to form a regularly nanostructured porous film. Applied Physics Letters 1995, 66(20):2700-2705.
    [65]Shi G, Mo C M, Cai W L et al. Photoluminescence of ZnO nanoparticles in alumina membrane with ordered pores arrays. Solid State Communications, 2000, 115(6):253-256.
    [66]徐春祥,薛清华,巴龙等.八羟基喹林铝在多孔氧化纳米孔中的光致发光.科学通报,2001,46(12):984-986.
    [67]Shi Y L, Wang J, Li H L. Photoluminescence effect of Ru dye on alumina membranes with ordered pore arrays. Applied Physics A, 2002, 75(3):423-426.
    [68]Runping Jia, Yan Shen, Haiqing Luo et al. Photoluminescence properties of morin and lysozyme molecules absorbed on anodic porous alumina membrane. Applied Surface Science, 2004, 233(14): 343-351.
    [69]Masuda H, Hasegwa F, Ono S. Highly ordered nanochannel array architecture in anodic alumimun. Electrochemical Society, 1997, 144(5):127-131.
    [70]Nakamura S, Saito M, Huang L F et al. Infrared optical-constants of anodic alumina films with micropore arrays. Japanese Journal of Applied Physics, 1992, 31(11):3589-3593.
    [71]Aiaawlawi D, Coombs N, Moskovits M. Magnetic properties of Fe deposited into anodic aluminum oxide pores as a function of particle size. Journal of Applied Physics, 1991, 70(8):4421-4425.
    [72]Zeng H., Zheng M., Skomski R etal. Magnetic properties of self-assembled Co nanowires of varying length and diameter. Journal of Applied Physics, 2000, 87(9): 4718—4720.
    [73]于冬亮,杨绍光,朱浩.钴纳米线阵列的制备和磁性.南京化工大学学报,2000,22(6):69-71.
    [74]Blythe H J, Fedosyuk V M, Kasyutich O I et al. Studies of Co/Cu heterogeneous alloy nanowires. Journal of Magnetism and Magnetic Materials, 2000, 208:251-254.
    [75]Khan H R, Petrikowski K. Anisotropic structural and magnetic properties of arrays of Fe26Ni74 nanowires electrodeposited in the pores of anodic alumina. Journal of Magnetism and Magnetic Materials, 2000, 215:526-528.
    [76]Tetsuya 0. Electrodeposition of highly functional thin films for magnetic recording devices of the next century. Electrochim Acta, 2000, 45:3311-3321.
    [77]潘谷平,薛宽宏,孙冬梅等.有序纳米线阵列的制备及其磁滞回线.化学物理学报,1999,12(6):677-680.
    [78]Ji G B, Tang S L, Xu B L et al. Synthesis of CoFe_2O_4 nanowire arrays by sol-gel template Method. Chemical Physics Letters, 2003, 79(3): 484-489.
    [79]Mason J J. Selective absorbing surfaces in practice. Surface Technology 1983, 20(4):339-356.
    [80]李陵川,徐源.铝阳极氧化电解着色膜的光谱选择性.北京科技大学学报,1990,12(2):154-159.
    [81]黄涵芬,张宝英,赵玉文.阳极化铝电解着色选择性吸收涂层.太阳能学报,1984, 5(4):399-403.
    [82]孙景临,薛宽宏,何春建等.镍纳米线电极的电化学氧化还原行为及其对乙醉的电化学氧化催化作用.应用化学,2001,18(6):462-465.
    [83]孙景临,薛宽宏,邵颖等.镍纳米线电极对乙醉的电催化氧化动力学参数的测定.物理化学学报,2002,18(3):268-271.
    [84]Kyotani T. Chemical modification of carbon-coated anodic alumina films and their application to membrane filter. Journal of Membrance Science, 2002, 196:231-239.
    [85]Itaya K, Sugawara S, Arai K et al. Properties of porous anodic aluminium oxide films as membranes. Journal of Chemical Engineering of Japan, 1984 17:514 -520.
    [86]Rigby W R, Cowieson D R, Davies N C et al. An anodizing process for the production of inorganic microfiltration membranes. Transactions of the institute of metal finishing, 1990, 58(3):95-98.
    [87]Ono S, Wada K, Yoshino T et al. The duplex structure of cell walls of porous anodic films formed on aluminium. Journal of the surface and Finishing society of Japan, 1989, 40:1381-1390.
    [88]Wada K, Ono S, Wada K et al. Adsorption spectra and gas permeabilities of porous anodic aluminum oxide films. Journal of the surface and Finishing society of Japan, 1989, 40:1388-1396.
    [89]曾凌三编译.铝阳极氧化膜的表面电荷和离子的吸附与浸透.电镀与精饰,1997,19(6):14-19.
    [90]Ito N, Kato K, Tsuji T et al. Preparation of a tubular anodic aluminum oxide membrane. Journal of Membrance Science, 1996, 117:189 -196.
    [91]Ito N, Tomura N, Tsuji T et al. Strengthened porous alumina membrane tube prepared by means of internal anodic oxidation. Microporous and mesoporous materials, 1998, 20:333-337.
    [92]Sato T, Sahai S. Electrolytic colouring of anodized aluminium with nickel sulphate. Transactions of the institute of metal finishing, 1979, 57: 43-47.
    [93]Sato T. mechanism of eletrolyte coloring of anodized aluminum. Plating and surface finishing, 1991, 3:70-72.
    [94]吴颖 陈日耀,陈震铝合金电解着色槽中Sn~(2+)离子电化学行为的研究.电镀与精饰,1994,16(4):9-12.
    [95]蔡小荣,杨种宁,周绍民.锡盐电解着色液稳定性研究.表面技术,19(6):11-13.
    [96]陈蔚,陈日耀郑羲等.铝合金表面着黑色的研究.电镀与精饰,2000,22(6):5-7.
    [97]Karagiannl B, Tsangaraki-Kapianoglo I. N-Heterocyclic organic compounds as additives in the A-C coloring of anodized aluminium from nikel sulfate solutions Part Ⅰ: Effec on color nitensity and uniformity of the probes. Plating and surface finishing, 1996, 9:73-76.
    [98]Karagiannl B, Tsangaraki-Kapianoglo I. N-Heterocyclic organic compounds as additives in the A-C coloring of anodized aluminium from nikel sulfate solutions Part Ⅱ: Mechanism of their action. Plating and surface finishing, 1996, 10:58-63.
    [99]暨调和 曾凌三.用李沙育图形法研究铝阳极氧化膜的电解着色.湖南大学学报,1989,16(4):117-124.
    [100]丘开容 杨绮琴.阳极氧化铝在锡盐溶液中电解着色的机理.电镀与环保,1988,8(2):7-11.
    [101]Hoar T P, Wood G C. The sealing of porous anodic oxide films on aluminium. Electrochimica Acta, 1962, 7(3):333-353.
    [102] Jüttner K, Lorenz W J, Paatsch W. The role of surface inhomogeneities in corrosion processes-electrochemical impedance spectroscopy (EIS) on different aluminium oxide films. Corrosion Science, 1989, 29(2/3):279-288.
    [103] Jtlttner K. Electrochemical impedance spectroscopy (EIS) of corrosion processes on inhomogeneous surfaces. Electrochimica Acta, 1990, 35(10):1061-1058.
    [104] Hitzig J, Juǚttner K, Lorenz WJ et al. AC-impedance measurements on porous aluminium oxid films. Corrosion science, 1984, 24(11/12):945-952.
    [105] Hitzig J, Juüttner K, Lorenz W J et al. AC-impedance measurements on corroded porous aluminium oxid films. J. electrochem. soc., 1986, 133(5):887-892.
    [106] Gonzalez J A, Butista A, Otero E. Characterization of porous aluminium oxide films from a. c. impedance measurments. Journal of applied electrochemistry, 1999, 29:229-238.
    [107] Suay J J, Gim(?)nez E, Rodriguez T et al. Characterization of anodizec and sealed aluminium by EIS. Corrosion science, 2003, 45:611-624.
    [108] 左禹,赵景茂,赵旭辉.铝阳极氧化膜在NaCl溶液中的电化学性能.中国有色金属学报,2004,14(4):562-567.
    [109] De Laet J, Scheers J, Terryn H et al. Characterization of aluminium surface treatments with electrochemical impedance spectroscopy and spectroscopic ellipsometry. Electrochimica Acta, 1993, 38(14):2103-2109.
    [110] Serebrennikova I, Vanysek P, Birss V I. characterization of porous aluminum oxide films by metal electrodeposition. Electrochimica. Acta, 1997, 42(1):145-151.
    [111] Jagminiene A, Valincius G, Riaukaite A et al. The influcence of the alumina barrier-layer thickness on the subsequence AC growth of copper nanowires. Crystal growth, 2005, 274:622-631.
    [112] Gruberger J, Gileadi E.. Plating on anodized aluminum—Ⅰ. The mechanism of charge transfer across the barrier-layer oxide film on 1100 aluminum. Electrochimica Acta 1986, 31(12):1531-1540.
    [113] Zagiel A, Natishan P, Gileadi E. Plating on anodized aluminum—Ⅱ.The effect of the metal, the anion and the aluminum alloy. Electrochimica Acta, 1990, 35(6): 1019-1030.
    [114] Skominas V, Lichsina S, Miecinskas P et al. A voltammetric and chronopotientiometric study of anodized aluninium in metal salt solutions. Transactions of the institute of metal finishing, 2001, 79(6):213-218.
    [115] 蔡小荣,蔡加勒,姚士冰等.阳极氧化铝电解着色研究.厦门大学学报自然科学版,1987,26(6):712-717.
    [116]Kazuo Tachihara, Yasuhiko Itoi, Eiichi Sato. Observation of barrier layer during ac electrolytic colouring of anodized aluminium. Electrochimica Acta 1981, 26(9):1299-1302.
    [117]陆兆锷,马刚.铝阳极氧化电解着色过程中交流阻抗变化的研究.电镀与环保,1988,8(5):5-7.
    [118]蔡小荣,蔡加勒,姚士冰等.铝氧化膜电解着色研究.电镀与环保,1987,7(4):1-5.
    [119]川合慧著,朱祖芳译,铝阳极氧化膜电解着色及其功能膜的应用.北京:冶金工业出版社, 2005.
    [120]王银海,牟季美,蔡维理等.交流电在Al_2O_3模板中沉积金属机理探讨.物理化学学报, 2001,17(2):116-118.
    [121]高云震,任季嘉,宁福远.铝合金表面处理冶金工业出版社,北京:1991.
    [122]Parkhutik V P, Despic A. Electrochemistry of aluminum in aqueous solutions and physics of its anodic oxide. Modern Asepects of Electrochemistry(20).New York: Plenum Press. 1989.
    [123]王为,曾曙,郭鹤桐.恒压阳极氧化Al_2O_3膜形成过程的理论研究.电镀与精饰,1997,19:115-120.
    [124]朱祖芳编.铝合金阳极氧化与表面处理技术.化学工业出版社,北京:2004
    [125]马胜利,郭振琪,井晓天.α-Al_2O_3单晶体的X射线衍射仪法分析.西安理工大学学报,1996,12(4):303-306.
    [126]郭湛和,郁祖湛,陈春成等.铝合金一步法镀铜工艺.电镀与环保,1988,8(6):7-10.
    [127]Nathan J K, Joel A H. Effect of ac Electrodeposition Conditions on the Growth of High Aspect Ratio Copper Nanowires in Porous Aluminum Oxide Templates. Journal of physical chemistry B, 2005, 109:17372-17385.
    [128]石明吉,李清山,赵波等.多孔氧化铝的整流特性研究.曲阜师范大学学报,2006, (3):69-72.
    [129]闫金良.多孔阳极氧化铝薄膜的结构和特性[J].半导体光电,2006,27(4):426-428,433.
    [131] Furueaux R C, Rigby W R, Davidson A P. Nature, 1989, 337, 147-149.
    [132] Diggle J W, Downie T C, Goulding C W. Chemical review, 1969, 69:365.
    [133] Kalantary M R, Gabe D R, Ross D H, Journal of applied electrochemistry, 1999, 29: 57-61
    [134] Zhou X, Tompson G E. Anodic oxidation of an Al-2wt%Cu alloy effect of grain orientation. Corrosion Science, 1999, 41(6):1089-1094.
    [135]赵旭辉.铝阳极氧化膜的电化学阻抗特征研究.北京化工大学博士论文,2005
    [136] Thompson G E. Porous anodic alumina: fabrication, characterization and applications, ThinSolid Films, 1997, 297: 192-201.
    [137] Linden B V, Terryn H, Vereecken J. Investigation of anodic aluminum oxide layers by electrochemical impedance spectroscopy, Journal of Applied Electrochemistry, 1990, 20(5): 798-803.
    [138] 曹楚南,张鉴清.电化学阻抗谱导论.科学出版社:北京:2002.
    [139] 杜爱玲,马希骋,张鹤鸣.交流阻抗法研究铝合金表面脉冲氧化膜.电化学,1999,5(3):319-325.
    [140] 暨调和.曾凌三.张国芝编著.建筑铝型材的阳极氧化和电解着色.长沙:湖南科学技术出版社,1994:301-319.
    [141] Xu-hui Zhao, Yu Zuo , Jing-mao Zhao, Jin-ping Xiong, Yu-ming Tang. A study on the self-sealing process of anodic films on aluminum by EIS. Surface and coating technology, 2006, 200:6846-6853.
    [142] Shoso Shingubara, Osamv Okino, Yasuyuki Sayama, et al. Ordered Two Dimentional Nanowire Array Formation Using Self-Organized Nanoholes of Anodically Oxidized Aluminum. Japanese Journal of Applied Physics Part 1, 1997, 36: 7791-779.
    [143] Yin A J, Li J, Jian W et al. Applied Physics Letters. 2001, 79,1039-1041.
    [144] Sun M, Zangari G, Metzger R M. IEEE Trans. Magn. 2000, 36: 3005-3008.
    [145] Preston C, Moskovits M. Journal of Physical Chemistry, 1993, 97:8495-8503.
    [146] Sheasby P G, Short E P, Cheetham G. Interference Coloring of Anodized Aluminum. Metal Finishing, 1985,83(5),47-53.
    [147] 苏永庆.铝及铝合金的锌盐电解着色.电镀与环保,1992,12(3):17-19.
    [148] Tahei Asada, Shoya, Okamoto et al. Process for inorganically coloring Aluminum. US:3382160, May7, 1968.
    [149] 日本轻金属会社.铝材的电解着色法. CN1358239,2002.
    [150] Luo Meiqing, Zheng Changgiong, Ran Junguo et al. A Study on Chemical Components in Aluminium Anodic Coloring Films.Journal of Chengdu University of Science and Technology, 1997, 5: 15-18.
    [151] Benjamin S Y. Anodizing-Its Many Colors. Metal Finishing, 1984, 82(6): 57-62.
    [152] Bai Xinde, Qiu Qinglun, Gan Dongwen et al. Study on the Micro-analysis of Colouring Films and the Mechanism of Electrolytic Colouring of Aluminium. Journal of Tsinghua University(Sci &Tech), 1997, 7 (5) : 5-8.
    [153] 刘复兴,夏正才.铝阳极氧化电解着色膜的电镜分析.材料保护.1992,25(3):34-36.
    [154] Guhausen H J. Electrolytic of Anodic Oxide Coatings on Aluminium with Tin Electrolytes. Transaction of the Institute of Metal Finishing, 1982, 60: 74-80.
    [155] 王祝堂,田荣璋,铝合金及其加工手册.中南大学出版社,长沙;2000.
    [156] Sheasby P G, Short E P, Cheetham G. Interference Coloring of Anodized Aluminum. Metal Finishing, 1985, 83(5): 47-53.
    [157] Sheasby P G, Patrie J, Badia M et al. The Coloring of Anodized Aluminium by Means Optical Interference Effects. Transaction of the Institute of Metal Finishing, 1980, 58: 41-47.
    [158] Hinton B R W, Arott D R, Ryan N E. Cerium conversation coatings for corrosion protection of aluminum. Metals forum, 1986, 9(3): 162-165.
    [159] Mansfeld F. The ce-mo process for the development of a stainless aluminium. Electrochimica acta, 1992, 37(12):2277-2282.
    [160] Rungta R. Rare earth coating process for aluminum alloys. Us patent 5362335, 1994
    [161] Robore N M. Non-toxic corrosion resistant conversion process coating for aluminium and aluminium alloys. Us patent, 5419790, 1995.
    [162] William G, Fahrenholtz, Matthew J et al. Characterization of cerium-based conversion coatings for corrosion protection of aluminum alloys. Surface and Coating Technology, 2002, 155: 208-213.
    [163] Stoffer J 0, 0' Keefe T J, Lin X et al. Electrodeposition of cerium-based coatings for corrosion protection of aluminum alloys. US patent 5932083, 1999.
    [164] Campestrini P, Terryn H, Hovestad A et al. Formation of a cerium-based conversion coating on AA2024: relationship with the microstructure. Surface and Coating Technology, 2004, 176:: 365-381.
    [165] Johnson B Y, Edington J, Williams A et al. Microstructural characteristics of cerium oxide conversion coatings obtained by various aqueous deposition methods. Materials Characterization. 2005, 54:: 41-48.
    [166] 于兴文,曹楚南,严川伟.LY12铝合金阳极氧化稀土后处理的研究.高技术通讯,2000,12::57-60.
    [167] Xingwen Yu, Chuanwei Yan, Chunan Cao. Study on the rare earth sealing procedure of the porous film of anodized A16061/SiCp. Materials Chemistry and Physics, 2002, 76: 228.
    [168] 李国强,李荻,李久青等.铝合金阳极氧化膜上阴极电解沉积的稀土铈转化膜.中国腐蚀与防护学报,2001,21(3):150-157.
    [169] Shyu J Z, Otto K, Watkins W L H et al. Characterization of Pd / γ-alumina catalysts containing ceria. Journal of Catalysis, 1988,14: 22-33.
    [170] Vrublevsky I, Parkoun V, Sokol V et al. The study of the volume expansion of aluminum during porous oxide formation at galvanostatic regime . Applied Surface Science, 2004, 222: 215-225.
    [171] 刘海平,朱祖芳.铝阳极氧化膜交流电解着色机理研究.电镀与精饰,1991,13(6):3-7
    [172] Davenport A J, Isaacs H S, Kendig M W. XANES investigation of the role of cerium compounds as corrosion inhibitors for aluminium. Corrosion science, 1991, 32(5/6), 653-663.
    [173] Skominas V, Lichusina S, Miecinska P et al. A valtammetric and chronopotentiometric study of anodized aluminium in metal salt solution[J]. Transactions of the institute of metal finishing, 2001,79(6): 213-218.
    [174] 大连理工大学无机化学教研室编.无机化学,北京:高等教育出版社,2001.
    [175] Tsangaraki-Kaplanoglou, Theohari S, Dimogerontakis Th et al. Effect of alloy types on the electrolytic coloring process of aluminum. Surface and coating technology, 2006,200: 3969-3979.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700