用户名: 密码: 验证码:
斯卑尔脱小麦种质资源遗传评价及育种利用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
斯卑尔脱小麦(Triticum spelta L.,AABBDD)是小麦属中的六倍体带皮栽培种之一,是改良普通小麦(Triticum aestivum L.,AABBDD)产量、品质、抗病性和抗逆性的重要基因资源,对其种质资源进行遗传评价有助于普通小麦育种利用。本文的主要结果如下:
     1.对151份斯卑尔脱小麦主要农艺性状进行考察与分析的结果表明,供试材料具有植株高大、分蘖力强、小穗数多和千粒重偏低等特点,但也可从中筛选到植株偏矮、干粒重较高的材料供育种利用。多分蘖及多小穗是斯卑尔脱小麦最具利用价值的农艺性状。相关分析表明,千粒重与穗长、小穗数和穗粒重等多个性状存在复杂的相关关系。基于农艺性状表现供试材料可聚为四类,聚类结果与其地理来源并不完全一致。对农艺性状的综合分析后筛选出5份优异材料,可供育种利用。
     2.测定了142份斯卑尔脱小麦12个品质指标,并根据国家现行强筋小麦品种品质标准和专用小麦品种品质标准对所测品质指标进行了分析和评价。结果表明:供试材料中113份为软质,25份为中软质,4份为硬质。除2份材料外,其余140份材料均为角质。平均蛋白质含量高于16%,变幅为12.04%-21.67%;104份材料的湿面筋含量>28%,达到中筋小麦要求;沉降值大于50ml的材料占总数的56.82%。粉质参数测试表明供试材料面团吸水率高于70%的材料有73份,形成时间大于7.5min的材料有3份;供试材料的淀粉含量低、延展性弱、面包体积偏小。从供试材料中筛选到高蛋白(大于20%)资源材料3份,高沉降值(大于75ml)材料10份,可利用这些优异种质资源改良普通小麦品质。
     3.对162份斯卑尔脱小麦贮藏蛋白的遗传多样性进行了评价。结果表明,利用A-PAGE技术共检测出121种醇溶蛋白带型,未发现共有条带,说明斯卑尔脱小麦具有丰富的醇溶蛋白等位变异,且ω/γ-区的变异较α/β-区丰富。利用SDS-PAGE技术,共分离出9种高分子量麦谷蛋白亚基,组成8种亚基组合。其中1、6+8、2+12亚基组合为优势亚基组合,占供试材料的83.00%,高分子量谷蛋白亚基具有物种特异性。在供试材料中,筛选到含有与烘烤品质正相关的7+8、5+10等亚基的材料供育种利用。
     4.根据已知的普通小麦α-醇溶蛋白基因序列设计引物,采用PCR方法首次从斯卑尔脱小麦材料NGB5149中克隆得到两个α-醇溶蛋白基因序列Gli-Spelt-1和Gli-Spelt-2(GenBank登录号分别为DQ234066和DQ234067)。它们具有α-醇溶蛋白基因的典型结构特征,但Gli-Spelt-1是一个假基因。Gli-Spelt-2编码区全长849bp,编码263个氨基酸。氨基酸序列比对显示,Gli-Spelt-1和Gli-Spelt-2与已报道的其他小麦族物种中的α-醇溶蛋白序列有较高的一致性,并与小麦氨基酸组分的含量变化趋势一致。斯卑尔脱小麦推测氨基酸序列包含有对腹泻病人的毒性序列,第一次从分子水平证实了对小麦谷蛋白易感人群仍要谨慎食用斯卑尔脱小麦面粉制品。
     5.根据已经发布的ARF基因序列设计了一对ARF引物,在斯卑尔脱小麦中能扩增到约1200bp的DNA片断。通过测序首次发现该基因存在内含子,且内含子可能存在独特的剪接方式。氨基酸序列分析表明,斯卑尔脱小麦的ARF同其它物种一样也具有保守的GTP结合区域,即P(GLDAAGKT)、G(NKQD)以及G'(DVGGQ)。利用生物信息学技术对ARF基因进行多序列比对分析后发现该基因在DNA序列上存在大量潜在的SNP位点。本研究根据SNP位点开发了染色体组特异性标记,并利用中国春缺体-四体,第一次将来源于A染色体组和D染色体组的SNP特异性标记定位在2AL和3DL上。首次利用半定量RT-PCR技术对ARF基因在斯卑尔脱小麦中的定向表达进行了分析,发现该基因在根和幼胚中的表达量较茎和旗叶高。
     6.利用普通小麦品种川农16与6个斯卑尔脱小麦材料进行杂交。杂种F_1能够正常结实,各考察性状均介于双亲之间。对6个杂种的F_2-F_4代品质性状的测试结果表明,各组合的品质性状较母本川农16均有较大改善,其中组合CN16/P1355625表现最为优异。对组合CN16/NGB4798F_2代的谷蛋白和醇溶蛋白的检测发现,F_2代谷蛋白亚基组成倾向于川农16的亚基组成,亚基组合1、20、5+10在F_2代所占频率最高,且醇溶蛋白谱带表现双亲的共同特征。
Currently, there is considerable interest in the use of spelt (Triticum spelta. L.) for food destined for health and organic food markets. Spelt is an ancient cereal that was once cultivated extensively and is now receiving a renewal interest for its nutritional qualities and, from an agronomic point of view, for its resistance to pests and its ability to grow in soils with limited fertility and in wet and cold climates where it is better than weat. T. spelta, with many useful genes for wheat improvement, is the primary gene pool of bread wheat and easy to be utilized in wheat improvement. Thus, it is important to evaluate the germplasm of spelt wheat. In this paper, the population genetic diversity was estimated based on agronomic traits, quality characters, biochemical and molecular markers. The following results were obtained.
     1. The agronomic traits of 151 spelt wheat accessions collected from 18 countries and areas, were investigated based on the correlation, principal component and cluster analysis. Higher variations of the agronomic traits were observed. The spelt wheat investigated in this study had the beneficial traits of more tillers and spikelet per spike, and disadvantage of higher plant height, lower 1000-grains weight and longer growing periods. The correlation analysis indicated that the spike number per plant limited the production of spelt wheat. By clustering analysis, all accessions were divided into four groups, and the genetic distances based on agronomic traits were associated with their geographic distribution. Based on principle elements analysis, five principle elements were obtained, which contributes the variance over 85%. According to these main characters, tweenty-two accessions with one or some elite agronomic performances were screen out.
     2. The analysis of quality characters showed that most of spelt kernels were soft and dextrous. Comprared with common wheat, spelt wheat had higher protein content, wet gluten, gluten index and sedimentation values. As rheologic traits were concerned, spelt wheat had higher water absorption and longer development time, whereas spelt wheat showed shorter stable time. Spelt wheat had lower starch content, weaker extension and lower loaf volume. According to these quality characters, all the materials were divided into four groups by clustering analysis. Six accessions with elite agronomic and quality characters were selected for the utilization in wheat improvment.
     3. Gliadin and HMW glutenin subunit variations in 162 spelt wheat accessions were detected by A-PAGE and SDS-PAGE. Higher gliadin variation was observed, and 121 gliadin patterns were detected. A total of 9 HMW-GS alleles were found. There were 2, 5 and 2 alleles at Glu-A1, Glu-B1 and Glu-D1 loci, respectively, resulting in 8 HMW-GS combinations. The HMW-GS combination (1, 6+8, 2+12) was the dominant phenotype, which was found in 83.00% accessions. These results suggested that the polymorphism of spelt wheat on Gli-1 loci was higher than that on Glu-1 loci.
     4. To get more information onα-gliadin genes of spelt wheat, specific PCR primers were designed based on the known wheatα-gliadin gene sequences, and the coding regions of two gliadin genes Gli-Spelt-1 and Gli-Spelt-2 were isolated from spelt wheat NGB5149. Gli-Spelt-1 was a pseudogene due to the stop codons in its coding region. The full coding region of Spelt-Gli-2 was 849bp, and could be translated into a protein of 263 amino acids. The two cloned gliadin genes had the typical structure ofα-gliadin genes. The deduced amino acid sequences comparison suggested that Spelt-Gli-2 had the high identity with the knownα-gliadin genes.
     5. ADP-ribosylation factors (ARFs), a subfamily of the small GTP binding proteins superfamily, are believed to participate in vesicular transport and signal transduction events in the cell. The DNA sequences included four exons and three introns. Its deduced amino acid sequence had consensus with GTP-binding domain P (GLDAAGKT), G'(DVGGQ) and G (NKQD). Moreover, in two ends of introns of ARF gene from diploid species, common wheat and spelt wheat, there were new base sequences which did not comply with typical GU-AG rule. We speculated that these new base sequences might have relation to a new splice process. To assign the chromosomal locations of ARF genes in common wheat, 20 specific primer sets were designed on the specific SNPs, and PCR assay of the genomic DNAs of Chinese Spring ditelosomic lines were carried out. The ARF genes were located on the chromosomes 2AL and 3DL. ARF transcripts were detected mainly in root and immature embryo.
     6. High heterosis was obtained in the hybrids between common wheat and spelt wheat. The yield per plant, grains weight per spike and 1000 grain weight had higher heterosis. The heading dates of interspecific hybrids were 0 to 6 days later than female parents (common wheat) and 20 days earlier than male parents (spelt wheat). The analysis the quality characters showed that the the performance of quality characters in interspecific hybrids were superior to the female parents (common wheat), indicating that interspecific hybrids are very useful and efficient for the improvement of bread wheat by exploiting desirable genes in spelt wheat.
引文
1.董玉琛,郑殿升.中国小麦遗传资源.北京,中国农业出版社,2000
    2.Winzeler H,Schmid H.J.E,Winzeler M.Analysis of the yield potential and yield component of F1 and F2 hybrids of crosses between wheat(Triticum asetivum L.)and spelt(Triticum spelta L.).Euphytica.1994,74:211-218
    3.Dorofeev V.E,Navruzbekov N.A.,Doklady Vsesoyuznoi Ordena Lenina i Ordena Trudovogo Krasnogo Znameni,Akademii Sel' skokhozyaistvennykh Nauk Imeni V.I.Lenina.,1982,(2):3-6
    4.Mac Key J.Proc.2nd Intl.Wheat Genet.Symp.,Lund,Sweden,Hereditas(Suppl.),1966,2:237-276
    5.Kerber E.R.,Rowland G.Origin of the free threshing character in hexaploid wheat.Canadian Journal of Genetics and Cytology.1972,14(3):730-731
    6.陈庆富.中国特有小麦起源探讨.贵州农业科学,1999,27(1):20-25
    7.Kuckuck H,Schiemann E(1957)ber das Vorkommen von Spelz und Emmer(Triticum spelta L.und T.dicoccum Sch_bl.)im Iran.Zeit Pflanzenz_chtg 38:383-396
    8.Zohary D,Hopf M(2000)Domestication of plants in the old world,3rd edn.Oxford University Press,Oxford,UK
    9.Buren M von.Luthy J.and Hubner P.A spelt-specific γ-gliadin gene:discovery and detection.Theor Appl Genet.2000,100:271-279
    10.Y.Yan.,S.L.K.Hsam.,J.Z.Yu.,Y.Jiang.,I.Ohtsuka and F.J.Zeller.HMW and LMW glutenin alleles among putative tetraploid and hexaploid European spelt wheat (Triticum spelta L.)progenitors.Theor Appl Genet(2003)107:1321-1330
    11.Blatter R.H.E.,Jacomet S.and Schlumbaum A.About the origin of European spelt (Triticum spelt L.):allelic differentiation the HMW Glutenin B-and A1-2 subunits gene.Theor Appl Genet,2004,108:360-367
    12.Dvorak J,Luo M-C,Yang Z-L,Zhang H-B The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat.Theor Appl Genet 1998,97:657-670
    13.McFadden ES,Sears ER(1946)The origin of Triticum spelta and its free-thresing hexaploid relatives.Hered 37:81-89
    14.Bertsch K(1950)Vom Ursprung der hexalploiden Weizen.Zuchter 20:24-27
    15.Chen Q F.Yen C.Yang J L.Chromosomal Location of the genes for brittle rachis in the Tibetan weedrace of common wheat.Genetic Resource and Crop evolution.1998,45:407-410
    16.Winzeler,H.and Rugger,A.Dinkel:Rennaissance einer alten Getreideart.Landwirtschafi Schweiz 3(1990)503-511
    17.Radic H,Saam C,Huls R,et al.Characterization of Spelt(Triticum spelta L.)forms by gel-electrophoretic analyses of seed storage proteins:Ⅲ Comparative analyses of Spelt and Central European winter wheat(Triticum aestivum L.)cultivars by SDS-PAGE and acid-PAGE.Theor Appl Genet,1998,98:1340-1346
    18.Radic H,Gunther T,Kling C.I,et al.Characterization of Spelt(Triticum spelta L.)forms by gel-electrophoretic analyses of seed storage proteins:Ⅱ The glutenins.Theor Appl Genet,1997,96:46-51
    19.倪中福,张义荣,梁荣奇等.普通小麦、斯卑尔脱小麦和密穗小麦中y型高子量谷蛋白亚基基因的多态性.中国农业科学,2002,35(10):1171-1176
    20.倪中福,孙其信,张义荣等.斯卑尔脱小麦高分子量谷蛋白亚基组成分析.农业生物技术学报,2002,10(2):108-112
    21.Forssell F,Wieser H.Spelt wheat and celiac disease.Z Lebensm Unters Forsch.1995Jul;201(1):35-9
    22.崔国惠,倪中福,吴利民等.小麦杂种优势群研究Ⅴ.微卫星分子标记遗传距离与普通小麦和斯卑尔脱小麦种间杂种优势的关系.麦类作物学报,2002,22(1):5-9
    23.倪中福,孙其信,刘志勇等.小麦杂种优势群研究:Ⅱ普通小麦,西藏半野生小麦和斯卑尔脱小麦RAPD分子标记遗传差异研究.农业生物技术学报,1997,5(2):103-111
    24.Waga J.,Wegrzyn S.,Boros D.,Cygankiewicz A.Utilization of spelt wheat(Triticum aestivum ssp.spelta)for improving the nutritional qualities of common wheat (Triticum aestivum ssp.vulgare).Biuletyn-Instytutu-Hodowli-i-Akli matyzacji-Roslin.2002,No.221,3-16;
    25.Terler E.Diet in gluten enteropathy:possibilities and pitfalls.Aktuelle- Ernahrungsmedizin.2002,27:4,242-244;
    26.Lahdeaho,M.L.,Vainio,E.,Lehtinen,M.,Parllonen,P.,Partanen,J.,Koskimies,S.,and Maki,M.1995.Activition of celiac disease immune system by specific α-gliadin peptides.Cereal Chem 72:475-479
    27.杜金昆,姚颖垠,倪中福等.普通小麦、斯卑尔脱小麦、密穗小麦和轮回选择后代材料ISSR分子标记遗传差异研究.遗传学报,2002,29(5):445-452
    28.Siedier H.,Messmer M.M.,Schachermayr G.M.,Winzeler H.,Winzeler M.and Keller B.Genetic diversity in European wheat and spelt breeding material based on RFLP data.Theor Appl Genet,1994,88:994-1003
    29.Bertin et al.Genetic diverdsity among European cultivated spelt revealed by microsatellites.Theor Appl Genet 2001,102:148-156
    30.Brown TA How ancient DNA may help in understanding the origin and spread of agriculture.Phil Trans R Soc Lond B 1999,354:89-98
    31.G.F.Stallknecht,K.M.Gilbertson,and J.E.Ranney Alternative Wheat Cereals as Food Grains:Einkorn,Emmer,Spelt,Kamut,and Triticale.1996
    32.Riesen,Th.,H.Winzeler,A.Ruegger,and P.M.Fried.The effect of glumes on fungal infection of germinating seed of spelt(Triticum spelta L.)in comparison to wheat (Triticum aestivum L.)J.Phytopath.1986,115:318-324
    33.Gandee C.M.,Davies W.P.,Gooding M.J.,Gooding M.J(ed.)and Shewry P.R.Interactions between nitrogen and growth regulator on bread wheat(Triticum aestivum)and spelt(T.spelta).Optimising cereal inputs:its scientific basis.Part 1:Genetics and nutrition,Cirencester,UK,15-17 December 1997.Aspects of Applied Biology.1997,50:219-224
    34.Piergiovarmi A.R.,Rizzi R.,Pannacciulli E.,Gatta C della.,Della Gatta C.Mineral composition in hulled wheat grains:a comparison between emmer(Triticum dicoccon Schrank)and spelt(T.spelta L.)ccessions.International Journal of Food Sciences and Nutrition.1997,48:6,381-386
    35.Piergiovanni,AR.,Rizzi R.,Pannacciulli E.and Della Gatta.Mineral composition in hulled wheat grains:a comparison between emmer(Triticum dicoccon Schrank)and spelt(T.spelta L.)accessions.International Journal of Food Sciences and Nutrition.1997 48:381-386
    36.Tilman J Schober;Charmaine Ⅰ Clarke;Manfred Kuhn Characterization of functional properties of gluten proteins in spelt cultivars using rheological and quality factor measurements Cereal Chemistry,2002,79,3:408-417
    37.Stallknecht,G.F.and K.M.Gilbertson.Spelt is alternate cereal food crop.Montana Farmer.1995,83(2):12-13.
    38.Autienchio S.De Ritis G.,De Vincenzi M.,Occorsio P and Silano V.1982.Effects of gliadin-derived peptides from bread and drum wheats on small intestine cultures from rat fetus and coeliac children.Pediatr.Res 16:1004-1068
    39.Ranhotra G.S,Gelroth J.A,Glaser B.K and Stallknecht G.F.Nutritional profile of three spelt wheat cultivars grown at five different location.Cereal Chem 1996 73(5):33-535
    40.Nike L.Ruibal-Mendieta,Dominique L.Delacroix and Marc Meurens.A comparative analysis of free,bound and total lipid content on spelt and winter wheat wholemeal.Journal of Cereal Science..2002,35:337-342
    41.Sun Q,Wei Y,Ni Z,Xie C,Yang T.Microsatelliten marker for yellow rust resistance gene Yr5 in wheat introgressed from spelt wheat.Plant Breeding,2002,121(6):539-541
    42.魏艳玲,倪中福,解超杰等.来自斯卑尔脱小麦新的抗条锈病基因YrSp的分子标记定位.农业生物技术学报,2003,1 1(4):30-33
    43.张正斌.小麦遗传资源.中国农业出版社
    44.Hsam SLK,Huang XQ,Ernet F et al.Chromosomal location of gene resistance to powdery mildew in common wheat(Triticum aestivum L..em Thell).5.Alleles at the Pml locus Theor Appl Genet,1998,96:1129-1134
    45.Zeller FJ,Felsenstein FG,Lutz J,et al.Untersuchungen zur Resistanz des Dinkel-Weizens[Triticum aestivum(L).Thell.ssp.spelta(L).].gegenuber Mehltau (Erysiphe graminis f.sp.tritici).Die bodenkutur,1994,45:147-154
    46.解超杰,孙其信,杨作民.部分小麦近缘物种材料的白粉病抗性鉴定.植物遗传资源科学,2002,3(1):36-40
    47.崔国惠.普通小麦与斯卑尔脱小麦种间杂种优势研究.中国农业大学硕士论文,1999
    48.郭东林,王同昌,王宁等.斯卑尔脱小麦1B染色体的显微分离及其DNA的PCR 扩增.植物研究.2002,22(4):487-491
    49.Dvorak J,Luo M-C,Yang Z-L,Zhang H-B The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat.Theor Appl Genet 1998,97:657-670
    50.孙其信,倪中福,刘志勇,等.普通小麦与斯卑尔脱种间杂种优势的初步研究.中国农业大学学报,1998,3(1):10
    51.崔国惠,倪中福,刘志勇等小麦杂种优势群研究:Ⅲ普通小麦和斯卑尔脱小麦微卫星分子标记遗传差异的研究.农业生物技术学报,1999,7(4):333-338
    52.孙其信,黄铁城,倪中福.小麦杂种优势群研究:Ⅰ利用RAPD标记研究小麦品种间遗传差异.农业生物技术学报,1996,4(2):103-110
    53.杜金昆,姚颖垠,倪中福等.普通小麦、斯卑尔脱小麦、密穗小麦和轮回选择后代材料ISSR分子标记遗传差异研究.遗传学报,2002,29(5:445-452
    54.Siedier H.,Messmer M.M.,Schachermayr G.M.,Winzeler H.,Winzeler M.and Keller B.Genetic diversity in European wheat and spelt breeding material based on RFLP data.Theor Appl Genet,1994,88:994-1003
    55.Schmid J.E,Winzeler H.Genetic study of crosses between common wheat and spelt.Genetics and Breeding,1990,44(2):75-80
    56.Schmid J E.,Winzeler H.,Rimle R,et al.Studies on the progeny from wheat×spelt crosses.Bericht uber die Arbeitstagung,1992:35-43
    57.Bertin et al.Genetic diverdsity among European cultivated spelt revealed by microsatellites.Theor Appl Genet 2001,102:148-156
    58.崔国惠,倪中福,吴利民等.小麦杂种优势群研究:Ⅳ.普通小麦与斯卑尔脱小麦的种间杂种优势.麦类作物学报.2001,21(4):10-14
    59.王含彦.硬粒小麦种质资源遗传评价及育种利用研究.四川农业大学博士论文,2007
    60.李伟.圆锥小麦地方品种遗传多样性研究.四川农业大学博士论文,2006
    61.熊丽娟,李伟,郑有良.马卡小麦主要农艺性状分析.中国农学通报,2006,22(11);118-122
    62.张小英,李伟,庄萍萍等.密穗小麦(Triticum compactum)农艺性状分析.四川农业大学学报,2005,23(4):398-401
    63.陈华萍.四川小麦地方品种主要性状分析及其醇溶蛋白基因的分子克隆.四川农业大学博士论文,2006
    64.黄世全,徐如宏,张庆勤.远缘杂交后代材料的高分子量麦谷蛋白亚基组成分析.麦类作物学报.2003,23(2):23-26
    65.吴春太,徐如宏,张庆勤,聂琼.小麦远缘杂交后代的高分子量谷蛋白亚基分析.山地农业生物学报.2003,22(6):477-480
    66.Rasmusson.D.C.,R.L.Phillips.Plant breeding progress and genetic diversity from denovo variation and elevated epistasis.Crop Sci.1997,(37):330-336
    67.Jiang J,Friebe B,Gill BS.Recent advance in alien gene transfer in wheat.Euphytica,1994,73:199-212
    68.刘三才,曹永生,郑殿升等.普通小麦核心种质抽样方法的比较.麦类作物学报2001,21(2)42-45
    69.沈裕琥,王海庆,杨天育等.甘、青两省春小麦遗传多样性演变.西北植物学报2002,22(4):731-740
    70.唐启义,冯明光.实用统计分析及其DPS数据处理系统.北京,科学出版社,2002
    71.王浩,刘志勇,马艳丽等.小麦品种资源农艺和品质性状遗传多样性研究进展.新疆农业科学,2005,42(增):1-4
    72 Manjarrez-Sandoval.E,T.E.Carter,D.M.Webb&J.W.Burton.RFLP genetic similarity estimates and coefficient of parentage as genetic variance predictors for soybean yield.Crop Sci.,1997,(37):698-703
    73.Spelt.Agriculture & Natural Resources
    74.D' Antuono,L.F.,and Bravi.R.The hulled wheats industry:Present developments and impacts on genetic resources conservation.Pages 211-213 in:Hulles Wheats.Proc 1~(st)Int.Workshop hulled Wheats.S.Padutosi,K.Hammer,and J.Heller.Eds.IPGRI:Rome
    75.Ruegger,A.,H.Winzeler,and J.Nosberger.Dry matter production of ~(14)C-assimilates of spelt(Triticum spelta L.)and wheat(Triticum aestivum L.)as influenced by different temperatures before and during grain filling.J.Agron.Crop Sci.1990, 165:110-120
    76.G.S.Ranhotra,J.A.Gelroth,B.K.Glaser and K.J.Lorenz.Nutrient Composition of Spelt Wheat.Journal of Food Composition and Analysis.1996,9(1):81-84
    77.王晓通,朱攀高,霍金龙,等.7种梅花鹿产品中水解氨基酸含量的聚类分析.中国畜牧杂志.2004,40:51-52
    78.杨贤,郑有良.印度圆粒小麦农艺性状及贮藏蛋白分析.西南农业学报.2007,20(3):349-355
    79.董攀,李伟,郑有良.波兰小麦主要农艺性状分析.麦类作物学报,2007,27(2):216-222
    80.Austin,R.B.,J.Bingham,R.D.Blackwell,L.T.Evans,M.A.Ford,C.L.Morgan,and M.Taylor.Genetic improvement in winter wheat yield since 1900 and associated physiological changes.Agric.Sci.,1980,94:675-689.
    81.Ortiz-Monasterio,J.I.,R.J.Pena,K.D.Sayre,and S.Rajaram.Cimmyt' s genetic progress in wheat grain quality under four nitrogen rates.Crop Sci.,1997,37:892-898
    82.He,Z.H.,Z.J.Lin,L.J.Wang,Z.M.Xiao,F.S.Wan & Q.S.Zhuang.Classification on Chinese wheat regions based on quality.Scientia Agriculture Sinica,2002,35:359-364
    83.Liu,Z.Q.,S.D.Rao,Z.J.Pu,D.M.Yu,and W.Y.Yang.Genetic improvements of wheat varieties in Sichuan since 1950:Prospects of wheat genetics and breeding for the 21st century-Paper collection of international wheat genetics and breeding symposium.China Agricultural Scientech Press,Beijin,China,2001:491-495
    84.余遥.四川小麦.成都:四川科学技术出版社,1998
    85.徐兆飞,张惠叶,张定一.小麦品质及其改良.北京:气象出版社,2000
    86.张子仪,陈学秀.近红外光谱分析技术.北京,中国农业出版社,1992
    87.Ciurczak EW.Use of near infrared spectroscopy in cereal products.Food Testing and Analysis.1995,5:35-39
    88.李庆青,王文真,张玉良.近红外漫反射光谱分析法(NIRDRSA)在作物品质育种中的应用.作物学报,1992,18(3):235-240
    89.Li X F,Mao X X,Liu Y Z,et al.Study on genetic rule of rice quality characters and new breeding technology.J.South China Agric Univ,2002,23:41-45
    90.陈锋,何中虎,崔党群等.利用近红外光谱技术测定小麦品质性状的研究.麦类作物学报,2003,23(3):1-4
    91.胡新中,魏益民,张国权等.陕西关中小麦品种籽粒硬度及测定方法研究.麦类作物学报:麦类作物学报,2001,21(4):22-25
    92.E-S.M.Abdel-Aal,P.Hucl,F.W.Sosulski and P.R.Bhirud.Kernel,Milling and Baking Properties of Spring-Type Spelt and Einkom Wheats.Cereal Science,1997,26(3):363-370
    93.李硕碧,高翔等小麦高分子量谷蛋白亚基与加工品质.中国农业出版社,2001
    94.周淼平,吴宏亚,余桂红,等.软质小麦品质的辅助选择.麦类作物学报,2007,27(3):445-450
    95.石培春,张薇,曹连莆,等.小麦籽粒蛋白质组分的研究进展.种子,2005,24(10):38-41
    96.咎香存,周桂英,吴丽娜等.我国小麦品质现状分析.麦类作物学报,2006,26(6):46-49.
    97.胡琳,盖钧镒,许为钢等.小麦品质特性的分类及相对重要性分析.麦类作物学报,2006,26(5):60-64
    98.王辉,马志强,曹莉,等.我国冬小麦品质现状与问题.西北农林科技大学学报(自然科学版),2003,31(4):34-40
    99.邢国风,唐永金.小麦籽粒性状与产量和品质的数量化关系.麦类作物学报,2007,27(3):488-492
    100.G.S.Ranhotra,J.A.Gelroth,B.K.Glaser and K.J.Lorenz.Baking and nutritional qualities of a spelt wheat sample.LWT-Food Science and Technology.1995,28(1):118-122
    101.G.Bonafaccia,V.Galli,R.Francisci,V.Mair,V.Skrabanja and I.Kreft Characteristics of spelt wheat products and nutritional value of spelt wheat-based bread Food Chemistry,2000,68(4):437-441
    102 G.S.Ranhotra,J.A.Gelroth,B.K.Glaser and K.J.Lorenz.Nutrient Composition of Spelt Wheat.Journal of Food Composition and Analysis.1996,9(1):81-84
    103.G.S.Ranhotra,J.A.Gelroth,B.K.Glaser and K.J.Lorenz.Baking and nutritional qualities of a spelt wheat sample.LWT-Food Science and Technology.1995,28(1):118-122
    104.Payne PI Worland AJ Worland AJ Structural and genetical studies of the high molecular weight subunits of wheat glutenin:Ⅰ.Allelic variation in subunits amongst varieties of wheat.Theor Applied Genetics,1981,60:P 229-241
    105.Huebner F R,Donaldson G L,Wall J S.Wheat Glutenin Subunits Ⅱ.Compositional Differences.Cereal Chem,1974,51:240-249
    106.Khan K,Bushuk W.Studies of Glutenin ⅹⅢ.Gel filtration,isoelectric focusing,and amino acid composition Studies.Cereal Chem,1979,56:505-512
    107.Payne P I.Genetics of wheat storage protein and the effect of allelic variation in bread making quality.Annu Rev Plant Physiol,1987,38:141-153
    108.Payne P I.The genetics basis of bread-making quality in wheat.Aspects Appl Biol,1987,15:79-90
    109.Lawrence G J,Shepherd K W.Chromosomal location of genes controlling seed proteins in species related to wheat.Theor Appl Genet,1981,59:25-31
    111.Weegels P L,Hamer R J,Schofield J D.Functional properties of wheat glutenin.Cereal Sci,1996,23:1-18
    112.Payne PI,Holt LM,Jackson EA,et al.Wheat storage proteins:their genetics and potential for manipulation by plant breading.Philos Trans.R.Soclond Ser B.,1984,304:359-371
    113.Bushuk W.Wheat cultivar identification by gliadin electrophoregrams.Can J Plant Sci,1978,58:505-515
    114.颜启传,黄亚军,徐媛.试用ISTA推荐的种子醇溶蛋白电泳方法鉴定大麦和小麦品种.作物学报,1992,18:61-68
    115.刘华,王宇生,张辉等.小麦种质资源醇溶蛋白指纹图谱数据库的初步建立及应用.作物学报,1999,25:674-682
    116.郎明林,卢少源,张荣之.中国北方冬麦区主栽品种醇溶蛋白组成的遗传演变分析.作物学报,200l,27.958-966
    117.马传喜,吴兆苏.小麦胚乳蛋白质组分及高分子量麦谷蛋白亚基与烘烤品质的关系.作物学报,1993,19:562-566
    118.赵和,卢少源.小麦高分子量麦谷蛋白亚基遗传变异及其与品质和其他农艺性状关系的研究.作物学报,1994,20:67-75
    119.王春梅,付体华,任正隆.四川小麦品种及贮藏蛋白位点及SSR分析.农业生物技术学报,2003,11:598-604
    120.Draper S R.ISTA variety committee report of the working group for biochemical tests for cultivar identification 1983-1986.Seed Sci Technol,1987,15:431-434
    121.Ng PKW,Bushuk B.Glutenin of Marquis wheat as a reference for estimating molecular weights of glutenin subunits by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.Cereal Chem,1987,64:325-327
    122.Mackie MA,Lagudahf ES,Sharp PJ et al.Molecular and biochemical characterization of HMW glutenin subunits from T.tauschii and the D genome of hexaploid wheat.Cereal Sci,1996,9:113-130
    123.颜泽洪.粗山羊草高分子量麦谷蛋白新型亚基的筛选和克隆.四川农业大学学报,2001,19:197-199
    124.Payne PI,Lawrence GJ.Catalogue of alleles for the complex gene loci,Glu-Al,Glu-Bl and Glu-Dlwhich code for high molecular weight subunits of glutenin in hexploid wheat.Cereal Res Commun,1983,11:29-35
    125.侯永翠,郑有良,魏育明.青藏高原近缘野生大麦醇溶蛋白遗传多样性分析.西南农业学报,2004,17:545-551
    126.张学勇,杨欣明,董玉琛.醇溶蛋白电泳在小麦种质资源遗传分析中的应用.中国农业科学,1995,28:25-32
    127.Abdel-Aal,E.S.M.,Hule,P.,Sosulski,F.W.and Bhirud,P.R.1997:Kernel,milling and baking properties of spring-type spelt and einkorn wheats.Journal of.Cereal Science 26:363-370.
    128..Abdel-Aal,E.S.M.,Salama,D.A.,Hule,P.,Sosulski,F.W.and Cao,W.1996:Electrophoretic characterization of spring spelt wheat gliadins.Journal of Agriculatural Food Chemestry 44:2117-2123.
    129.Harsch S.,Gu"nther T.,Kling Ch.I.,Rozynek B.and Hesemann.C.U.Characterization of spelt(Triticum spelta L.)forms by gel electrophoretic analysed of seed storage proteins,gliadins.Theor.Appl.Genet.1997,94:52-60.
    130.Romanova Yu.A.,Gubareva N.K.,Konarev A.V.,Mitrofanova O.P.,Lyapunova O.A.,Anfilova N.A.et al.Analysis of gliadin polymorphism in a Triticum spelta L.collection.Rus.J.Genet.2001,37:1054-1060.
    131.L.Caballero,L.M.Mart'in and J.B.Alvarez.Variation and genetic diversity for gliadins in Spanish spelt wheat accessions.Genetic Resources and Crop Evolution 2004,51:679-686
    132.Ni Zhongfu,Sun Qixin,ZhangYirong,Liu Guangtian.High molecular weight glutenin subunits composition of spelt wheat.Journal of Agriculture Biotechnology 2002,10(2):108-112.
    133.Caballero,L.,Martin,L.M.and Alvarez,J.B.Allelic variation of the HMW glutenin subunits in Spanish accessions of spelt wheat(Triticum aestivum ssp.spelta L.em.Thell).Theoretical and Applied Genetics.2001,103:124-128
    134.Caballero,L.,Martin,L.M and Alvarez,J.B:Intra-and interpopulation diversity for HMW glutenin subunits in Spanish spelt wheat.Genetic Resources and Crop Evolution.2004,51:175-181
    135.Rodriguez-Quijano,M.,Vazquez,J.F.and Carrillo,J.M.Variation of high molecular weight glutenin subunits in Spanish landraces of Triticum aestivum ssp.vuglare and ssp.spelta.Journal of Genetics Breeding 1990,44:121-126
    136.Khatkar B S,Fido R J,Tatham A S,Schofield J D.Functional properties of wheat gliadins.Ⅰ.effects on mixing characteristics and bread making quality.Journal of Cereal Science,2002,35:299-306.
    137.Khatkar B S,Fido R J,Tatham A S,Schofield J D.Functional properties of wheat gliadins.Ⅱ.effects on dynamic rheological properties of wheat gluten.Journal of Cereal Science 2002,35:307-313.
    138.晏月明,茹岩岩,余建中等.中国小麦品种醇溶蛋白Gli-1和Gli-2编码位点等位基因组成分析.农业生物技术学报,2000,6(1):23-27.
    139.Payne P I.Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality.Annu Rev plant physiol,1987,38:141-153
    140.Shewry P R,Tatham A S.Disulphide bonds in wheat gluten proteins.Journal of Cereal Science 1997,25:207-227
    141.Yan Z H,Wan Y F,Liu K F,Zheng Y L,Wang D W.Identification of a novel HMW gultenin subunit and comparison of its amino acid sequence with those of homologous subunits. Chinese Science Bulletin, 2002,47(3): 220-225
    
    142. Kasarda D D, Okita T W, Bernardin J E, Baecker P A, Nimmo C C, Lew E J L, Dietler M D, Greene F C. Nucleic acid (cDNA) and amino acid sequences of α-type gliadins from wheat. Proc. Natl. Acad. Sci. Biochemistry 1984, 81:4712-4716
    
    143. Anderson O D, Litts J C, Gautier M F, Greene F C. Nucleic acid and chromosome assignment of a wheat storage protein gene. Nucleic Acids Research, 1984, 12(21): 8129-8144
    
    144. Muller S, Wieser H. The location of disulphide bonds in a-type gliadins. Journal of Cereal Science, 1995,22: 21-27
    
    145. Anderson O D, Litts J C, Greene F C. The α-gliadin gene family. I. Characterization of ten new wheat a-gliadin genomic clones, evidence for limited sequence conservation of flanking DNA, and Southern analysis of the gene family. Theoretical and Applied Genetics, 1997,95: 50-58
    
    146.Iwaniak A, Dziuba J. Computer analysis of selected plant proteins as the potential precursors of coeliac toxic peptides. EMBO/HHMI Meeting, Budapest, 2005
    
    147. Wieser H. Comparative investigations of gluten proteins from different wheat species. Ⅲ. N-terminal amino acid sequences of α-gliadins potentially toxic for coeliac patients. European Food Research Technology, 2001,213: 183-186
    
    148. Kasarda D D, Renato D'ovidio. Deduced amino acid sequence of an a- gliadin gene from spelt wheat (spelta) includes sequences active in celiac disease. Journal of Cereal Chemistry, 1999, 76(4): 548-551
    
    149. Gu Y Q, Crossman C, Kong X Y, Luo M C, You F M, Coleman-Derr D, Dubcovsky J, Anderson Olin D. Genomic organization of the complex a-gliadins gene loci in wheat. Theoretical and Applied Genetics, 2004,109: 648-657.
    
    150. Thomas W. Okita S, Valerie Cheesbrough, and Christopher D. Reeves. Evolution and Heterogeneity of the a-β-type and γ-type Gliadin DNA Sequences. The Journal of Biological Chemistry, 1985,260 (13) : 8203- 8213.
    
    151. Anderson O D, Litts J C, Greene F C. The a-gliadin gene family. Ⅱ. DNA and protein sequence variation, subfamily structure, and origins of pseudogenes. Theoretical and Applied Genetics, 1997,95: 59-65.
    152. Abdel E S M, Salama D A, Hucl P, Sosulski, Cao W. Electrophoretic characterization of spring spelt wheat gliadins. Journal of Agricultural and Food Chemistry, 1996,44 (8) : 2117-2123.
    
    153. Sumner-Smith M, Rafalski J A, Sugiyama T, Stoll M, Soll D. Conservation and variability of wheat α/β-gliadin genes. Nucleic Acids Research, 1985,13: 3905-3916.
    
    154. Wicker T, Guyot R, Yahiaoui N, Keller B. CACTA transposons in Triticeae. a diverse family of high-copy repetitive elements. Plant Physiology, 2003, 132: 52-63.
    
    155. Galili G, Levy A A, Feldman M. Gene-dosage compensation of endosperm proteins in hexaploid wheat Triticum aestivum. PNAS. Genetics, 1986, 83: 6524-6528
    
    156.Wahls W P, Wallace L J, Moore P D. Hypervariable minisatellite DNA is hotspot for homologpus recombination in human. Cell, 1990, 60: 95-113
    157. Terryn N, Montagu M V, Inze D. GTP-binding proteins in plants. Planta Molecular Biology, 1993,22:143-152.
    158 J.E. Rothman, F.T. Wieland, Protein sorting by transport vesicles, Science 1996, 172 : 227-234.
    
    159. R. Schekman, L. Orci, Coat proteins and vesicle budding, Science 1996, 271: 1526— 1533
    
    160. Ai Kobayashi-Uehars, Dtsuo Shimosaka, Hirokazu Hands. Cloning and express analyses of cDNA encoding an ADP-ribosylation factor from wheat: tisue-specific expression of wheat ARF. Plant Science (2001)160: 535-542
    
    161. Gene VII 中译本. 南开大学译
    
    162. Farid regad, Claude Bardet, Dominique Tremousaygue, Annick Moisan, Bernard Lescure et al.cDNA cloning and expression of an Arabidopsis GTP-binding protein of the ARF family. FEBS 1993, 316(2): 133-136
    
    163.R.A. Kahn, A.G. Gilman, The protein cofactor necessary for ADP-ribosylation of Gs by cholera toxin is itself a GTP binding protein, J.Biol.Chem. 1986,261: 7906-7911
    164 .T.Stearns, M.C. Willingham, D. Botstein, R.A. Kahn, ADP-ribosylation factor is functionally and physically associated with Golgi complex, PNAS 1990, 87: 1238-1242
    165. Farid regad, Claude Bardet, Dominique Tremousaygue, Annick Moisan, Bernard Lescure et al.cDNA cloning and expression of an Arabidopsis GTP-binding protein of the ARF family.FEBS 1993,316(2):133-136
    166.D.N.Cooper,M.Krawczak,The mutational spectrum of single basepair substitutions causing human genetic disease:patterns and predictions,Hum.Genet.1990,85:55-74.
    167.张丽娜,牛吉山,于玲.用半定量RT-PCR方法分析小麦TaMlo-Alc基因的表达.西北植物学报,2005,25(7):1368-1371
    168.Ji-Rui Wang,Yu-Ming Wei,Ze-Hong Yan,You-Liang Zheng.Detection of single nucleotide polymorphisms in 24 kDa dimeric a-amylase inhibitors from cultivated wheat and its diploid putative progenitors.Biochimica Biophysica Acta.2005,1723:309-320
    169.D.N.Cooper,M.Krawczak,The mutational spectrum of single basepair substitutions causing human genetic disease:patterns and predictions,Hum.Genet.1990,85:55-74
    170.Kwok S.,Kellogg D.E.,McKinncy N.,Spasic D.,Goda L.,Levenson C.,Sninsky J.J.Effects of primer-template mismatches on the polymerase chain reaction:human immunodeficiency virus type 1 model studies.Nucleic Acids Res.1990.18:999-1005
    171.Ai Kobayashi-Uehars,Dtsuo Shimosaka,Hirokazu Hands.Cloning and express analyses of cDNA encoding an ADP-ribosylation factor from wheat:tisue-specific expression of wheat ARF.Plant Science(2001)160:535-542
    172.Schwede T,Kopp J,Guex N,and Peitsch MC.SWISS-MODEL:an automated protein homology-modeling server.Nucleic Acids Research.2003,31:3381-3385
    173.Guex,N.and Peitsch,M.C.SWISS-MODEL and the Swiss-PdbViewer:An environment for comparative protein modelling.Electrophoresis,1997,18:2714-2723
    174.Arnold K.,Bordoli L.,Kopp J.,and Schwede T.The SWISS-MODEL Workspace:A web-based environment for protein structure homology modelling.Bioinformatics,2006,22:195-201
    175.Hong J X,Haun R S,Tsai S C,Moss J,Vaughan M.Effect of ADP-ribosylation factor amino2terminal deletions on its GTP-dependent stimulation of cholera toxin activity.J Biol Chem,1994,269(13):9743-9745
    176.Hong J X,Zhang X,Moss J,Vaughan M.Isolation of an amino2 terminal deleted recombinant ADP-ribosylation factor 1 in an activated nucleotide-free state.Proc Natl Acad Sci USA,1995,92(7):3056-3059
    177.Julie G,Donaldson.Filling in the GAPs in the ADP-ribosylation factor story.Proc Natl Acad Sci USA,2000,97(8):3792-3794
    178.Jackson E.A.,Holt L.M.,Payne P.I.Characterization of high-molecular-weight gliadin and low-molecular-weight glutenin subunits of wheat endosperm by two dimensional electrophoresis and the chromosomal localization of their controlling genes.Theor Applied Genetics,1983,66:29-37
    179.Khan K,Bushuk W.Studies of Glutenin ⅹⅢ.Gel filtration,isoelectric focusing,and amino acid composition Studies.Cereal Chem,1979,56:505-512
    180.朱玉贤,李毅.现代分子生物学,北京.高等教育出版社,2002
    181.赵永斌,朱利泉,王小佳.甘蓝MLPK基因的克隆与序列分析.作物学报,2006,32(1):46-501
    182.王家太,杨勇,曾庆韬.黑腹果蝇种组组蛋白基因间内含子区的分子进化.湖北大学学报(自然科学版),2006,28(1):72-74
    183.Sharp P A.Split genes and RNA splicing.Ce11,1994.77:805-815
    184.K.Garg,P.Green,D.A.Nickerson,Identification of candidate coding region single nucleotide polymorphisms in 165 human genes using assembled expressed sequence tags,Genome Res.9(1999)1087-1092.
    185.谭端军,刘玲玲,文毅等 人类线粒体基因控制区序列的变异频率与碱基构成特点分析.中华老年多器官疾病杂志,2003,4(2):260-263
    186.赵辉,李启寨,李俊等.相邻碱基组分与产生SNP的转换或颠换在植物基因组中的研究.中国科学C辑 生命科学2006,36(1):1-8
    187.任茂智,陈全家,张锐等.棉花腺苷酸核糖基化作用因子1(arf1)的结构特征、替换剪接和遗传表达分析.遗传学报,2004,31(8):850-857
    188.侯磊,李家宝,罗小英等.棉花ADP-ribosylation factor基因(GhARF1)的克隆与表达分析.作物学报,2007,33(8):1226-1231
    189.T.Steams,R.A.Hahn,D.Botsein,M.A.Hoyt,ADP ribosylation factor is an essential protein in Saccharomyces cerevisiae and is encoded by two genes,Mol.Cell. Biol 1990,10:6690-6699
    190.T.Kiyosue,K.Shinozaki,Cloning of a carrot cDNA for a member of the family of ADP ribosylation factors(ARFs)and characterization of the binding of nucleotides by its products after expression in E.coli.Plant Cell Physiol.1995,36:849-856
    191.郑有良,兰秀锦,魏育明等.小麦新品种川农16农艺性状分析.四川农业大学学报,2002,20(3):194-197
    192 李伟.小麦新品种川农16的遗传评价与分析.2003,四川农业大学硕士论文
    193.晏本菊,任正隆.小麦新高产品系的高分子谷蛋白亚基结构分析.四川农业大学学报,200l,19(4):376-379.
    194.晏本菊,任正隆.我国部分小麦品种(系)的高分子谷蛋白亚基遗传变异分析.四川农业大学学报,2001,19(4):380-383
    195.魏益民,张国权,欧阳韶晖等.陕西关中小麦品质改良现状研究.麦类作物学报,2000,20(1):3-9
    196.晏本菊,任正隆.中国西南麦区小麦品质改良限制因素探讨.中国农业科学2004,37(10):1414-1421

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700