用户名: 密码: 验证码:
山东近岸海域浮游细菌、病毒生态学调查及沉积物细菌多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用分级稀释培养计数法和表面荧光显微镜计数法,分别于2006年8月(夏季)、2006年12月(冬季)、2007年4月(春季)和2007年10月(秋季),四次对山东近岸海域可培养异养细菌数量,海洋浮游细菌丰度、生物量及海洋浮游病毒丰度分布特征进行了调查研究,同时分析了夏、冬两季海洋细菌、病毒与环境生态因子之间的相关性,探讨了环境因子对浮游细菌及病毒分布的影响,以期为山东近岸海域微生物分布状况提供基础数据,为其后的海洋微生物生态学研究提供参考。同时,采用ARDRA方法分析了胶州湾内站位QD08及威海近岸站位QD13表层沉积物细菌多样性及其季节变化。
     1.可培养异养细菌的分布特征
     调查海区四个季节可培养异养细菌数量介于1.01×104~6.27×107 CFU/L,最大值出现在夏季小岛湾外站位QD15底层水中,最小值则出现在冬季QD03站位中层水,各季节可培养异养细菌分布为夏季>冬季>秋季>春季。四个季节均表现出沿岸可培养异养细菌数量大于远岸数量的趋势;夏、秋、冬季节北部海区可培养异养细菌数量要高于南部海区,而冬季则刚好相反。在垂直方向上,除冬季表现出各水层可培养异养细菌数量相似的规律外,其它三个季节则没有明显的垂直分布规律。
     夏、冬季节可培养异养细菌数量与温度及海水叶绿素a含量(Chla)没有相关性,而与总氮(N)、总磷(P)及磷酸盐(PO43-)呈显著相关,这说明总N、总P及PO43-可能是夏、冬季节可培养异养细菌数量分布的主要限制因子,而温度在可培养异养细菌数量分布上并没有起到限制性作用。
     2.浮游细菌丰度及生物量的分布特征
     调查海区四个季节浮游细菌丰度及生物量分别介于9.76×108~1.55×1010 cells/L和14.79~236.49μg/L。两者无论是在时间还是空间都表现出了相似的分布特征。浮游细菌丰度及生物量季节分布均为春季>夏季>秋季>冬季,冬季浮游细菌丰度及生物量明显低于其他三个季节,冬季的低温可能是造成这一现象的主要原因。各站位不同季节浮游细菌丰度及生物量有明显的垂直分布规律,但在夏季QD06及QD14站位可以观察到浮游细菌丰度的变化受到温度跃层的影响。调查海区春、秋、冬季三层水均呈现出近岸浮游细菌丰度及生物量大于远岸的趋势,且一般在胶州湾或小岛湾、丁字湾附近出现高值区;夏季表层与底层水浮游细菌丰度及生物量亦表现出近岸区域大于远岸区域的趋势。
     夏、冬季节各站位水柱浮游细菌丰度及生物量与温度、总有机碳及叶绿素a含量均呈现显著正相关关系,而与溶解氧、PO43-呈显著负相关关系,因此可以认为调查海区夏、冬季节浮游细菌分布同时受到上述几种环境生态因子的影响,而由于海区营养盐充足,减弱了营养盐对浮游细菌季节分布的限制作用。
     3.浮游病毒丰度的分布特征
     调查海区各季节浮游病毒丰度介于1.71×109~3.40×1011 VLPs/L,其季节分布规律较明显,为冬季>春季>夏季>秋季,海水盐度及溶解氧含量的季节变化是造成这一现象的主要原因。不同站位各季节浮游病毒丰度没有明显的垂直分布规律,四个季节各水层浮游病毒丰度基本随着由沿岸区域向外海延伸,呈现出下降趋势。
     夏、冬季节山东近岸浮游病毒丰度与海水中硝酸盐含量呈显著正相关关系,而与浮游细菌丰度及叶绿素a含量呈现弱的负相关性,说明海水中营养盐含量的变化对浮游病毒丰度有较大影响。冬季较高的营养盐含量有可能增加了细菌体内病毒的释放量,而病毒对其寄主——浮游细菌的裂解作用则可能是导致两者呈现出负的相关性的原因。
     4.QD08 / QD13站位表层沉积物细菌多样性
     分为夏、冬、春、秋四个季节对山东近岸海域表层沉积物细菌多样性进行了研究。利用提取纯化的沉积物样品总DNA为模版,扩增了沉积物样品中细菌的16S rDNA片段,并构建了相应的文库。从QD08站位四个季节沉积物样品中分别得到37、48、48及39个具有不同酶切图谱的阳性克隆子,而QD13站位四个季节表层沉积物样品中具有不同酶切图谱的阳性克隆子则分别为33、29、57及57个。通过对构建的8个文库克隆子的ARDRA分析,探讨了文库种群的多样性,结果表明:在所构建的8个16S rDNA克隆文库中,A8S、D8S、A13S和B13S 16S rDNA克隆文库具有较高的覆盖率,可以认为上述4个文库能够反映沉积物样品细菌多样性;B8S、C8S、C13S及D13S克隆文库文库覆盖率均低于80%,可能需要更多的克隆子来反映沉积物样品细菌多样性。
     从细菌多样性季节变化来看,两个站位各季节沉积物样品细菌主要属于变形杆菌(Proteobacteria)类群,且γ-Proteobacteria亚群属于优势种类,同时也检测到α-/γ-/δ-/ε-Proteobacteria亚群的存在,表明变形杆菌是海洋沉积物中的主要类群。同时在QD08站位表面沉积物样品发现的还有浮霉菌(Plancomycene)、放线菌( Actinobacteria )、芽单胞菌( Gemmatimonadetes )、酸杆菌(Acidobacteriaceae)、硝化螺旋菌(Nitrospirales)、疣微菌(Verrucomicrobial)、拟杆菌(Bacteroidetes)和绿弯菌(Chloroflexi)几大类群。QD13站位沉积物样品细菌类群与QD08站位略有不同,主要包含浮霉菌(Plancomycene)、芽单胞菌(Gemmatimonadetes)、酸杆菌(Acidobacteriaceae)、硝化螺旋菌(Nitrospirales)、拟杆菌(Bacteroidetes)、绿弯菌(Chloroflexi)、高G + C含量革兰氏阳性菌放线菌(Actinobacteria)和低G + C含量的革兰氏阳性菌梭菌(Clostridiales)几类。与QD13站位相比,QD08站位沉积物细菌多样性随季节变化不大,可能是由于QD08站位沉积物受陆地影响较小,沉积物环境季节变化不大。
Based on four cruises from August, 2006 to October, 2007, the distribution patterns of cultivable heterotrophic bacteria biomass (CHBB), virioplankton and bacterioplankton abundance (BA) in coastal waters of Shandong were studied. Moreover, the relationships between them and the environmental ecological factors, temperature, dissolved oxygen (DO), chlorophyll a (Chl a), total N, total P, total organic carbon, NO3- and PO43- in summer and winter were also analyzed. At the same time, bacterial diversity in sediments of station QD08 and QD13 were also investigated used the method of ARDRA.
     1. Distribution of cultivable heterotrophic bacteria (CHBB)
     Cultivable heterotrophic bacteria biomass fluctuated between 1.01×104CFU/L and 6.27×107CFU/L in the four seasons. The highest number was detected in the substrate waters of station QD15 in summer, while the CHBB was lowest in middle layer water of station QD03 in winter. The highest CHBB in water columns in different stations was recorded during summer, the second highest CHBB occurred in winter and the lowest was in spring. The CHBB decreased with the distance far away from the coast on most of transects in summer, winter and august. There was no distinct spatial distribution pattern of the CHBB in vertical section.
     The CHBB has highly significant correlations (P < 0.01) with total nitrogen, phosphorus and PO43-, which indicated that the CHBB might be influenced by these environmental factors in summer and winter. No correlation was detected between CHBB and temperature and the Chl a.
     2. Distribution of bacterioplankton abundance and biomass
     The abundance and biomass of bacterioplankton in coastal waters of Shandong was 9.76×108~1.55×1010cells/L and 14.79~236.49μg/L respectively. The distribution of bacterioplankton abundance and biomass almost demonstrated the same temporal and spatial pattern. The bacterioplankton abundance and biomass were much lower in winter than in the other three seasons. The highest bacterioplankton abundance and biomass in water columns were occurred in spring, while the second in summer. There was no distinct spatial distribution pattern of the bacterioplankton abundance and biomass in vertical section. The bacterioplankton abundance and biomass were higher in the coastal line area in spring, august and winter. Most of the highest bacterioplankton abundance areas were around Jiaozhou bay, Xiaodao bay and Dingzi bay.
     The correlations were highly significant between bacterioplankton abundance, biomass and temperature, total organic carbon and Chl a in summer and winter. At the mean time, bacterioplankton and biomass were negative correlated with DO and PO43-. The distribution of bacterioplankton abundance and biomass were affected by the environmental ecological factors above.
     3.Distribution of virioplankton abundance
     The virioplankton abundance was between 1.71×109 VLPs/L and 3.40×1011 VLPs/L in the four cruises. The highest virioplankton abundance was recorded during winter, the second highest virioplankton abundance occurred in spring and the lowest in august. Salinity and DO content in sea water were regarded as the main factors which leaded to the seasonal variation of virioplankton abundance. The distribution of virioplankton abundance in the four seasons almost demonstrated the same pattern, which showed higher abundance in the costal line.
     Virioplankton abundance was significant positive correlated with NO3- content in the sea water, and was weak negative correlated with bacterioplankton abundance and Chl a. NO3- content might be the primary factor which effected the distribution of virioplankton abundance in summer and winter.
     4.Bacterial diversity in the sediment of QD08 and QD13
     Bacterial diversity in the sediment of stations QD08 and QD13 were studied in summer, winter, and spring, august. 16S rDNA fragments of bacteria were amplified and libraries were constructed based on the purified DNA extracted from the sediments of station QD08 and QD13. In the station of QD08, the numbers of positive clones which have different enzyme digest maps were 37, 48, 48 and 39. The numbers of positive clones were 33, 29, 57 and 57 respectively in the station of QD13. The 16S rDNA sequences which these clones contented were than sequedced. The results indicated that the coverage C of A8S, D8S, A13S and B13S libraries are very high, while the coverage C of B8S, C8S, C13S and D13S libraries all below 80%.
     In the station QD08, the sequenced clones fell into nine major lineages of the domain bacteria: the alpha, gamma, delta and epsilon Proteobacteria, Plancomycene, Actinobacteria, Gemmatimonadetes, Acidobacteriaceae, Nitrospirales, Verrucomicrobial, Bacteroidetes and Chloroflexi. The sub class of Proteobacteria, especially gamma Proteobacteria predominated in this station. The results suggested that these clones were very diverse in phylogeny. In the station of QD13, the domain bacteria included the alpha, gamma, delta and epsilon Proteobacteria, Plancomycene, Gemmatimonadetes, Acidobacteriaceae, Nitrospirales, Bacteroidetes, Chloroflexi, Actinobacteria and Clostridiales.
     Compared to the station QD13, seasonal variation of bacteria diversity in the sediment of QD08 seemed to be very small. This phenomenon might indicate that the sediment environment did not change much during the year.
引文
白洁,李岿然,李正炎等.渤海春季浮游细菌分布与生态环境因子的关系.青岛海洋大学学报, 2003, 33(6):541-8
    陈笃,王之珉.东海大陆架异养细菌的生态分布.海洋科学集刊, 1982, 19:1-10
    陈皓文.潮间带耐铅菌与铅等重金属有机质关系初析.生态学报, 1989, 9(3): 280-282
    陈皓文.渤海湾耐重金属菌数量分布的初步分析.海洋通报, 1985, 4(6):27-33
    陈世阳,包文雅,李八方等.乳山湾的污染与异养微生物的调查分析.山东海洋学院学报, 1987, 17(4):86-94
    陈忠元,史君贤,胡锡钢等.秦山核电站邻近水域石油降解细菌的生态学研究.东海海洋,1996, 14(2)35-43
    陈忠元,史君贤.秦山核电站邻近水域石油降解细菌的生态学研究.东海海洋, 1991, 9(2): 48-53
    丁美丽,岑作贵.胶州湾石油烃降解细菌的分布.海洋通报,1979, 6(6):11-14
    丁明宇,黄健,李永祺.海洋微生物降解石油的研究.环境科学学报, 2001,21(1): 84-88
    杜爱芳.浙江近岸海域细菌学分析.浙江大学学报(农业与生命科学版), 2003, 29(5) : 523-528
    贺杰,林风翱,卞正和等.渤、黄海沿岸儿种经济贝类及其生态环境中的粪大肠菌群.海洋环境科学, 2002, 21(2):42-46
    胡锡钢,史君贤,陈忠元等.秦山核电站临近水域大肠菌群和粪大肠菌群的分布.东海海洋,1991, 9(2):41-47.
    黄秀清,彭立功.长江口水域异养细菌及粪大肠菌群的生态学分布.海洋环境科学, 1993, 12(1):29-34
    黄备,唐静亮.舟山市排污废水和附近海水的细菌学研究.海洋环境科学, 2000, 19(1): 29-34
    焦俊鹏,章守宇,杨红等.杭州湾粪大肠杆菌和异养细菌的分布特征及其环境因子.上海水产大学学报, 2000, 9(3): 209-213
    焦念志,肖天.胶州湾的微生物二次生产力.科学通报, 1995, 40(9):829-832
    李春雁,贾建军.山东荣成湾月湖细菌生态学研究.青岛大学学报(自然科学版), 2000, 13(1): 67-71
    李元等.大连湾石油烃降解细菌的生态初步研究.海洋环境科学, 1987, 6(1): 30-37
    李越中,陈琦.海洋微生物资源多样性.生物工程进展, 1998, 18: 34-40.
    林凤翱,贺杰,于占国.北黄海三类废弃物试验倾倒区海洋细菌的生态学研究。海洋环境科学, 1989, 8(3): 10-15
    林凤翱,闫启伦.辽东湾海冰中微生物的分离.海洋环境科学,1996, 15(4): 43-47
    林燕顺,周宗澄,叶德赞.厦门港近岸海域粪大肠菌群分布的初步研究.海洋学报, 1983,5(6):789-792.
    刘子琳,越川海,宁修仁等.长江冲淡水区细菌生产力研究.海洋学报, 2001, 23(4): 93-99
    穆春华.西北太平洋深海沉积物微生物多态性分析.硕士学位论文, 1995,青岛:中国海洋大学
    倪纯治.赤潮与海洋微生物.海洋环境科学, 1988, 7(2): 40-43
    倪纯治.厦门港石油烃降解细菌的生态分布.海洋学报, 1983, 5(5): 637-644
    宁修仁,陈介中,刘子琳.海南省三亚湾和榆林湾海水中叶绿素a浓度、总细菌和大肠杆菌的丰度与分布.东海海洋, 1999, 17(4):51-57.
    宁修仁.微型生物食物环.东海海洋, 1997, 15(1): 66-68
    彭安国,黄奕普,刘广山等.大亚湾细菌生产力研究.海洋学报, 2003, 25(4:)83-90
    沈国英,施并章.海洋生态学.厦门:厦门大学出版社, 1990, 119-193
    史君贤,陈忠元.西北太平洋沉积物和锰结核中微生物的丰度和锰细菌.海洋学报, 1989, 11(3): 385-391.
    史君贤,陈忠元,胡锡钢.南鹿列岛附近海域表层水及沉积物中细菌的丰度及其在环境中的作用.东海海洋, 1994, 12(3): 57-61,
    史君贤,陈忠元,胡锡钢等.海洋微生物对石油烃讲解的研究.东海海洋, 1997,15(4): 38-45
    史君贤,陈忠元,胡锡钢.浙江省海岛沿岸水域微生物生态分布.东海海洋, 1996, 14(2):35-43.
    史君贤,陈忠元,胡锡钢.海洋微生物对石油烃降解的研究1.浙江省海岛海域石油烃降解细菌的生态分布.东海海洋, 1997, 15(4):38-45
    史君贤,陈忠元,刘子琳等.宁波近海水域石油降解菌的生态分布.东海海洋, 1991, 9(3):79-82.
    史君贤,陈忠元,宁修仁等.长江口及其附近海域细菌和三磷酸腺苷的分布特征.海洋与湖沼, 1992,23(3):288-296
    史君贤,郑国兴,陈忠元等.长江口区沉积物中硫化细菌和硫酸盐还原细菌数量分布.东海海洋, 1983, l(4):30-33
    史君贤,郑国兴,陈忠元等.长江口区海水及沉积物中异养细菌的生态分布.海洋通报, 1984, 3(6):59-63
    孙靖.胶州湾原生动物对异养浮游细菌的捕食压力研究.中国海洋大学硕士论文. 2004.
    孙修勤,张劲兴,卢颖等.渤海单株石油微生物降解芳烃的实验研究.黄渤海海洋, 1987, 5(1):37-47
    王丹,孙军,汪岷等.海洋浮游植物病毒的研究进展.海洋科学进展, 2005, 23(1):105-113
    王书锦,胡江春,薛德林等.中国黄、渤、辽宁近海地区海洋微生物资源的研究.锦州师范学院学报(自然科学版), 2002, 23(l): l-5.
    王文琪,钱振儒.胶州湾异养细菌、大肠菌群和石油降解菌的生态分布.海洋科学, 2000,24(1):37-39.
    王文兴.东海大陆架水样和泥样中异养细菌属的组成.海洋研究,1981, 4:71-76
    王文兴,孙修勤,牟敦彩等.渤海石油降解微生物某些生态学特征的调查研究.海洋环境科学, 1983, 2(4):11-23
    肖天.海洋细菌在微食物环中的作用.海洋科学.2000, 24(7):4-6
    肖天,王荣.东海异养细菌生产力的时空分布.海洋与湖沼, 2000, 31(6): 664-670
    谢立民.拓林湾细菌、弧菌和异养菌数量的时空分布和细菌生产力研究.暨南大学年硕士论文. 2004
    薛廷耀.海洋细菌学.北京:科学出版社, 1962, 20-40.
    薛廷耀,孙国玉.海泥中硫杆菌的分离培养研究.海洋与湖沼,1959, 11(2):75-81
    薛廷耀,孙国玉,丁美丽.胶州湾小球藻的研究.海洋与湖沼,1960, 3(1)I:1-12
    杨进.流式细胞仪工作原理及临床应用.医疗设备信息, 2002, 1:15
    张奇亚.浮游病毒.水生生物学报, 2002, 26: 691-696
    张瑜斌,王文卿,庄铁诚等.厦门西港西南部潮间带光滩微生物的数量变化.台湾海峡, 2000, 19(1): 54-59.
    肖慧.渤海湾近岸海域的细菌学研究及其在海岸带环境质量评价中的应用.博士学位论文,中国海洋大学, 2005
    赵三军,肖天,岳海东.秋季东、黄海异养细菌(Heterotrophic Bacteria)的分布特点.海洋与湖沼, 2003, 34(3): 295-305
    赵以军,裴达,石正丽等.藻类病毒研究40年.华中示范大学学报(自然科学版), 2003, 37:399-404
    郑国兴,史君贤,陈忠元等.长江口及邻近陆架海区细菌与沉积物相互关系的初步探讨.海洋学报, 1982,4(6): 743-753.
    郑天凌,闽南-台湾浅滩渔场上升流区细菌生物量研究.北京:科学出版社, 1991, 356-365
    郑天凌.厦门西海域微生物生态特点研究II细菌丰度、生物量、生产力及大肠杆菌的时空分布.//厦门西海域生态研究.厦门:厦门大学出版社, 1994a
    郑天凌.微生物在碳的海洋生物地球化学循环中的作用.生态学杂志, 1994, 13(4): 47-50
    郑天凌.水产养殖水体细菌数量、生物量、生产力研究方法评价及现场调查.中日鱼池生态学文集,上海:上海科学科技出版社, 1995
    郑天凌,蔡立哲,姜先泉.闽南-台湾浅滩上升流区细菌生物量的研究.//闽南-台湾浅滩上升流区生态系研究.北京:科学出版社, 1991
    郑天凌,李福东.闽南-台湾浅滩上升流区发光细菌的生态分布与种类组成.厦门大学学报(自然科学版).]993, 32(5): 653-658
    郑天凌,默罕默德,陈进才.台湾海峡细菌生物量及环境因子研究.中国海洋文集,北京:海洋出版社, 1997.
    郑天凌,默罕默德,李文权.台湾海峡海域细菌生产力及其异养活性研究.中国海洋文集,北京:海洋出版社, 1997
    郑天凌,王斐.台湾海峡水域的β-葡萄糖昔酶活性.应用与环境生物学报, 2001, 7(2): 175-182
    郑天凌,庄铁城.微生物在海洋污染环境中的生物修复作用.厦门大学学报(自然科学版), 2001, 40(3): 524-533
    周玉航,潘建明,叶瑛等.细菌、病毒与浮游植物相互关系及其对海洋地球化学循环的作用.台湾海峡, 2001, 20(3): 340-345
    周宗澄,姚瑞海,梁小原.南海中部海域异养细菌的生态分布.海洋通报, 1989, 8(3):57-64.
    周宗澄,倪纯治,曾活水等.大亚湾沉积物中厌氧亚硫酸还原菌数量的周年变化.海洋学报, 1991, 13(l):96-101
    Azam F, Fenchel T, Field J G, et al. The Ecological Role of Water Column Microbes in the Sea. Marine Ecology Progress Series, 1983, 10: 257-263.
    Alonso M C, Jimenez G F, Rodriguez J, et al. Distribution of virus-like particles in an oligotrophic marine environment (Alboran sea, Wastern Mediterranean). Microbial Ecology, 2001, 42: 407-415
    Amann R I, Sludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiology and Molecular Biology Reviews, 1995, 59: 143-169
    Bergh O, B?rsheim K Y, Bratbak G et al., High abundance of viruses found in aquatic environments. 1989, Nature, 340:467-468
    Bettarel Y, Ngando T S, Amblard C et al., A comparison of method for counting viruses in aquatic systems. Applied and Environmental Microbiology, 2000, 66:2283-2289
    Bettarel Y, Dolan J, Hornak K et al., Strong, weak, and missing links in a microbial community of the N.W.Mediterranean sea. FEMS Microbiology Ecology, 2002, 42: 451-462
    Bettarel Y T, Sime-Ngando C A, Dolan J. Viral activity in two contrasting lake ecosystems. Applied and Environmental Microbiology, 2004, 70: 2941-2951
    Bird D F, Maranger R. Palmer LTER: aquatic virus abundances near the Antarctic Peninsula. Antarct. J.U.S. 1993, 28:234-235
    BjOrnsen P K, Automatic determination of bacterioplankton biomass by image analysis. Applied and Environmental Microbiology, 1986, 51(6): 1199-1204
    Boehme J, Frischer M E, Jiang S C et al., Viruses, bacterioplankton, and phytoplankton in the southeastern Gulf of Mexico: distribution and contribution to oceanic DNA pools. Marine Ecology Progress Series, 1993, 97: 1-10
    Borsheim K Y, Bratbak G, Heldal M. Enumeration and biomass estimation of planktonic bacteria and viruses by transmission electron microscopy. Applied and EnvironmentalMicrobiology, 1990, 56: 352-356
    Bratbak G, Heldal M. Viruses rule the waves- the smallest and most abundance members of marine ecosystems. Microbiology Today, 2000, 27: 171-173
    Bratbak G, Heldal M. Viruses the new player in the game: their ecological role and could they mediate genetic exchange by transduction? In I. Joint (ed.), 1995, Molecular ecology of aquatic microbes, vol. 38. Springer-Verlag KG, Berlin, Germany, 249-264
    Bratbak G, Egge J K, Heldal M. Viral mortality of the marine alga Emiliana huxleyi (Haptophyceae) and termination of algal blooms. Marine Ecology Progress Series, 1993, 93: 39-48
    Breitbart M, Rohwer F. Here a virus, there a virus, everywhere the same virus? TRENDS in Microbiology, 2005, 13(6): 278-284
    Brett M T, Lubnow F S, Manuel V A, et al. Picophytoplankton dynamics and production in the Arabian Sea during the 1995 Southwest Monsoon. Deep-Sea Research II, 1999, 46: 1745-1768
    Brussaard C P D, Kempers R S, Kop A J et al., Virus-like particles in a summer bloom of Emiliania huxleyi in the North sea. Aquatic Microbial Ecology, 1996, 10: 105-113
    Chen J, Qian Z Y, Wang Z M et al., Ecological distribution of heterotrophic bacteria in the Continental Shelf of East China Sea. Studia Marine Sinica, 1982, 19:3-9
    Cochlan W P, Wikner J, Steward G F, et al. Spatial distribution of viruses, bacteria and chlorophyll a in neritic, oceanic and estuarine environments. Marine Ecology Progress Series, 1993, 92: 77-87
    Cochran P K, Paul J H. Seasonal abundance of lysogenic bacteria in a subtropical estuary. Applied and Environmental Microbiology, 1998, 64:2308
    Cojolen M J L, Overmann J. Analysis of subfossil molecular remains of purple sulfur bacteria in a lake sediment. Applied and Environmental Microbiology, 1998, 64: 4513-4521
    Cole J J, Findlay S, Pace M L. Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Marine Ecology Progress Series, 1988, 43: 1-10
    Connie L, Louis L, Therriault J C. Growth and distribution of marine bacteria in relation to nanoplankton community structure. Deep-Sea Research II, 2000, 47: 461-487
    Corinaldesi C, Crevatin E, Negro D et al., Large-scale spatial distribution of virioplankton in the Adriatic Sea: testing the trophic state control hypothesis. Applied and Environmental Microbiology, 2003, 69: 2664-2673
    Falkowski P G, Woodhead A D. Primary productivity and biogeochemical cycles in the sea. New York: Plenum press, 1992, 361-383
    Fandino L B, Riemann L, Steward, et al. Variations in bacterial community structure during a dino-agellate bloom analyzed by DGGE and 16S rDNA sequencing. Aquatic Microbial Ecology, 2001, 23: 119-130
    Fuhrman J A, Azam F. Thymidine incorporation as a measure of heterotrophic bacterioplanktonproduction in marine surface waters: evaluation and field results. Marine Biology, 1982, 66: 109-120
    Fuhrman J A, Noble T. Viruses and protests cause similar bacterial mortality in coastal seawater. Limnology Oceanogr, 1995, 40(7): 1236~1242
    Fuhrman J A. Marine virus and their biogeochemical and ecological effects. Nature, 1999, 399:541-548
    Fuhrman J A, Azam F. Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica and California. Applied and Environmental Microniology, 1980, 39(6): 1085-1095
    Giovannoni S, Rappe M. Evolution, diversity, and molecular ecology of marine prokaryotes. In: Microbial ecology of the oceans (kirchman K L), Wiley-Liss, Inc., New York, 47-84
    Gude H. The role of grazing on bacteria in plankton succession. Somer U ed. Plankton Ecology: Succession in plankton communities. Berlin: Speringer-Verlag, 1989, 337-364
    Hara S, Terauchi K, Koike I. Abundance of viruses in marine waters: assessment by epifuorescence and transmission electron microscopy. Applied and Environmental Microbiology, 1991, 57:2731-2734
    Hara S, Koike I, Terauchi K et al., Abundance of viruses in deep oceanic waters. Marine Ecology Progress Series, 1996, 145: 269-277
    Hedal M, Bratbak G. Production and decay of viruses in aquatic environments. Marine Ecology Progress Series, 1991, 72: 205-212
    Heinanen A. Bacterioplankton in a subarctic estuary: the Gulf of Bothnia (Baltic Sea). Marine Ecology Progress Series, 1992, 86: 123-131
    Hennes K P, Suttle C A, Chan A M. Fluorescently labeled virus probes show that natural virus populations can control the structure of marine microbial communities. Applied and Environmental Microbiology, 1995, 61:3623-3627
    Hill R W, White B A, Cottrell M T et al., Virus-mediated total release of dimethylsulfonipropionate from marine phytoplankton: a potential climate process. Aquatic Microbial Ecology, 1998, 14:1-6
    Hobbie J E, Daley R J, Jasper S. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Applied and Environmental Microbiology, 1977, 33(5): 1225-1228.
    Jiang S C, Paul J H. Seasonal and diel abundance of viruses and occurrence of lysogeny/bacteriocinogeny in the marine environment. Marine Ecology Progress Series, 1994, 104:163-172
    Jiang S C, Paul J H. Gene transfer by transduction in the marine environment. Applied and Environmental Microbiology, 1998, 64: 2780-2787
    Kepner R L, Wharton R A, Suttle C A. Viruses in Antarctic lakes. Limnology and Oceanography, 1998, 43:1754
    Kirchman D L. Limitation of bacterial growth by dissolved organic matter in the subarctic Pacific.Marine Ecology Progress Series, 1990, 62: 47-54
    Kirchman D L, James H R, Barber R T. Biomass and biomass production of heterotrophic bacteria along 140oW in the equatorial Pacific: effect of temperature on the microbial loop. Deep-Sea Research II, 1995, 42(2/3): 603-619
    Kirchman D L. Phytoplankton death in the sea. Nature, 1999, 398:293-294
    Kriss A E. Marine Microbiology (Deep water). Publ house USSR Acad. Sci., 1959
    Kroer N. Bacterial growth efficiency on natural dissolved organic matter. Limnology and Oceanogry, 1993, 38(6): 1282-1290
    Lee S, Fuhrman J A. Relationships between biovolume and biomass of naturally deriver marine bacterioplankton. Applied and Environmental Microbiology, 1987, 53(6): 1298-1303
    Li W K W. Annual average abundance of heterotrophic bacteria and Synechococcus in surface ocean waters. Limnology and Oceanogry, 1998, 43(7): 1746-1753
    Li W K W, Harrison W G. Chlorophyll, bacteria and picophytoplankton in ecological provinces of the North Altlantic. Deep-Sea Research II, 2001, 48: 2271-2293
    Macleod R A. The question of the existence of specific marine bacteria. Bacteriology Reviews, 1965, 29:2-23
    Malin G, Wilson W H, Bratbak G et al., Elevated production of dimethylsulfied resulting from viral infection of cultures of Phaeocystis pouchetii. Limnology and Oceanogry, 1998, 43:1389-1393
    Mann N H, Cook A, Millard A et al., Marine Ecosystems: bacterial photosynthesis genes in a virus. Nature, 2003, 424(6950):741
    Maranger R, Bird D F, Juniper S K. Viral and bacterial dynamics in Arctic sea ice during the spring algal bloom near Resolute, N.W.T, Canada. Marine Ecology Progress Series, 1994, 111: 121-127
    Maranger R, Bird D F. Viral abundance in aquatic systems: a comparison between marine and fresh waters. Marine Ecology Progress Series, 1995, 121:1-3
    Marie D, Brussaard C P D, Thyrhaug R et al., Enumeration of Marine viruses in culture and natural sample by flow cytometry. Applied and Environmental Microbiology, 1999, 65:45-52
    McManus G B. Flow analysis of a planktonic microbial food web model. Marine Microbial Food Webs, 1991, 5: 145-160
    Middelboe M, Nielsen T G, Bjornsen P K. Viral and bacterial production in the North Water: in situ measurements, batch-culture experiments and characterization and distribution of a virus-host system. Deep-Sea Research II, 2002, 49:5063-5079
    Mikhail V Z, Michael A S, Peter H B, et al. Bacterial growth and frazing loss in contrasting area of North and South Antlantic. Journal of Plankton Research, 2000, 22(4): 685-711
    Nagata T, David D A. Release of dissolved organic matter by heterotrophic protoza: implications for microbial food webs. Arch Hydrobial Beih, 1992, 35: 99-109
    Nakano S L. The role of bacterivorous flagellates in the phosphorus cycling in Lake Biwa. Japan. In Proceedings of the 7th International Symposium on River and Lake Environments, 1994, Matsumoto. Okino, T. & Kato, K. (eds.), 9: 53-60
    Noble R T, Fuhrman J A. Use of SYBR Green I for rapid epofluorescence count of marine viruses and bacteria. Aquatic Microbial Ecology, 1998, 14(2):
    Olsen G J, Lane D J, Giovannoni S J et al., Microbial ecology and evolution:a ribosomal RNA approach. Annual Review of Microbiology, 1986, 40: 337-365
    Ortmann A C, Lawrence J E, Suttle C A. Lysogeny and lytic viral production during a bloom of the cyanobacterium synethococcus spp. Microbial Ecology, 2002, 43:225-231
    Paul J H, Rose J B, Jiang S C et al., Coliphage and indigenous phage in Mamala Bay, Oahu, Hawaii. Applied and Environmental Microbiology, 1997, 63:133-138
    Paul J H, Rose J B, Jiang S C et al., Distribution of viral abundance in the reef environment of Key Largo, Florida. Applied and Environmental Microbiology, 1993, 59:718-724
    Paul J H, Jiang S C, Rose J B. Concentration of viruses and dissolved DNA from aquatic environments by vortex flow filtration. Applied and Environmental Microbiology, 1991, 57:2197-2204
    Poulsen L K, Ballard G, Stahl D A. Use of rRNA fluorescence in situ hybridization for measuring the activity of single cells in young and established biofilms. Applied and Environmental Microbiology, 1993, 59: 1354-1360
    Proctor L M, Fuhrman J A. Viral mortality of marine bacteria and cyanobacteria. Nature, 1990, 343:60-62
    Qasim S Z. The Indian Ocean: images and realities, Oxford and IBH, New Delhi, 1999, 57-90
    Riemann L, Steward G F, Azam F. Dynamics of bacterial community composition and activity during a mesocosm diatom bloom. Applied and Environmental Microbiology, 2000, 66: 578-587
    Ripp S, Oqunseitan O A, Miller R V. Transduction of a freshwater microbial community by a new Pseudomonas aeruginosa generalized transducing phage, UT1. Moecular Ecology, 1994, 3(2): 121-126
    Spencer R. A marine bacteriophage. Nature, 1955, 175:690-691
    Shen H Q. Quantitative distribution and species composition on marine microorganism and their relationship to environments in Daya Bay, Collections of papers on marine ecology in the Daya Bay(1). Beijing: China Ocean Press, 1989, 115-126
    Sherr B, Sherr E, Giorgio P D. Enumeration of total and highly active bacteria, in: Paul, J.H. (Ed.), 2001, Marine microbiology. Methods in Microbiology, 30: 129-159
    Shiah F K, Ducklow H W. Temperature regulation of heterotrophic bacterioplankton abundance, production, and specific growth rate in Chesapeake Bay. Limnology and Oceanogeography, 1994, 39(6): 1243-1258
    Sieburth J M. Sea microbes. New York, Oxford University Press, 1979
    Steward G F, Smith D C, Azam F. Abundance and production of bacteria and viruses in the Bering and Chukchi seas. Marine Ecology Progress Series, 1996, 131: 287-300
    Stopar D, Eren A, Zigman M et al., Viral abundance and a high proportion of lysogens suggest that viruses are important members of the microbial community in the gulf of Trieste. Microbial Ecology, 2004, 47:1-8
    Suttle C A. Marine Viruses- major players in the global ecosystem. Nature Reviews. Microbiology, 2007, 5:801-812
    Suttle C A, Chan A M. Marine cyanophages infecting oceanic and coastal strains of Synechococcus: abundance, morphology, cross-reactivity and growth characteristics. Marine Ecology Progress Series, 92:99-109
    Suttle C A, Chan A M, Cottrell M Y. Infection of phytoplankton by viruses and reduction of primary productivity. Nature, 1990, 387:467-469
    Suttle C A, Chen F. Mechanisms and rates of decay of marine viruses in seawater. Applied and Environmental Microbiology, 1992, 58: 3721-3729
    Suttle C A, Chan A M. Dyanmics and distribution of cyanophage and their effect on marine Synechococcus spp. Applied and Environmental Microbiology, 1994, 60(9): 3167~3174
    Taylor G T, Hein C, Iabichella M. Temporal variations in viral distribution in the anoxic Cariaco Basin. Aquatic Microbial Ecology, 2003, 30:103-116
    Torrella F, Morita R Y. Evidence by electron micrographs for a high incidence of bacteriophage particles in the waters of Yaquina Bay, Oregon: ecological and taxonomical implications. Applied and Environmental Microbiology, 1979, 37(4):774-778
    Tuomi P, Torsvik T, Heldal M et al., Bacterial population dynamics in a meromictic lake. Applied and Environmental Microbiology, 1997, 63:2181-2188
    Waterbury J B, Watson S W, Guillard R L et al., Widespread occurrence of a unicellular, marine planktonic,cyanobacterium. Nature, 1979, 277: 293-294
    Wheeler P A, Kirchman D L. Utilization of inorganic and organic nitrogen by bacteria in marine systems. Limnology and Oceanogeography, 1986, 31(5): 998-1009
    Weinbauer M G, Peduzzi P. Significance of viruses versus heterotrophic nanoflagellates for controlling bacterial abundance in the northern Adriatic Sea. Journal of plankton Research, 1995, 17:1851-1856
    Weinbauer M G, Rassoulzadegan F. Are viruses driving microbial diversification and diversity? Environmental Microbiology, 2004, 6:1-11
    Weinbauer M G, Fuks D, Peuzzi P. Distribution of viruses and dissolved DNA along a coastal trophic gradient in the northern Adriatic Sea. Applied and Environmental Microbiology, 1993, 59:4074-4082
    Wiebe W J, Liston J. Isolation and characterization of a marine bacteriophage. Marine Biology, 1968, 1(3): 244-249
    Wilcox R M, Fuhrman J A. Bacterial viruses in coastal seawater: lytic rather than lysogenicproduction. Marine Ecology Progress Series, 1994, 114: 35-45
    Wilhelm S W, Suttle C A. Viruses and nutrient cycles in the sea. Bioscience, 1999, 49(10): 781-788
    Wilson W H, Tarran G, Zubkov M V. Virus dynamics in a coccolithophore-dominated bloom in the North Sea. Deep-sea Research II, 2002, 49: 2951-2963
    Woese C, Kandler O, Wheelis M. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, Eukarya. Proceedings of the National Academy of Science, 87: 4576-4579
    Wommack K E, Distribution of viruses in the Chesapeake Bay. Applied and Environmental Microbiology, 1992, 58:2965-2970
    Wommack K E, Raver J, Hill R T et al., Hybridization analysis of Chesapeake Bay virioplankton. Applied and Environmental Microbiology, 1999, 65: 241-250
    Wommack K E, Colwell R R. Virioplankton: viruses in aquatic ecosystems. Microbiology and Molecular Biology Reviews, 2000, 64: 69-114
    Wright R T, Coffin R B. Planktonic bacterial in estuaries and costal waters of northern Massachusetts: spatial and temporal distribution. Marine Ecology Progress Series, 1983, 11: 205-216
    Zobell C E. Marine Microbiology, Chronica Botanica, Waltham, Mass, 1946.
    白洁,李岿然,李正炎等.渤海春季浮游细菌分布与生态环境因子的关系.青岛海洋大学学报, 2003, 33(6): 841-846
    白洁,张昊飞,李岿然等.海燕异养浮游细菌生物量及生产力的制约因素.中国海洋大学学报, 2004, 34(4): 595-602
    冯士笮,李凤歧,李少箐主编.海洋科学导论.北京:高等教育出版社, 272-350
    海洋生物生态调查技术规程[M].北京:海洋出版社, 2006, 14-18
    李洪波,肖天,丁涛等.浮游细菌在黄海冷水团中的分布.生态学报, 2006, 26(4): 1012-1020
    李洪波,肖天,刘桂梅等.南黄海潮汐锋对浮游细菌生物量分布的影响.生态学报, 2004, 24(11): 2608-2615
    李洪波.南黄海浮游细菌的分布特点与水文现象的影响研究.博士学位论文.中国科学院海洋研究所, 2005,青岛.
    林燕顺,曾活水.太平洋和南极普里兹湾及其邻近海域中微生物量的分布特征.海洋学报, 1998, 20(6): 81-86
    林小涛, ,晏荣军,黄长江.粤东大规模养殖区柘林湾细菌的分布与环境因素的关系.海洋学报, 2006, 28(3): 167-172
    李清雪,赵海萍,陶建华.渤海湾海域浮游细菌的生态研究.海洋技术, 2005, 24(4): 50-56
    马继波,董巧香,黄长江.粤东大规模海水增养殖区柘林湾浮游细菌的时空分布.生态学报, 2007, 27(2): 477-485
    乔旭东,唐学玺,肖慧等.渤海湾近岸海域的细菌数量分析.中国海洋大学学报, 2007, 37(2): 273-276
    史君贤,胡锡钢,陈忠元等.秦山核电站历尽水域异养细菌的丰度及分布特征.东海海洋, 1991, 9(2): 34-39
    沈晓盛,陈亚瞿,陈琼.杭州湾北岸奉贤水域大肠菌群和异养细菌的生态分布.海洋环境科学, 2006, 25(1): 20-23
    吴建平,蔡创华,周毅频等.大亚湾网箱养殖区异养细菌和弧菌的数量动态.湛江海洋大学学报, 2006, 26(3): 21-25
    王文琪,钱振儒.胶州湾水域异养细菌、大肠菌群和石油降解菌的生态分布.海洋科学, 2000, 24(1): 37-39
    肖天,焦念志,王荣.胶州湾蓝细菌、异养细菌的数量分布特点.胶州湾生态学研究.北京:科学出版社, 118-124
    赵三军,肖天,岳海东.秋季东、黄海异养细菌(Heterotrophic Bacteria)的分布特点.海洋与湖沼, 2003, 34(3): 295-305
    赵三军,肖天,李洪波等.胶州湾异养细菌及大肠菌群的分布及对陆源污染的指示.海洋与湖沼, 2005, 36(6): 541-547
    周伟华,王汉奎,董俊德等.三亚湾秋、冬季浮游植物和细菌德生物量分布特征及其与环境因子的关系.生态学报, 2006, 26(8): 2633-2639
    郑天凌,王斐,徐美珠等.台湾海峡海域细菌产量、生物量及其在微食物环中的作用.海洋与湖沼, 2002, 33(4): 415-423
    郑天凌,王海黎,洪华生.微生物在碳的海洋生物地球化学循环中的作用.生态学杂志, 1994, 13(4): 47-50
    郑天凌,默哈默德,李文权等.台湾海峡海域细菌生产力及其异养活性研究.见:洪华生著. 台湾海峡初级生产力及其调控机制研究.中国海洋学文集(卷7), 1997,北京:海洋出版社, 153-161
    Carlson C A, Ducklow H W, Sleeter T D. Stocks and dynamics of bacterioplankton in the northwestern Sargasso Sea. Deep Sea Research II Top Study Oceanogry, 1996, 43: 491-516
    Cho B C, Azam F. Major role of bacteria in biogeochemical fluxes in the ocean’s interior. Nature, 1988, 332: 441-443
    Church M J, Hutchins D A, Ducklow H W. Limitation of bacterial growth by dissolved organic matter and iron in the southern ocean. Applied and Environmental Microbiology, 1999, 66(2): 455-466
    Cole J J, Findlay S, Pace M L. Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Marine Ecology Progress Series, 1998, 43:1-10
    Delille D, Basseres A, Dessommes A. Seasonal variation of bacteria in sea ice contaminated by diesel fuel and dispersed crude oil. Microbial Ecology, 1997, 33: 97-105
    Ducklow H W. Factors regulating bottom up control of bacteria biomass in open ocean plankton communist. Arch Hydrobiology Beih, 1992, 37: 207-217
    Ducklow H, Field J G. The changing ocean carbon cycle. Cambridge: Cambridge University Press, 187-239
    Falkowski P G, Woodhead A S. Primary productivity and biogeochemical cycles in the sea. New York: Plenum Press, 1992
    Ghigliong J F, Mevel G, Pay-Pujo M, et al. Diel and seasonal variations in abundance, activity, and community structure of particle-attached and free-living bacteria in NW Mediterranean Sea. Microbial Ecology, 2007, 54:217-231
    Gunner G, Antje W, Hilke D, et al. 40-year long-term study of microbial parameters near Helgoland (German Bight, North Sea): historical view and future perspectives. Helgolgoland Marine Research, 2004, 58: 230-242
    Hagstrom A, Larsson U, Horstedt P et al., Frequency of dividing cells, a new approach to the determination of bacterial growth rates in aquatic environments. Applied and Environmental Microbiology, 1979, 37: 805-812
    Hoch M P, Kirchman D L. Seasonal and inter-annual variability in bacterial production andbiomass in a temperature estuary. Marine and Ecology progress series, 1993, 98: 283-295
    Jennifer C, Bauer J E, Druffel E R M. Utilization and turnover of labile dissolved organic matter by bacterial heterotrophs in eastern North Pacific surface waters. Marine Ecology Progress Series, 1996, 139: 267-279
    Kirchman K L, Rich J H. Regulation of bacterial growth rates by dissolved organic carbon and temperature in the equatorial Pacific Ocean. Microbial Ecology, 1997, 33: 11-20
    Krichman D L. The up take of inorganic nutrients by heterotrophic bacteria. Microbial Ecology, 1994, 28: 255-271
    Krichman D L, Keil G K, Simon M, et al. Biomass and production of heterotrophic bacterioplankton in the oceanic subarctic Pacific. Deep Sea Research I, 1993, 40: 967-988
    Li W K W. Annual average abundance of heterotrophic bacteria and Synechococcus in surface ocean waters. Limnology and Oceanography, 1998, 43(7): 1746-1753
    Naganuma T. Abundance and production of bacterioplankton along a transect of Ise Bay, Japan. Journal of Oceanography, 1997 b, 53: 579-583
    Naganuma T, Miura S. Abundance, production and viability of bacterioplankton in the Seto inland sea, Japan. Journal of Oceanography, 1997a, 53:435-442
    Proctor L M, Fuhrman J A. Viral mortality of marine bacteria and cyanobacteria. Nature, 1990, 343: 60-62
    Shian F K, Ducklow H W. Temperature regulation of heterotrophic bacterioplankton abundance, production and, specific growth rate in Chesapeake Bay. Limnology and Oceanography, 1994, 39(6): 1243-1258
    Stefanija S, Mladen S, Nada K, et al. Seasonal and vertical distribution of planktonic bacteria and heterotrophic nanoflagellates in the middle Adriatic Sea. Helgoland Marine Research, 2004, 58(2): 83-92
    Tupas L, Koike I. Amino acid and ammonium utilization by heterotrophic marine bacteria growth in enriched seawater. Limnology and Oceanography, 1990, 35(5): 1145-1155
    李娟.海水浮游病毒提取技术及其荧光显微计数方法.硕士学位论文, 2005,中国海洋大学,青岛
    周玉航,潘建明,叶瑛等.细菌、病毒与浮游植物相互关系及其对海洋地球化学循环的作用. 台湾海峡, 2001, 20(3):340-345
    Alonso M C, Gomez F J, Rodriguez J, et al. Distribution of virus-like particles in an oligotrophic marine environment (Alboran Sea, Western Mediterranean). Microbial Ecology, 2001, 42: 407-415
    Auguet J C, Montanie H, Delmas D, et al. Dynamic of virioplankton abundance and its environmental control in the Charente estuary (France). Microbial Ecology, 2005, 50: 337-349
    Bettarel Y, Sime-Ngando T, Amblard C, et al. Viral activity in two contrasting lake ecosystems. Applied and Environmental Microbiology, 2004, 70: 2941-2951
    Bongiorni L, Magagnini M, Armeni M, et al. Viral production, decay and life strategies along a trophic gradient in the North Adriatic Sea. Applied and Environmental Microbiology, 2005, 71: 6644-6650
    Boehme J, Frischer M E, Jiang S C, et al. Viruses, bacterioplankton, and phyplankton in the southeastern Gulf of Mexico: distribution and contribution to oceanic DNA pools. Marine Ecology Progress Series, 1993, 97: 1-10
    Bratbake G, Heldal M, Thingstad T F, et al. Dynamics of Virus Abundance in Coastal Seawater. FEMS Microbiology Ecology, 1996, 19(4): 263-269.
    Cho B C, Azam F. Biogeochemical significance of bacterial biomass in the ocean’s euphotic zone. Marine Ecology Progress Series, 1990, 63: 253-259
    Cochlan W P, Wikner J, Steward G F, et al. Spatial distribution of viruses, bacteria and chlorophyll-a in neritic, oceanic and estuarine environments. Marine Ecology Progress Series, 1993, 92: 77-87
    Comeau A M, Buenaventura E, Suttle C A. A persistent, productive, and seasonally dynamic vibriophage population within Pacific oysters (Crassostrea gigas). Applied and Environmental Microbiology, 2005, 71(9): 5324-5331
    Danovaro R, Corinaldesi C, Dell’Anno A, et al. Viruses, prokaryotes and DNA in the sediments of a deep-hypersaline anoxic basin (DHAB) of the Mediterranean Sea. Environmental Microbiology, 2005, 7(4): 586
    David L, Kirchman. Phytoplankton death in the sea. Nature, 1999, 398: 293-294
    Fuhrman J A, Noble R T. Viruses and protests cause similar bacterial mortality in coastal seawater. Limnology and Oceanography, 1995, 40(7): 1236-1242
    Fuhrman J A, Sleeter T D, Carlson C A, et al. Dominance of bacterial biomass in the Sargasso sea and its ecological implication. Marine Ecology Progress Series, 1989, 57:207-217
    Furman J A. Marine viruses and their biogeochemical and ecological effects. Nature, 1999, 399:541-548
    Guixa B N, Calderon P J I, Heldal M, et al. Viral lysis and bacterivory as pprokaryotic loss factors along a salinity gradient, Aquatic Microbial Ecology, 1996, 11: 215-227
    Hara S, Terauchi K, Koike I. Abundance of viruses in marine waters: assessment by epifluorescence and transmission electron microscopy. Applied and Environmental Microbiology, 1991, 57: 2731-2734
    Heldal M, Bratbak G. Production and decay of viruses in aquatic environments. Marine Ecology Progress Series, 1991, 72: 205-212
    Hewson I, O’Neil J M, Fuhrman J A, et al. Viruses-like particle distribution and abundance in sediments and overlying waters along eutrophication gradients in two subtropical estuaries. Limnology and Oceanography, 2001, 46: 1734-1746
    Jiang S C, Paul J H. Seasonal and diel abundance of viruses and occurrence of lysogeny/bacteriocinogeny in the marine environment. Marine Ecology Progress Series, 1994, 104: 163-172
    Jiang S C, Paul J H. Occurrence of lysogenic bacteria in marine microbial communities as determined by prophage induction. Marine Ecology Progress Series, 1996, 142: 27-48
    Kirchman D L. Phytoplankton death in the sea. Nature, 1999, 398: 293-294
    Maranger R, Bird D F. Viral abundance in aquatic system: a comparison between marine and fresh waters. Marine Ecology Progress Series, 1995, 121: 217-226
    Manini E, Luna G M, Danovaro R. Benthic bacterial response to variable estuarine waters inputs. FEMS Microbiology Ecology, 2004, 50: 158-194 Magagnini M, Corinaldesi C, Monticelli S L, et al. Viral abundance and distribution in
    mesoopelagic and bathypelagic waters of the Mediterranean Sea. Deep Sea Research I, 2007, 54: 1209-1220
    Noble R T, Fuhrman J A. Virus decay and its causes in coastal waters. Applied and Environmental Microbiology, 1997, 63:77-83
    Nuria G B, Kristine L, Carlos P A. Viral Lysis and Bacterivory during a Phytoplankton Bloom in Coastal Water Microcosm. Applied and Environmental Microbiology, 1999, 65(5): 1949-1958. Oren A, Bratbak G, Heldal M. Occurrence of viruses-like particles in the Dead Sea. Extremophiles, 1997, 1: 143-149
    Paul J H, Jiang S C, Rose J B. Concentration of viruses and dissolved DNA from aquatic environments by vortex flow filtration. Applied and Environmental Microbiology, 1991, 57: 2197-2204
    Paul J H, Rose J B, Jiang S C, et al. Distribution of viral abundance in the reef environment of Key Largo, Florida. Applied and Environmental Microbiology, 1993, 59(3): 718-724
    Paul J H, Sullivan M B. Marine phage genomics: what have we learned? Curr Opin Biotechnol, 2005, 16(3): 299
    Proctor L M, Fuhrman J A. Viral mortality of marine bacteria and cyanobacteria. Nature, 1990,343: 60-62
    Shigemitsu H, Kazuki T, Isao K. Abundance of viruses in marine waters: assessment by epifluorescence and transmission electronmicroscopy. Applied and Environmental Microbiology, 1991, 57(9): 2731-2734
    Stent G S. Molecular biology of bacterial viruses. Freeman and Company, San Francisco, 1963 Steward G F, Smith D C, Azam F. Abundance and production of bacteria and viruses in the Bering and Chukchi Seas. Marine Ecology Progress Series, 1996, 131: 287-300
    Sugana A, Maria P S, Maria P M, et al. Dissolved esterase activity as a tracer of phytoplankton lysis: evidence of high phytoplankton lysis rates in the northwestern Mediterranean. Limnology Oceanogrophy, 1998, 43(8): 1836-1849
    Suttle C A, Chan A M, Cottrel M T. Infection of phytoplankton by viruses and reduction of primary productivity. Nature, 1990, 347: 467-469
    Vantarakis A C, Tsibouxi A, Venieri D, et al. Evaluation of microbiological quality of coastal waters in Greece. Journal of Water Health, 2005, 3(4): 371-380
    Weinbauer M G, Fuks D, Peduzzi P. Distribution of viruses and dissolved DNA along a coastal trophic gradient in the Northern Adriatic Sea. Applied and Environmental Microbiology, 1993, 59: 4074-4082
    Weinbauer M G, Suttle C A. Comparison of epifluorescence and transmission electron microscopy for counting viruses in natural marine waters. Aquatic Microbial Ecology, 1997, 13: 225-232
    Wilcox R M, Fuhrman J A. Bacterial viruses in coastal seawater: lytic rather than lysogenic production. Marine Ecology Progress Series, 1994, 114: 35-45
    Womman K E, Colwell R L. Virioplankton: viruses in aquatic ecosystems. Microbiology and Molecular Biology Reviews, 2000, 64(1):69-114
    Wommack K E, Hill R T, Kessel M, et al. Distribution of viruses in the Chesapeake Bay. Applied and Environmental Microbiology, 1992, 58: 2965-2970
    戴欣,周惠,蔡创华等.海洋沉积物中特有细菌类群的初步探讨.中山大学学报(自然科学版), 2001, 40(6): 51-54
    戴欣,周惠,陈月琴等.中国南海南沙海区沉积物中细菌16S rDNA多样性的初步研究.自然科学进展, 2002, 12(5): 479-484
    徐美香,王风平,肖湘.深海沉积物样品中古菌的16S rDNA分析.自然科学进展, 2003, 13(6): 598-603
    李涛,王鹏,汪品先.南海西沙海槽沉积物细菌多样性的初步研究.地球科学进展, 2006, 21(10): 1068-1062
    梁玉波等.海洋生物生态调查技术规程, 2006,北京:海洋出版社
    穆春华,包振民,陈刚等.西北太平洋沉积物中细菌多样性的研究.海洋学报, 2006, 28(4): 121-128
    潘晓驹.胶州湾超微型浮游真细菌16S rDNA RFLP分析相关技术的研究.硕士学位论文, 2000,中国科学院海洋研究所,青岛
    萨姆布鲁克J,拉塞尔D W.分子克隆实验指南(第三版). 2003,北京:科学出版社
    谢华,薛燕芬,赵爱民等.太平洋帕里西维拉海盆细菌多样性的非培养的初步分析.微生物学报, 2005, 45(1): 1-5
    薛超波,王国良,金珊等.海洋微生物多样性研究进展. 2004, 22(3): 377-384
    许飞,戴欣,陈月琴等.南沙海区沉积物中细菌和古细菌16S rDNA多样性的研究.海洋与湖沼, 2004, 35(1): 89-94
    臧红梅,樊景风,王斌等.海洋微生物多样性的研究进展.海洋环境科学, 2006, 35(3): 96-100
    张锐,林念炜,赵晶等.南极阿德雷岛地表沉积物中细菌多样性及对环境的相应.自然科学进展, 2003, 13(10): 1067-1072
    张海艳,王风平.东太平洋结核区细菌调查及鉴定.厦门大学学报(自然科学版), 2006, 45(增刊): 267-271
    Amann R I, Sludwig W, Schleifer K H. Phylogenetic identification and in suit detection of individual microbial cells without cultivation. Microbiology Review, 1995, 59: 143-169
    Asami H, Aida M, Watanabe K. Accelerated sulfur cycle in coastal marine sediment beneath areas of intensive shellfish aquaculture. Applied and Environmental Microbiology, 2005, 71(6): 2925-2933
    Bowman J P, McCuaig R D. Biodiversity, community structural shifts, and biogeography of prokaryotes within antarctic continental shelf sediment. Applied and Environmental Microbiology, 2003, 69(5): 2463-2483
    Briggs J C. Coincident biogeographic patterns: Indo-West Pacific Ocean. Evolution, 1999, 53: 326-335
    Brambilla E, Hippe H, Hagelstein A, et al. 16S rDNA diversity of cultured and uncultured prokaryotes of a mat sample from Lake Fryxell, McMurdo Dry Valleys, Antarctica Extremophiles, 2001, 5(1): 23-33
    Brinkmeyer R, Knittel K, Jurgens J, et al. Diversity and structure of bacterial communities in arctic versus Antarctic pack ice. Applied and Environmental Microbiology, 2003, 69(11): 6610-6619
    Cojolen M J L, Overmann J. Analysis of subfossil molecular remains of purple sulfur bacteria in a lake sediment. Applied and Environmental Microbiology, 1998, 64: 4513-4521
    Colwell R K, Coddington J A. Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions: Biological Sciences, 1994, 345(1311): 101-118
    Cowan D A. Microbial genomes- the untapped resource. Trends in Biotechnology, 2000, 18(1): 14-16
    Engeihardt M A, Daly K, Swannell R P, et al. Isolation and characterization of a novel hydrocarbon-degrading, gram-positive bacterium, isolated from intertidal beach sediment, and description of Planococcus alkanoclasticus sp. Nov. Journal of Applied Microbiology, 2001, 90(2): 237-247
    Freitag T E, Prosser J I. Community structure of ammonia-oxidizing bacteria within anoxi marine sediments. Applied and Environmental Microbiology, 2003, 69(3): 1359-1371
    Good I J. The population frequencies of species and the estimation of population parameters. Biometrika, 1953, 40(3-4): 237-264
    Hongoh Y, Deevong P, Inoue T, et al. Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Applied and Environmental Microbiology, 2005, 71(11): 6590-6599
    Hunter E M, Mills H J, Kostka J E. Microbial community diversity associated with carbon and nitrogen cycling in permeable shelf sediment. Applied and Environmental Microbiology, 2006, 72(9): 5689-5701
    Jetten M S M, Strous M, Pas-Schoonen K T, et al. The anaerobic oxidation of ammonium. FEMS Microbiology Reviews, 1999, 22: 421-437
    Kemp P F, Aller J Y. Bacterial diversity in aquatic and other environments: what 16S rDNA libraries can tell us. FEMS Microbiology Ecology, 2004, 47: 161-177
    Li L, Kato C, Horikoshi K. Microbial diversity in sediments collected from the deepest cold-seep area, the Japan Trench. Marine Biotechnology, 1999a, 1:391-400
    Li L, Kato C, Horikoshi K. Bacterial diversity in deep-sea sediments from different depths. Biodiversity and Conservation, 1999b, 8: 659-677
    Lee H K, Chun J, Moon E Y, et al. Hahella chejuensis gen. gov., sp. nov., an extracellular-polysaccharide-producing marine bacterium. International Journal of Systematic and Evolutionary Microbiology, 2001, 51(2): 661-666
    Nguyet T P, Lee J, Kang K H, et al. Analysis of microbial diversity in oligotrophic microbial fuelcells using 16S rDNA sequences. FEMS Microbiology Letters, 2004, 233: 77-82
    Ravenschlag K, Sahm K, Pernthaler J. High bacteria diversity in permanently cold marine sediments. Applied and Environmental Microbiology, 1999, 65(9): 3982-3989
    Sanders H L. Marine benthic diversity: a comparative study. America Nature, 1968, 102: 243-282
    Seo H J, Bae S S, Lee J H, et al. Photobacterium frigidiphilium sp. nov., a psychrophilic, lipolytic bacterium isolated from deep-sea sediments of Edison Seamount. International Journal of Systematic and Evolutionary Microbiology, 2005, 55: 1661-1666
    Spring S, Schulze R, Overmann J, et al. Identification and characterization of ecologically significant prokaryotes in the sediment of freshwater lakes: molecular and cultivation studies. FEMS Microbiology Reviews, 2000, 24(5): 573-590
    Urakawa H, Kita-Tsukamota K, Ohwada K. Microbial diversity in marine sediments from Sagami Bay and Tokyo Bay, Japan, as determined by 16S rRNA gene analysis. Microbiology, 1999, 145(11): 3305-3315
    Wise M G, Mcarthur J V, Shimkets L J. Bacterial diversity of a Carolina bay as determined by 16S rRNA gene analysis: confirmation of novel taxa. Applied and Environmental Microbiology, 1997, 63: 1505-1514
    Zhou J Z, Bruns M A, Tiedje J M. DNA recovery from soils of diverse composition. Applied and Environmental Microbiology, 1996, 62(2): 316-322

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700