用户名: 密码: 验证码:
群潜坝对河道糙率影响的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
计算流体力动力学(简称CFD)是建立在经典流体力学与数值计算方法基础之上的一门新型独立学科,通过计算机数值计算和图像显示的方法,在时间和空间上定量描述流场的数值解,从而达到对物理问题研究的目的,它客服了理论分析方法对于大量非线性情况不能给出解析结果和试验方法受到测量精度、经费投入、人力和物力的巨大耗费及周期长的缺点。它兼有理论性和实践性的双重特点,成功应用于水利、航运、海洋、环境等流体工程领域。
     河道糙率在洪水演进计算、河道整治规划等水力计算中常常用到,其主要用于推求河道水面线。河道糙率对水面线的灵敏度非常大,其准确程度对计算精度有很大影响。在洪水演进计算中,河道糙率与设计洪水位的计算密切相关;在河道整治规划中河道糙率影响到土石方开挖和回填的计算,只有选取了合适的河道糙率才能确定出合理、经济的工程规模。
     本文利用CFD软件Fluent,采用水气两相流的VOF方法与标准k-ε紊流模型相耦合,对具有群潜坝的河道水流流场进行了数值模拟,旨在探求群潜坝对河道糙率影响的机理,以求对物理模型试验的结果进行进一步完善。
     本文研究内容为校自选项目“群潜坝对河道糙率影响试验研究”的后续研究内容;通过对坝间距为50cm、25cm、12.5cm、6.25cm与原河道(没有布置潜坝),流量分别为4m3/h.8m3/h、15m3/h、25m3/h、45m3/h、75m3/h共30种工况下河道水流流场的数值模拟,分析了建有群潜坝的河道其糙率的变化,得到了坝间距、水深坝高比对河道糙率的影响规律,并进一步分析了群潜坝对河道糙率影响的机理。所得结论如下:1)FLUENT软件用于计算建有群潜坝的河道水流流场是可行的;2)河道中布置群潜坝后,水流流速分布与原河道(没有布置群潜坝的河道)中水流流速分布相似;3)河道通过某一流量时,对同一河道断面而言,河道糙率随着坝间距的减小而增大;4)在群潜坝布置段,水深坝高比的变化对对河道糙率影响较大;群潜坝布置段下游,水深坝高比对河道糙率影响较小;5)群潜坝对其布置段下游河道的糙率基本没有影响,群潜坝布置段下游河道糙率与原河道糙率基本相等;6)在坝间距一定的情况下,对同一河道断面而言,河道糙率随着水深坝高比的增大而减小;7)相同坝间距和水深坝高比情况下,河道糙率沿程减小。即群潜坝对河道糙率的影响是沿程减小的;当水深坝高比增大到一定程度后,河道糙率趋于稳定,不再沿程发生变化;8)河道通过某一流量时,随着坝间距的减小(即潜坝数量增多),河道内水流流速从上游到下游变大的幅度增大;9)潜坝迎水面流速矢量分散,流速较小,潜坝背水面流速矢量集中,流速较大;潜坝背水面出现漩涡(即负压区)。10)潜坝迎水面流速等值线条数较少,覆盖范围较大,流速较小;潜坝背水面流速等值线条数较多,而且覆盖范围小,比较集中,流速较大。
Computational Fluid Dynamics (short title CFD) is a new independent subject that is based on the classical hydromechanics and numerical calculation method. Through the method of computer numerical calculation and image display, it describes the flow field numerical solution quantitatively in time and space, so as to achieve the goal of the research of physical problems. It overcomes the weakness that the theoretical analysis method cannot give the analytical results for most nonlinear situation and the test methods are affected by measuring precision, funds, manpower and material resources of the huge cost and long circle. It has the double characteristics of theory and practice, and is applied in water conservancy,shipping,Marine,environment and other fluid engineering field successfully.
     River channel roughness often is used in hydraulic calculation such as floods evolution calculation, river channel regulation and so on. It is mainly used to inquire the water surface line. River channel roughness is very sensitivity to water surface line.Its precision has a great influence on calculation accuracy. In the floods evolution calculation, river channel roughness is closely related to the calculation of design flood level; in river channel regulation,river channel roughness affects the excavation and backfilling calculation in cubic meter of earth and stone. Only select appropriate river channel roughness can formulate reasonable, economical project scale.
     This text using CFD software Fluent, coupling VOF method of two phase flow and k-εturbulence model, making the numerical simulation for river flow field with the submerged dikes, is aimed at exploring the submerged dikes' influencing mechanism to river channel roughness, in order to make the result of physical model test further perfection.This paper studies the content for the project which selectes from follow-up research of the school project "the experimental study of the submerged dikes'inference on river channel roughness";
     With regard to those flow fields of river channels with 50cm、25cm、12.5cm、6.25cm spacing'dikes and original river channel corresponding to flow 4m3/h、8m3/h、15m3/h、25m3/h、75m3/h, total of 30 kinds of working conditions, the author conduct numerical simulation research, analyze variation of roughness of river channel of building submerged dikes, receive the influence law of the ratio between the water depth and dike height for roughness of river channel and further analyze the influence mechanism of submerged dikes for river channel roughness.The results are following conclusions:1) FLUENT software used for the calculation of river flow field of river channel of building submerged dikes is basically feasible; 2) After the arrangement of submerged dikes,the water velocity distribution is similar to the velocity distribution of the original river; 3) When a flow pass river channel, river channel roughness will increase,while dikes'spacing reduce for the same water cross section; 4) In submerged dikes'sections, river channel roughness is largely influenced by variation of the ratio between the water depth and dike height; the downstream of submerged dikes'sections, river channel roughness is little influenced.5) The inference on river channel roughness for the downstream of submerged dikes'sections can be ignored, the roughness of submerged dikes' downstream is equals to the roughness of the original channel; 6) when the dikes'spacing is unchanged, river channel roughness will reduce when the ratio between the water depth and dike height increased,for the same water cross section; 7) For the same dikes'spacing and the ratio between the water depth and dike height, river channel roughness will reduce along the river channel; The submerged dikes'inference on river channel roughness is reduced along the river channel; when the ratio between the depth and dam height reached to a certain level,the river channel roughness will no longer changed along the river channel; 8) When a flow pass river channel, with the decrease of the dikes'spacing, the Margin of becoming large Of flow velocity from upstream to downstream increases; 9) The velocity vector of water positive side of the submerged dike is scattered and small; the dorsal surface of the submerged dike, the velocity vector is concentrated and great; the dorsal surface of the submerged dike,there is whirlpool(Negative pressure area); 10) The velocity vector equivalent lines of water positive side of the submerged dike is few and covers a large area and the velocity is small; The velocity vector equivalent lines of the dorsal surface of the submerged dike is concentrated and great and covers large area.
引文
[1]王福军.计算流体动力学分析.北京:清华大学出版社,2004.
    [2]童绩.天然河道糙率的选用[J].铁道工程学报,2003,(4):172-174.
    [3]张丽霞,常玉祥.推算松花江水面线时糙率值的确定[J].吉林水利,2002,(2):31-33.
    [4]袁世琼,天然河道的糙率计算[J].水电站设计,1997,(1):82-85.
    [5]许光祥.河道整治后糙率估算方法的探讨[J].重庆交通学院学报,1998,(1):23-27.
    [6]姜淑坤,付艳红.河道糙率问题的探讨[J].吉林水利,2005,(3):25-26.
    [7]贲立坤,钱旭光等.梧桐河天然河道糙率系数的确定[J].黑龙江水专学报,2003,(1):49-53.
    [8]马吉明,史哲.南水北调典型宽浅渠道糙率系数研究[J].水力发电学报,2007,(5):75-79.
    [9]刘臣,平克军.河道二维数值模拟糙率横向分布研究[J].水道港口,2008,(2):113-118.
    [10]段文刚,黄国兵.混凝土渠道糙率原型观测[J].人民珠江,2001,(5):7-17.
    [11]佘伟伟,李艳红等.含淹没植物的水流阻力试验研究[J].水利水电技术,2010,(3):24-28.
    [12]NepfH-Drag, turbulence, and diffusion in flow through emergent vegetation[J]·Water Resources Research,1999,35 (2):479-489.
    [13]Stone B M, Shen H T·Hydraulic Resistance of Flow in Channels with CylindricalRoughness[J]·Journal ofHydraulic Engineering,2002,128(5):500-506-
    [14]李鹏飞.海漫柔性加糙相对糙率的确定及加糙后对近底流速影响的研究.内蒙古农业大学硕士研究生学位论文.2004.
    [15]刘风华.引黄济津应急调水工程河北段输水能力研究.河海大学硕士研究生学位论文.2006.
    [16]王晓玲,段琦琦等.长距离无压引水隧洞水气两相流数值模拟[J].水利学报,2009,(5):596-620.
    [17]王菲.复式河道数值模型应用研究.河海大学硕士研究生学位论文.2004.
    [18]傅宗甫.感潮河网引水增流水力水质计算及河道糙率优化.河海大学硕士研究生学位论文.2002.
    [19]唐洪武,闫静等.含植物河道曼宁阻力系数的研究[J].水利学报.2007,(11):1347-1354.
    [20]张小琴,包为民等.河道糙率问题研究进展[J].水力发电.2008,(6):98-100.
    [21]庄春义.河道一维非恒定流水温预测模型研究.四川大学硕士研究生学位论文.2005.
    [22]李旭,李智录.基于河床糙率反演的水库入库流量测定与模型试验[J].水利科技与经济,2009,(4):290-292.
    [23]吴晓玲,王船海.基于水动力学模型的实时糙率反推在洪水预报中的应用[J].水电能源科学,2008,(5):43-46.
    [24]杨淑慧,王理许等.凉水河水环境治理生物填料对河道阻力的影响[J].北京水务,2007,(7):17-21.
    [25]史明礼,苏娅.山区河道糙率变化规律浅析[J].水文,2000,(2):19-22.
    [26]雷成茂,贾俊亮等.天然河道糙率确定方法探讨[J1.山西水利,2006,(6):88-89.
    [27]于庆峰.海曼加糙影响下水流垂向二维数值模拟.内蒙古农业大学硕士研究生学位论文.2006.
    [28]高培建.群潜坝对河道糙率影响的试验研究.太原理工大学硕士研究生学位论文.2009.
    [29]张万富.潜坝在川江航道整治中的应用[J].重庆交通学院学报,1997,(2):91-96.
    [30]赵连白.三峡蓄水运用对葛洲坝通航与宜昌河段的影响及对策研究.天津大学硕士研究生学位论文.2004.
    [31]李志勤,李嘉,易文敏,何进朝.VOF模型在黄河潘家台滩整治工程中的应用[J].四川大学学报(工程科学版),2004,(6):18-23.
    [32]崔占峰,张小峰.三维紊流模型在丁坝水流中的应用研究[J].长江科学院院报,2008,(2):21-25.
    [33]陈海军.钱塘江排桩式丁坝上涌潮压力现场测试及数值分析.浙江大学硕士研究生学位论文.2006.
    [34]陈冲,魏文礼等.基于FLUENT软件的闸后水跃二维数值模拟[J].黑龙江水专学报,2008,(4):26-29.
    [35]周宜林.淹没丁坝附近三维水流运动大涡数值模拟[J].长江科学院院报,2001,(5):28-31.
    [36]杨纪伟,胥战海等.基于FLUENT的小尺度粗糙明渠紊流数值模拟[J].人民长江,2008,(19):76-82.
    [37]American Standard Company.A Watershed Moment in Toilet History:Maintenance-Free Flushing with Virtually No Clogs[EB/OL].
    [38]Kathryn,Streeby,EdDel,Grande.Trends,Talk:New,Toilet,FlushingTechnology,From Kohler[EB/OL].(20 04-11-11)[2006-12-25].http://www.kohler.com.
    [39]Gerrard JH.Themechanics of the formation regiono fvor-tices behind bluff bodies[J].J. FiudMech.,1996,25:401-413.
    [40]Michiue M, Hinokidani. O. Calculation of 2-D BedEvolution Aroundspur-dike[J].Annual Journal of Hydraulic Engineering,JSCE,1992,36:61-66.
    [41]MAYERLE R,TORO F M,WANG S S Y.Verification of a three-dimensional numerical model simulation of flow in the vicinity of spur-dikes [J]. Journal of HydraulicResearch,Delft,the Netherland,1995,33(2):243-256.
    [42]OUILLON S, DARTUS D. Three-dimensional computation of flow around groyne [J]. Journal of Hydraulic Engineering, ASCE,1997,123 (11):963-970.
    [43]TINGSANCHALI T, MAHESWARAN S.2-D depth-averaged flow computation near groyne[J]. Journal of Hydraulic Engineering,ASCE,1990,116(l):71-86.
    [44]李洪.丁坝水力学特性研究.四川大学博士研究生学位论文.2003.
    [45]黄辉.河道一维水力计算参数的研究.四川大学硕士研究生学位论文.2004.
    [46]周学漪.计算水力学.北京:清华大学出版社,1995.
    [47]Fluent Inc.,FLUENT User's Guide. Fluent Inc.2003.
    [48]Fluent Inc.,FLUENT User Defined Function Manual. Fluent Inc.2003.
    [49]Fluent Inc.,GAMBIT Modeling Guide. Fluent Inc.2003.
    [50]刘儒勋,王志峰.数值模拟方法和运动界面追踪[M].合肥:中国科学技术大学出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700