用户名: 密码: 验证码:
大型有色冶炼企业铁路运输智能优化调度方法及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁路运输是大型有色冶炼企业的大动脉,它肩负着运送物资保障生产的重任,在有色冶炼企业物流环节中具有十分重要的地位。但随着国民经济的发展,有色冶炼企业生产规模日益扩大,物料的运输量迅猛增加,而我国有色冶炼企业铁路规模偏小,铁路布局、调度方式与企业生产方式密切相关,具有各站场分布分散、调车以小运转作业为主、铁路线路短、自备车与租用车混合编组等特点,并存在检斤作业滞留罚金等问题,使得企业铁路运输调度作业问题较复杂、难度大。目前,我国有色冶炼企业铁路大多以人工调度为主,使得货运站长期处于满负荷运行状态,容易导致列车运行效率低,物料运输不及时问题,甚至出现堵车、安全事故等现象,严重制约了有色冶炼企业发展。因此,针对大型有色冶炼企业货运铁路特点,研究有色冶炼企业货运站列车的编组与调度方法,对缩短车辆周转时间,避免滞留罚金问题,提高我国有色冶炼企业的铁路货运组织作业效率具有重要现实意义。
     论文在分析研究大型有色冶炼企业铁路运输作业特点的基础上,依据企业铁路运输编解作业、取送车作业及调车计划编制需求,建立了铁路运输调度模型,并研究了基于蚁群交互式优化算法的铁路调度优化方法,提出了企业铁路调车计划编制优化方法和不同布局的企业铁路取送车作业优化方法,成功应用于企业铁路运输智能调度系统中。论文主要研究工作及创新性成果包括:
     (1)针对有色冶炼企业铁路运输网调度过程复杂,情况多变且影响因素多的问题,分析研究了运输调度过程的特点及作业流程,将复杂的铁路运输调度模型分解为铁路编解模型、树枝型铁路取送车作业模型及混合型铁路取送车作业模型,降低了调度模型的复杂度,提高了企业铁路运输调度模型的普适性。
     (2)为了大型企业铁路运输调度模型实时求解需要,针对经典遗传算法的局限性,提出了一种蚁群交互式优化算法。该算法将蚁群与遗传算法融入文化算法框架,组成基于蚁群的主群体空间和信念空间两大空间,主群体空间在进化过程中定期组织最差个体向信念空间提供的种群最优模式学习,从而充分利用了优秀个体所包含的特征信息,避免了蚁群算法种群单一性的问题,在很大程度上提高了算法的收敛速度。
     (3)针对企业铁路的调度作业计划人工制定准确率低、负担重、作业连贯性差等问题,根据大型企业铁路运输各作业子系统具有前后串联、相互影响的特点,把复杂的调度问题分解为列车分组、列车解编组、列车进路安排、列车取送车作业四个子问题,将优化方法分别用于铁路调度作业中的几个不同的子问题,避免了复杂优化计算问题,极大地提高了模型优化求解的效率。同时,运用遗传精英蚁群算法对协调优化模型进行求解,优化了有色冶炼企业某段时刻内的配流,缩短了列车在站停留时间。针对企业租用国家铁路列车延时罚款问题,将罚款因素作为约束条件加入优化问题中,设计了白适应的惩罚函数,并将其与遗传精英蚁群算法相结合,解决了带有惩罚时间约束的铁路调度问题,有效地避免了企业铁路运输租用列车的罚款问题。
     (4)根据企业编组站树枝型专用线的特点,利用图论的知识把编组站装卸货专用线分布抽象为汉密尔顿图,将树枝型取送车问题转化为旅行商(TSP)问题,采用了一种新的融合算法——遗传蚁群算法对该问题进行求解,经过遗传算法的初步搜索并生成初始信息素分布,增强了蚁群算法的正反馈机制,降低了蚁群算法中的参数调整程度。此外,遗传算法与蚁群算法结合后,在算法的收敛速度加快的同时,蚁群算法中的α、β、p参数对取送车问题规模变化的敏感度降低,提高了算法的鲁棒性。在蚁群算法阶段使用最大-最小蚂蚁系统(MMAS),而且同时采用信息素的局部更新和全局更新规则,有效避免了陷入局部最优问题。
     (5)设计开发了大型有色冶炼企业铁路运输智能调度系统,实现了企业铁路调度过程的钩机划、调车作业在线优化与离线仿真功能,在保证安全和生产需求的条件下,提高了调车效率,有效了加速车辆的周转,降低企业运输成本。
Railway transportation is the main artery of large-scale non-ferrous metal smelting enterprises in our country. It plays a very important role in the logistics chain, as it carries out the key task of transporting materials and guaranteeing regular production. With the development of national economy, the rapid increase in the production scale of non-ferrous metal smelting enterprises, the amount of material transportation is also rapidly increasing. However, the railways related to non-ferrous metal smelting enterprises in our country are quite in small scales. The distribution of railway lines and the mode of dispatching are closely related to the production mode of an enterprise. It adds to the difficulty and the complexity of the enterprise railway transportation to have the problems of dispersed distribution of railway stations, small-scaled dispatching mode, short lines of railways, mixed marshalling of self-owned and rented carriages and the fines caused by the cargo retention. At present, the railways owned by non-ferrous metal smelting enterprises in our country are mainly manually scheduled, making freight stations running at full capacity most of the time, which easily leads to the problems such as low efficiency of train operation, not timely arrival of cargoes or even traffic jams and accidents, and seriously hampers the development of non-ferrous smelting business. Therefore, it is of great significance to do some research on the mode of marshaling and dispatching of cargo trains of large non-ferrous smelting business, based on its characteristics, in order to shorten the turnaround time of vehicles, avoid fines caused by cargo detention and improve the efficiency of our non-ferrous smelting enterprises organizing operation.
     The thesis sets up a scheduling model of railway transportation based on the analysis of the characteristics of large enterprises rail transportation operation, according to the operation of train sorting and classifying, pickup and delivery, and the demand of dispatching organization of railway transportation. The thesis also studies railway scheduling optimization based on cultural evolution algorithm. Thus the thesis proposes railway shunting planning optimization methods, and placing-in and taking-out vehicle optimization of different layout of the enterprise railways, and applies them successfully to enterprise rail transportation intelligent scheduling systems. The main research and innovative achievements of the thesis are as follow:
     (1) According to the complex mechanism of business scheduling process for railway transportation network, changing circumstances and the impact of many factors, the characteristics of railway transport scheduling process, transportation scheduling processes are analyzed and studied in order to break up the complex railway scheduling model into sorting and classifying model, tree branch lines model and comprehensive layout train placing-in and taking-out model to reduce the complexity of scheduling model, lay a solid foundation for the model optimization solution. In addition, the actual situation of rail transport lines to improve enterprise rail transport scheduling model universality has been fully taken into consideration in the comprehensive layout train placing-in and taking-out model.
     (2) Ant colony interactive optimization algorithm is put forward to meet the demand of timely solution to the scheduling model of large enterprise railway transportation, making up for the limitations of classical genetic algorithm. The ant colony algorithm and genetic algorithm are blended into the cultural framework, form the main group space and belief space based on ant colony groups. In the evolution process, the main groups periodically organize the worst individuals to learn the best mode population provided by the belief space, taking full advantage of the excellent characteristics of the information contained in the individual, avoiding the population singularity problem of ant colony algorithm, thus greatly improving the convergence speed.
     (3) The complex train scheduling process is divided into four sub processes:train formation optimization, sorting and marshalling operation optimization, train route arrangement and operation of fetching and delivering carriages, applying the optimization method to several different sub problems in the train scheduling operation to avoid the complexity of optimization problems and greatly improve the efficiency of solution with the optimization model, considering such problems as low accuracy, heavy burden and poor continuity in manual operation of making railway scheduling plan and the characteristics of backward and forward interrelationship and inter influence of the operation subsystems of large enterprise railway transportation. In addition, it can optimize the process of distribution of materials of the metallurgical enterprises within a certain period of time and shorten the period of time when trains are kept in the train station to apply the hybrid elite ant colony algorithm to coordinate and optimize models. In order to solve the problem of train delay caused by renting the national railway system, the penalty factor is included in the optimization as constraint condition. An adaptive penalty function is designed and combined with the genetic elite ant colony algorithm, which solves the problem of train scheduling with the restriction of time penalty and effectively avoids penalty caused by rented train of enterprise railway transportation.
     (4) A new blending method is applied, which is called a genetic ant colony algorithm, to solve the problem of transformation of the branch-type pickup and delivery vehicles problem into traveling salesman problem (TSP), according to the characteristics of branch-type-specific line in the company marshalling yard, using graph theory knowledge to abstract the distribution for loading and unloading cargo in marshalling yard into the map of Hamilton. This mode genetic algorithm initially searches the information and generates the initial pheromone distribution, enhances the positive and negative feedback mechanism of ant colony algorithm, and greatly reduces the degree of parameter adjustment of ant colony algorithm. In addition, the ant colony algorithm α, β, p parameters reduce sensitivity to changes of the pickup and delivery vehicles in problem size and improve the robustness of the algorithm after the combination of genetic algorithms and ant colony algorithm, increasing the speed of the convergence of the algorithm. It can avoid falling into local optimization problem to a certain extent to apply the maximum-the smallest ant system (MMAS), during the period of having the ant colony algorithm and to use the local pheromone update and global update rules at the same time.
     (5) Rail transport intelligent scheduling system for large non-ferrous smelting enterprises is designed and developed, which ensures machine drawing in the process of enterprise rail scheduling, on line optimization of dispatching operation and the off-line simulation function. The system increases shunting efficiency, meanwhile, accelerates vehicle turnover effectively and reduces transportation costs of enterprises with the conditions of ensuring the safety and meeting production demand.
引文
[1]江娜.钢铁企业铁路运输系统优化研究.涟钢科技与管理,2011,2(1):59~61
    [2]郭文新,顾力环.企业专用铁路运输组织的研究.铁路运输与经济,2007,11(29):13~15
    [3]刘敏.工业编组站管理信息系统分析与设计.计算机应用研究,2002,4(12):109~111
    [4]Andrea D. Ariano, Dario Pacciarelli, Marco Pranzo. A branch and bound algorithm for scheduling trains in a railway network. European Journal of Operational Research,2007,183 (2):643-657
    [5]Higgins A, Kozan E, Ferreira L.. Optimal scheduling of trains on a single line track. Transportation Research Part B,1996,6 (30):147-161
    [6]Sahin I.. Railway traffic control and train scheduling based on inter-train conflict management. Transportation ResearchPart B,1999,9 (33):511-534
    [7]Fay A.. A fuzzy knowledge based system for railway traffic control. Engineering Application of Artificial Intelligence,2000,13 (6):719-729
    [8]Yung Hsiang Cheng, Li An Yang. A Fuzzy Petri Nets approach for railway traffic control in case of abnormality:Evidence from Taiwan railway system. Expert Systems with Applications,2009,36 (4):8040-8048
    [9]Assad A. A.. Models for rail transportation. Transportation Research,1980,14 (3):205-220
    [10]Niu, Huimin. A train dispatching optimization for classification yards by genetic algorithm. Traffic and Transportation Studies Proceedings of ICTTS, Guilin, China,2002.299-304
    [11]Kraay D., Harker P. T., Chen B.. Optimal pacing of trains in freight railroads: Model formulation and solution. Operations Research,1991,39 (1):82-99
    [12]Koriem S. M.. A fuzzy petri net tool for modeling and verification of knowledge based systems. The Computer Journal,2000,43 (3):206-223
    [13]Fay A.. A fuzzy petri net approach to decision making in case of railway track closures. In IFSA world congress and 20th NAFIPS international conference, Vancouver, Canada,2001.2858-2863
    [14]Michele Missiko. An object oriented approach to an information and decision support system for railway traffic control. Engineering Applications of Artificial Intelligence,1998,11 (4):25-40
    [15]Te-Wei Chiang; Hai-Yen Hau. Knowledge based railway scheduling system. Third International Conference on Industrial Fuzzy Control and Intelligent Systems, New York, USA,1993.42-46
    [16]Middelkoop A.D., Hemelrijk R. Exploring the effects of dynamic traffic management. Fourth Workshop on Algorithmic Methods for Railway Optimization, Dagstuhl, Germany,2005.67-70
    [17]Schaafsma A.A.M.. Dynamic traffic management-innovative solution for the Schiphol bottleneck. First International Seminar on Railway Operations Modelling and Analysis, Delft, The Netherlands,2005.1020-1025
    [18]徐杰,贾利民,秦勇等.铁路智能运输系统通用信息平台的设计与实现.中国铁道科学,2006,27(3):89~94
    [19]贾利民,聂阿新,王富章.铁路智能运输系统—现状、挑战与发展.交通运输系统工程与信息,2001,1(3):207~211
    [20]铁道部运输局.铁路列车调度指挥系统(TDCS).中国铁道出版社.2006.
    [21]周立新.铁路智能运输系统规划的系统工程方法.铁道学报,2002,24(5):1-4
    [22]贾传峻,胡思继,杨宇栋.基于多智能体的铁路双线调度指挥系统.北京交通大学学报,2005,29(6):13~17
    [23]何世伟,宋瑞,谭立刚等.枢纽编组站智能调度系统的设计与实现.北京交通大学学报,2002,26(5):19~23
    [24]王书龙.客运专线铁路列车调度指挥系统相关技术研究.西南交通大学硕士论文,2008.
    [25]李晓海.铁路运输调度车流推算辅助决策系统.中国铁路,2011,(1)58-60
    [26]杨景玉,孙传庆,王秀丽.基于分散自律体系的铁路运输计划与调度信息综合系统研发.自动化与仪器仪表,2010,(3):130~134
    [27]王秀娟.重载铁路调度集中系统的研究.铁路计算机应用,2009,18(2)10-14
    [28]李长宏,付壮,秦建法.铁路特种箱空箱调度模型及求解算法.铁道货运,2011,29(3):35~38
    [29]鲁放,韩宝明,何世伟等.铁路调度区域内货物列车出发计划动态全局优化.中国铁道科学,2010,31(1):134~138
    [30]闫立新.我国铁路高速化调度模式的研究.铁道运营技术,2011,17(2)20~21
    [31]吕红霞,倪少权.基于组件技术的铁路大型客运站行车调度系统.中国铁道科学,2008,29(3):122~127
    [32]魏臻.企业铁路智能运输调度系统关键技术研究.合肥工业大学博士学位论文.2005
    [33]王雪辉.基于PETRI网建模的企业铁路调度作业计划智能编排系统的研究.合肥工业大学硕士学位论文.2006
    [34]郭进,刘利芳,云培研.基于工作流模型的企业铁路调度指挥与监控系统研究.计算机应用,2007,27(11):2645~2648
    [35]张可,陈军华.基于企业内部运输的机车运用优化仿真研究.交通运输系统工程与信息,2008,8(5):45~50
    [36]王致华.氧化铝生产企业铁路运输管理信息系统分析与设计.中南大学硕士学位论文.2007
    [37]王雅琳,马杰,阳春华等.有色冶炼企业铁路运输调度仿真模型研究.计算技术与自动化,2005,24(4):95~99
    [38]魏臻,陆阳,李谦.企业铁路调度集中系统的研究与实现.铁道通信与信号,2005,41(9):26~29
    [39]景小荣.企业专用铁路调度监督系统的研究.西南交通大学硕士学位论文.2002
    [40]王雅琳,马杰,阳春华等.有色冶炼企业专用铁路运输智能调度系统研究.计算机工程与应用,2006,16(3):207~211
    [41]马杰.有色冶炼企业专用铁路运输智能调度系统研究.中南大学硕士学位论文.2005
    [42]郑时德,吴汉琳.铁路行车组织.北京:中国铁道出版社,1991
    [43]Dorfman M. J., Medanic J.. Scheduling trains on a railway network using a discrete event model of railway traffic. Transportation ResearchPart B,2004, (38):81-98
    [44]Avramovic Z. Z.. Method for evaluating the strength of retarding steps on a marshaling yard hump. European Journal of Operational Research,1995,85 (5):504-514
    [45]Rob M.P. Goverde. Railway timetable stability analysis using max-plus system theory. Transportation Research Part B,2007, (41):179-201
    [46]Feng Li, Ziyou Gao, Keping Li, Lixing Yang. Efficient scheduling of railway traffic based on global information of train. Transportation Research Part B, 2008, (42):1008-1030
    [47]Semet Y, Schoenauer M.. An efficient memetic, permutation based evolutionary algorithm for real world train timetabling. Evolutionary Computation,2005,3 (5):2752-2759
    [48]Booler J.. The solution of a railway locomotive scheduling problem. Journal of Operational Research Society,1980,31 (10):943-948
    [49]Forbes M. A., Holt J. N., Watts A. M.. Exact solution of locomotive scheduling problems. Journal of Operational Research Society,1991,42 (10):825-31
    [50]Ziarati K., Soumis F., Desrosiers J., Solomon M. M.. A branch-first, cut-second approach for locomotive assignment. Management Science,1999, 45 (8):1156-1168
    [51]Lubbecke M. E., Zimmerman U. T.. Engine routing and scheduling at industrial in-plant railroads. Transportation Science,2003,37 (2):183-197
    [52]Kuo C. C., Nicholls G. M.. A mathematical modeling approach to improving locomotive utilization at a freight railroad. OMEGA. The International Journal of Management Science,2007,35 (5):472-85
    [53]Ji-Won Chung, Seog-Moon Oha, In-Chan Choi. A hybrid genetic algorithm for train sequencing in the Korean railway. Omega,2009,46 (3):555-565
    [54]David R. Martinelli, Huanliang Teng. Optimization of railway operations using neural networks. Transportation Research Part C:Emerging Technologies, 1995,4(1):33-49
    [55]Michael Francis Gorman. An application of genetic and tabu searches to the freight railroad operating plan problem. Annals of Operations Research,1998, 78 (3):51-69
    [56]Montserrat Abril, Miguel A. Salido, Federico Barber. Distributed search in railway scheduling problems. Engineering Applications of Artificial Intelligence,2008,21 (3):744-755
    [57]Valentina Cacchiani, Alberto Caprara, Paolo Toth.Scheduling extra freight trains on railway networks. Transportation Research Part B,2010, (44) 215-231
    [58]Flier H., Graffagnino T., Nunkesser M. Planning additional trains on corridors. Proceedings of the 8th International Symposium on Experimental Algorithms, Dortmund, Germany,2009.149-160
    [59]Abril M., Barber F., Ingolotti L., Lova A., Salido M.A, Tormos P. An Efficient Method to Schedule New Trains on a Heavily Loaded Railway Network. Lecture Notes in Computer Science,2004,3315 (4):164-173.
    [60]杜文,李文权.放射型专用线直达列车取送车问题的算法.西南交通大学学报,1995,30(5):503~508
    [61]郑时德,吴汉琳.铁路行车组织.北京:中国铁道出版社,1991
    [62]王慈光.放射型非直达车流取送车问题研究.交通运输工程与信息学报,2006,31(3):16~23
    [63]牟峰,王慈光,杨运贵.放射型专用线非直达车流取送车模型及算法.铁道学报,2009,31(3):1~5
    [64]余少鹤,李夏苗.货物作业车取送模型及算法研究.铁道运输与经济,2002,29(12):6~48
    [65]黄向荣.树枝型专用线取送车的模型及算法研究.兰州交通大学学报,2007,10(6):51~54
    [66]李文权.树枝型铁路专用线取送车问题的数学模型及算法.河南大学学报,1997,26(6):1~8
    [67]赵洋,方晓平.层次分析法在取送调车作业计划编制中的应用.铁道运输与经济,2005,19(7):78~80
    [68]敬媛媛.树枝型专用线取送车算法的研究.成都大学学报,1998,43(4):36~42
    [69]薛锋,户佐安,罗建.基于配流方案的树枝型专用线取送车时机的确定.铁道运输与经济,2010,32(03):66~69
    [70]牟峰,王慈光,薛锋.树枝型专用线取送车模型及算法.铁道学报,2009,31(5):1~7
    [71]王雅琳,李开峰,马杰等.遗传算法在企业铁路取送调车作业优化中的应用.系统工程,2007,41(3):94~99
    [72]王雅琳,黎良伟,阳春华等.基于分布式混合优化策略的有限装卸力下取送军优化Chinese Control Conference,2007,22 (7):512-516
    [73]李智.基于改进型蚁群算法的货物作业车取送模型优化.铁道运输与经济,2004,21(4):73~76
    [74]牟峰,王慈光,左大杰等.放射型专用线取送车模型及算法.西南交通大学学报,2010,45(1):104~123
    [75]李文权.铁路区段站日工作计划优化模型及其算法的研究.西南交通大学博士学位论文.1997
    [76]何世伟.铁路枢纽作业计划的优化编制一编组站作业计算与枢纽日班计划 的模型及算法研究.西南交通大学博士学位论文,1996
    [77]何世伟,宋瑞,朱松年.编组站阶段计划解编作业优化模型及算法.铁道学报,1997,19(3):1-8
    [78]范征.丰台西编组站调度决策支持系统的研究—阶段计划解体照顾编组、出发.西南交通大学硕士学位论文.1993
    [79]王慈光.车站技术作业整体统筹模型.铁道运输与经济,1996,18(4):76-80
    [80]曹家明,范征,毛节铭.编组站作业优化决策支持系统—解体子系统.铁道学报,1993,15(4):66~72
    [81]何世伟.铁路枢纽作业计划的优化编制-编组站作业计划与枢纽日班计划的模型及算法研究.西南交通大学博士学位论文.1996
    [82]王慈光.编组站列车解体方案的计数方法.铁道学报,2000,22(6):1-7
    [83]王慈光.用表上作业法求解编组站配流问题的研究.铁道学报,2002,24(4):1-5
    [84]王慈光.编组站动态配流模型与算法研究.铁道学报,2004,26(1):1-6
    [85]薛锋,王慈光,罗建等.编组站列车解体方案与编组方案的协调优化研究.铁道学报,2008,30(2):1-6
    [86]王正彬,杜文,吴柏青等.基于解编顺序的阶段计划车流推算模型及算法.西南交通大学,2008,43(1):91~95
    [87]林柏梁,朱松年.路网上车流径路与列车编组计划的整体优化.铁道学报,1996,18(1):1-7
    [88]常均乾.编组站阶段计划编制系统设计与若干技术的研究.西南交通大学硕士学位论文.2002
    [89]王世东,郑力,张智海等.编组站阶段计划自动编制的数学模型及算法.中国铁道科学,2008,29(2):120~125
    [90]陈亮.编组站解体和编组子系统工作可靠性研究.西南交通大学硕士学位论文.2010
    [91]彭其渊,赵军.技术站列车解编顺序的调整方法.西南交通大学学报,2009,44(3):385~391
    [92]黎浩东,何世伟,宋瑞等.列车编组计划和技术站布局的综合优化.北京交通大学学报,2010,34(6):30~39
    [93]林柏梁.直达与区段列车编组计划及车流径路的整体优化方法.铁道学报,1996,18(5):1-8
    [94]Colomi A., Dorigo M., Maniezzo V.. Distributed optimization by ant colonies. Proc of Ist European Conference on Artificial Life, Pans, France:Elsevier, 1991:234-240
    [95]Macro Dorigo, Vittorio Maniezzo, Alberto Colorni. Ant System:Optimization by a colony of cooperating agents. IEEE Transactions on Systems. Man, and Cybernetics-Part B,1996,20 (1):1-13
    [96]White L Pagurek B, Oppacher E. ASGA:improving the ant system by integration with genetic algorithms. Proceedings of the third Annual Genetic Programming Conference, Madison, Wisconsin, USA,1998:610-617
    [97]Waiter J, Guqahr. A Graph-based Ant System and Its Convergence. Future Generation ComPuter Systems,2000,16 (8):873-888
    [98]Thomas Stuztle, Holger Hoos. Improvements on the ant system:introducing MAX-MIN ant system. Artificial Neural Networks and Genetic Algorithms, 1998,56 (4):210-214
    [99]Walid Tfaili, Patrick Siarry. A new charged ant colony algorithm for continuous dynamic optimization. Applied Mathematics and Computation,2008,197 (4):604-613
    [100]Betul Yagmahan, Mehmet Mutlu Yenisey.A multi-objective ant colony system algorithm for flow shop scheduling problem. Expert Systems with Applications,2010,37 (5):1361-1368
    [101]Xiaoxia Zhang, Lixin Tang. A new hybrid ant colony optimization algorithm for the vehicle routing problem. Pattern Recognition Letters,2009,30 (2) 848-855
    [102]Ozgur Baskan, Soner Haldenbilen, Huseyin Ceylan, Halim Ceylan. A new solution algorithm for improving performance of ant colony optimization. Applied Mathematics and Computation,2009,211 (3):75-84
    [103]Hua Wang, Hong Xu, Shanwen Yi, Zhao Shi. A tree-growth based ant colony algorithm for QoS multicast routing problem. Expert Systems with Applications,2011,38 (4):11787-11795
    [104]Zhilu Wu, Nan Zhao, Guanghui Ren, Taifan Quan.Population declining ant colony optimization algorithm and its applications. Expert Systems with Applications,2009,36 (2):6276-6281
    [105]张纪会,徐心和.一种新的进化算法一蚁群算法.系统工程理论与实践,1991,2(3):47~52
    [106]朱庆保.蚁群优化算法的收敛性分析.控制与决策,2006,21(7):763-766
    [107]段海滨,王道波,于秀芬.基本蚁群算法的收敛性研究.应用基础与工程 科学学报,2006,14(2):297~301
    [108]苏兆品,蒋建国,梁昌勇等.蚁群算法的几乎处处强收敛性分析.电子学报,2009,37(8):1646~1650
    [109]吴春明,陈治,姜明.蚁群算法中系统初始化及系统参数的研究.电子学报,2006,34(8):1530~1533
    [110]吴庆洪,张纪会.具有变异特征的蚁群算法.计算机研究与发展,1999,36(10):1240~1245
    [111]覃刚力,杨家本.自适应调整信息素的蚁群算法.信息与控制,2002,31(3):198~210
    [112]王颖,谢剑英.一种自适应蚁群算法及其仿真研究.系统仿真学报,2002,14(1):31~33
    [113]段海滨,王道波.一种快速全局优化的改进蚁群算法及仿真.信息与控制,2004,33(2):241~244
    [114]龚本灿,李腊元,蒋廷耀等.基于信息素适量更新与变异的高效蚁群算法.计算机工程与应用,2008,44(1):45~47
    [115]叶强,刘心报,程浩.改进蚁群算法求解单机总加权延迟调度问题.系统仿真学报,2008,20(8):2053~2055
    [116]汪采萍,胡学钢.具有分段和变异特性的蚁群算法求解TSP问题.计算机技术与发展,2008,18(6):29~34
    [117]王进,周绍梅.一种基于MMAS的具有奖罚机制的分组蚁群算法.计算机应用与软件,2009,26(3):237~239
    [118]唐增明,蒋泰.一种改进的动态自适应最大一最小蚁群算法.计算机与现代化,2008,03:90~92
    [119]龚本灿,李腊元,蒋廷耀等.基于局部优化策略求解TSP的蚁群算法.计算机应用研究,2008,25(7):1974~1976
    [120]马溪骏,潘若愚,杨善林.基于信息素递减的蚁群算法.系统仿真学报,2006,18(11):3297~3330
    [121]李玉英,温巧燕,李丽香等.改进的混沌蚂蚁群算法.仪器仪表学报,2009,30(4):733~737
    [122]冀俊忠,黄振,刘椿年.基于变异和信息素扩散的多维背包问题的蚁群算法.计算机研究与发展,2009,46(4):644~654
    [123]张兆军,冯祖仁,任志刚.采用序优化的改进蚁群算法.西南交通大学学报,2010,44(2):15-30
    [124]Mark Last, Shay Eyal. A fuzzy based lifetime extension of genetic algorithms. Fuzzy Sets and Systems,2005,149 (5):131-147
    [125]Matthew S. Gibbs, Graeme C. Dandy, Holger R. Maier. A genetic algorithm calibration method based on convergence due to genetic drift. Information Sciences,2008,178 (4):2857-2869
    [126]Javadi A.A, Farmani R. A hybrid intelligent genetic algorithm. Advanced Engineering Informatics,2005,19 (6):255-262
    [127]Shun-Fa Hwang, Rong-Song He. A hybrid real-parameter genetic algorithm for function optimization. Advanced Engineering Informatics,2006,20 (2):7-21
    [128]Vedat Togan, Ayse T. Daloglu. An improved genetic algorithm with initial population strategy and self-adaptive member grouping. Computers and Structures,2008,86 (3):1204-1218
    [129]Pei-Chann Chang, Wei-Hsiu Huang, Ching-Jung Ting. Dynamic diversity control in genetic algorithm for mining unsearched solution space in TSP problems. Expert Systems with Applications,2010,37(3):1863-1878
    [130]Zne Jung Lee, Shun Feng Su, Chen Chia Chuang, Kuan Hung Liu. Genetic algorithm with ant colony optimization (GA-ACO) for multiple sequence alignment. Applied Soft Computing,2008,8 (1):55-78
    [131]Shyi Ming Chen, Chih Yao Chien. Parallelized genetic ant colony systems for solving the traveling salesman problem. Expert Systems with Applications, 2011,38 (3):3873-3883
    [132]肖宏峰,谭冠政.遗传算法在蚁群算法中的融合研究.小型微型计算机系统,2009,30(3):512~516
    [133]蔡良伟,李霞,张基宏.用带蚁群搜索的多种群遗传算法求解作业车间调度问题.信息与控制,2005,34(5):553~566
    [134]邵晓巍,邵长胜,赵长安.利用信息量留存的蚁群遗传算法.控制与决策,2004,19(10):1187~1193
    [135]徐金荣,李允,刘海涛等.一种求解TSP的混合遗传蚁群算法.计算机应用,2008,28(8):2084~2087
    [136]高尚,张晓如.蚁群遗传混合算法.数学的实践与认知,2009,39(24):93~98
    [137]熊光愣.连续系统仿真与离散事件系统仿真.北京:清华大学出版社,1999
    [138]石红国,彭其渊,郭寒英.树枝型专用线取送车问题的哈密尔顿图解法.中国铁道科学,2005,26(2):132-135
    [139]余伶俐,蔡自兴.基于异质交互式文化混合算法的机器人探测任务规划.机器人.2009,31(2):137-145

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700