用户名: 密码: 验证码:
重型静压推力轴承综合物理场研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重型静压推力轴承是重型数控装备的关键部件,其性能优劣直接影响设备的加工质量和运行效率。由于国内大型零件机械加工精度达不到要求,使得静压轴承工作时摩擦副间的间隙不均匀,在高速重载的工况下,轴承本体及油膜的温度随工作台转速的升高而升高,使承载油膜变薄,进而产生静压轴承变形导致润滑失效,使油垫的实际结构偏离理论设计模型,限制了转速。因此,进行重型静压推力轴承间隙油膜流场、压力场、温度场以及静压轴承的变形场(综合物理场)的研究是解决问题的关键。
     本文在总结了国内外对静压推力轴承结构优化、性能计算、刚度特性、阻尼特性和实验装置研究的基础上,以多油垫圆导轨重型静压推力轴承为研究对象,对变粘度条件下的重型静压推力轴承综合物理场进行了系统的理论研究,主要包括以下几个方面:
     首先,在对两平行平板和环形油垫的润滑机理研究基础上,得到了简化后的静压推力轴承模型,以单个油垫为研究对象,利用计算流体力学、润滑理论、摩擦学理论,建立了间隙油膜的粘温方程,并采用B-Spline曲线拟合出粘温曲线,在此基础上建立变粘度下重型静压推力轴承单个油垫上油膜相应的数学模型,包括流量方程、承载能力方程、油膜刚度方程、摩擦力方程、摩擦功率方程及温升方程。
     其次,基于有限体积法,针对实际物理模型(由工厂提供数据建立的模型),在等粘度和变粘度条件下,分别对静压轴承间隙油膜的压力场、速度场和温度场进行三维场特征分析,得到粘度对静压推力轴承性能的影响规律。
     再次,在变粘度条件下又模拟了不同转速及腔深条件下油膜的压力场、动压及温度场分布情况,揭示了转速及油腔深度对油膜压力场、动压及温度场的影响规律。同时在不同膜厚下数值模拟了油膜的温度分布情况,探讨了膜厚对油膜温度场的影响情况。
     另外,建立了重型静压推力轴承旋转工作台和多垫圆导轨底座的有限元模型,利用对油膜温度场计算得到的数值模拟结果作为体载荷施加给工作台及底座得到静压轴承热变形。考虑旋转工作台的自重及承载,把对油膜压力场计算得到的数值模拟结果耦合到与油膜接触的上、下环面上得到力变形。最终把力变形场与热变形场叠加后得到静压推力轴承的总变形结果。
     最后,为了验证本文所建数学模型及数值模拟结果的正确性,在双柱立式车床DVT1000×50/150Q-NC上,对不同工况下静压推力轴承的油膜压力、油膜厚度进行实际测量。结果表明:试验测得的油膜压力值与数值模拟结果及理论计算结果比较吻合,说明了对静压推力轴承压力场数值模拟结果的可信性及理论数学模型建立的正确性;通过油膜厚度试验得到了工作台、底座与油膜接触的上、下面的变形情况,变形后的油膜在径向上由内侧到外侧呈喇叭形状,这与通过有限元方法计算变形场得到的结论是一致的。
     通过对重型静压推力轴承综合物理场的研究,揭示了多油垫静压轴承间隙流体的流动规律,探明了此类静压推力轴承的失效机理,为工程实际中静压推力轴承设计、仿真分析及性能研究提供了理论依据。
The heavy hydrostatic thrust bearing is the key component of the heavy numerical control equipment; the machining quality and the operating efficiency are directly influenced by its performance. The gaps between friction pairs are uneven because of the low machining precision of the large-scale components in domestic. Under working situations of high speed and heavy load, the bearing body and the temperature of the lubricant film rise alonge with the speed of the worktable increasing, that causes the load bearing lubricant film to thin, as a result, the lubrication is failed due to the deformation of the hydrostatic bearing, then, the actual structure of the oil pad is deviated from theoretical designing model, the spindle speed is also limited. Consequently, the studying on the flow field, the pressure field, the temperature field and the deformation field of heavy hydrostatic bearing is the key to solveing all those problems.
     This thesis based on the summary of studying on the structure optimization, performance calculation, rigidity property, damping property and experimental apparatus of the hydrostatic thrust bearing, takes the hydrostatic thrust bearing with the multi-oil pad circular guideway as the research object, to carry on the theory research to the integrated physical fields of the heavy hydrostatic thrust bearing with variable viscosity, The followings are mainly included:
     First of all, the thesis based on the lubrication mechanism research of two parallel plates and circular oil pad obtains the simplified model of the hydrostatic thrust bearing, then, the viscosity-temperature equation of the gap film is set up, and the viscosity-temperature curve is fitted by B-Spline curve. Further, the mathematical model of the single oil pad is established, that includs the flow equation, the carrying equation, the oil film rigidity equation, the friction equation, the friction power equation and the temperature rise equation.
     Secondly, aiming at the actual physical model (set up by data of factory offered), the pressure field, the flow field and the temperature field of heavy hydrostatic bearing based on the FVM(finite volume method) are respectively carried on the analysis of three-dimensional characteristics in constant and variable viscosity condition, then the Influence Law of the viscosity to the hydrostatic thrust bearing is found.
     Thirdly, the pressure field, the dynamic pressure and the temperature field of lubricant film in different rotating velocity and cavity depth are respectively simulated under considering the variable viscosity condition. Influence laws of rotating velocity and cavity depth to the pressure field, the dynamic pressure and the temperature field of oil film are also found. At the same time, temperature distributions of oil film in different film thickness are simulated, and influence of film thickness on the temperature field also is formulated.
     Furthermore, the finite element models of rotating worktable and multiple oil pad circular guideway of heavy hydrostatic thrust bearing are established. Numerical simulation results of oil film temperature field are treated as a body load applied to the worktable to calculate thermal deformation. Considering the weight of rotating worktable and load on it, numerical simulation results of lubricant film pressure field are coupled to upper and lower ring surface and base contacting with lubricant film to calculate force deformation. Finally thermal deformation field and force deformation field are superposed to obtain the total deformation of hydrostatic thrust bearing.
     At last, in order to validate the mathematical model and the numerical simulation results, practical measures of lubricant film pressure and thickness of hydrostatic thrust bearing are performed on the double column vertical lathe—DVT1000×50/150Q-NC in different working conditions. The results demonstrate that the theoretical results of lubricant film pressure are consistent with the measurement results and numerical simulation results. It shows that the results of numerical simulation of hydrostatic thrust bearing pressure field and the established mathematical theory model are creditable; and the upper and lower ring surface deformation of worktable and base contacting with oil film through lubricant film thickness tests is obtained, the shape of lubricant film deformation from inside to outside in radial is a bugle, that accords with deformation field calculated in the finite element method.
     With the research on integrated physical field of heavy hydrostatic thrust bearing, this thesis reveals the flow law of gap fluid of hydrostatic bearing with multiple oil pad and the failure mechanism of hydrostatic thrust bearing. It provides theoretical basis for design, simulation analysis and performance research of hydrostatic thrust bearing in practical projects.
引文
[1]庞志成.液体气体静压技术[M].黑龙江人民出版社,1981,4:26-42
    [2]温诗铸.摩擦学原理.清华大学出版社[M],1990:10-50
    [3]陈伯贤.流体润滑理论及其应用[M].北京:机械工业出版社,1991,10:30-41
    [4]樊涛,李树森.静压气体轴承技术的发展及应用[J].林业机械,2004,32(11):15-18
    [5]刘基博,刘浪飞.球摩机开式静压轴承的液压参数计算和油腔结构优化探讨[J].矿山机械,2000,4(4):33-36
    [6]车建明.静压向心轴承的结构创新设计[J].润滑与密封,2005,102(3):102-104
    [7]JOHNSON R E, MANRING N D. Sensitivity Studies for the Shallow-Pocket Geometry of a Hydrostatic Thrust Bearing[J]. American Society of Mechanical Engineers, FPST,2003,10(3):231-238
    [8]OSMAN T A, SAFAR Z S, MOKHTAR M O. Experimental Assessment of Hydrostatic Thrust Bearing Performance[J]. Tribology International,1996, 29(3):233-239
    [9]JEON S Y, KIM K H. A Fuid Film Model for Finite Element Analysis of Structures with Linear Hydrostatic Bearings[J]. Mechanical Engineering Science,2004,218(6):309-316
    [10]SATISH C S, JAIN S C, BHARUKA D K. Influence of Recess Shape on the Performance of a Capillary Compensated Circular Thrust Pad Hydrostatic Bearing[J]. Tribology International,2002,35(6):347-356
    [11]FAZIL C. Analysis of effects of sizes of orifice and pockets on the rigidity of hydrostatic bearing using neural network predictor system [J]. Journal of Mechanical Science and Technology,2008,18(3):432-442
    [12]CHRISTIAN B, CHRISTOPH B. Simulation of dynamic effects on hydrostatic bearings and membrane restrictors [J]. Production Engineering, 2007,1(4):415-420
    [13]丁叙生,陈斌武.体静压轴承液阻可调式节流器的设计与应用[J].机床与液压,2003,2(2):151-154
    [14]刘莹,任宝平,姜丽.高速流体径向滑动轴承的润滑计算[J].润滑与密封,1998,20(6):36-39
    [15]张君安,张立新,方宗德.空气静压推力轴承压力分布实验台研制[J].西安工业大学学报,2006,26(4):349-351
    [16]GRABOVSKII V I. Optimum Clearance of a Gas Hydrostatic Thrust Bearing with Maximum Load Capacity[J]. Fluid Dynamics,2007,35(4): 525-533
    [17]王雯,原大宁等.雷达天线座静压轴承的可视化设计[J].机床与液压,2003,6:118-119
    [18]郭红,李瑞珍.新型内部柱销节流静压支承特性研究[J].第八届全国摩擦学大会论文集,2007.11:157-162
    [19]岑少起,崔岩,郭红.圆锥浮环动静压轴承动态特性实验研究[J].润滑与密封,2004,4(7):22-24
    [20]MANFRED W, JAN H, MARKUS W. Development of Hydrostatic Bearings with Groove Structures[J]. Initiatives of Precision Engineering at the Beginning of a Millennium,2007,5(8):534-538
    [21]常家东,万玉琼,邹武.摩机动静压轴承系统的虚拟设计[J].洛阳工业高等专科学校学报,2004,14(1):17-18
    [22]徐宝信,张安琪.层流液体动静压混合轴承设计理论研究[J].机械设计与制造,2005,21(8):44-47
    [23]陈云飞,黄锡时,许尚贤.动静压滑动轴承的稳定性分析[J].机械科学与技术,1997,16(3):459-462
    [24]刘涛,王益群,王海芳.冷轧AGC静-动压轴承油膜厚度的分析与补偿[J].机床与液压,2005,8(4):62-65
    [25]马文琦,姜继海,曹健.基于变粘度和油流惯性条件下静压滑环间隙流场特性的研究[J].机械工程学报,2001,8(8):33-36
    [26]马文琦,姜继海,赵克定.变粘度条件下静压支承温升研究[J].中国机械工程,2001,12(8):953-955
    [27]马文琦,姜继海.变粘度条件下静压支承出油液阻研究[J].中国机械工程,2001,7(7):818-820
    [28]广州机床研究所编.液体静压技术原理及应用[M].北京:机械工业出版社,1978:13-87
    [29]OSTERLE J F, HUGHES W F. Inertia Cavitation in Hydrostatic Thrust Bearings[J]. Engineering Tribology,1961,4(3):228-233
    [30]YABLONSKII V O, TYABIN N V, YASHCHUK V M. Effect of the Rheological Properties of a Lubricant on the Carrying Capacity of Hydrostatic Bearings[J]. Journal of Engineering Physics and Thermophysics,2004,64(2):153-156
    [31]ARAFA H A, OSMAN T A. Hydrostatic Bearings with Multiport Viscous Pumps[J]. Engineering Tribology,2003,21(4):333-342
    [32]PRABHU T J, GANESAN N. Analysis of Multirecess Conical Hydrostatic Thrust Bearings under Rotation[J]. Wear,1983,89(2):29-40
    [33]NOVIKOV E A, SHITIKOV I A. Calculation of the Characteristics of a Hydrostatic Ring Thrust Bearing for Refrigeration Compressors[J]. Chemical and Petroleum Engineering,2005,40(3):222-228
    [34]KAOHSIUNG W L, CHU H M, TAIWAN P T. Modified Reynolds Equation for Coupled Stress Fluids a Porous Media Model [J]. Acta Mechanica,2004,30(8):189-202
    [35]SALWINSKI J. Centre of Hydrostatic Lift of Film and Stability of Swinging Plate in Hydrogenerator Thrust Bearing at Modernised Manner of Hydrostatic Lubrication[J]. Eneryetyka,2005,15(7):44-52
    [36]PRABHU T J, GANESAN N G. Behaviour of Multirecess Plane Hydrostatic Thrust Bearings under Conditions of Tilt and Rotation[J]. Wear, 1983,92(2):243-251
    [37]PRABHU T J, GANESAN N G Characteristics of Multipad Hydrostatic Thrust Bearings under Rotation[J]. Wear,1984,93(2):219-231
    [38]PRABHU T J, GANESAN N G. Effect of Tilt on the Characteristics of Multirecess Hydrostatic Thrust Bearings under Conditions of no Rotation[J]. Wear,1983,92(2):269-277
    [39]郭力,朱均.圆隙缝动静压轴承承载刚度分析[J].湖南大学学报,1996,23(3):103-108
    [40]郭良斌,王祖温.静压气体轴承静刚度的动态测试新方法[J].机械工程学报,2007,43(4):21-26
    [41]李树森,张鹏顺.小孔节流方式对气体静压轴承工作刚度影响的分析[J].润滑与密封,2000,18(4):6-8
    [42]薛龙,郭德申.真空平衡型气体静压止推轴承刚度分析[J].北京石油化 工学院学报,2000,8(1):67-70
    [43]冯丽,谢沛霖.变粘条件下有限长滑动轴承的性能分析[J].机械制造,2007,45(5):32-35
    [44]杨文勇.空气静压支承电主轴动态性能流固藕合分析与实验研究[D].广东工业大学硕士学位论文,2008,5:45-58
    [45]LIN J R. Surface Roughness Effect on the Dynamic Stiffness and Damping Characteristics of Compensated Hydrostatic Thrust Bearings[J]. International Journal of Machine Tools and Manufacture,2000,40(1): 1671-1689
    [46]MARTIN J K. Measuring the Performance of a Novel Fluid Film Bearing Supporting a Rotor on a Stationary Shaft by Non-contacting Means[J]. Dynamics,2004,24(2):143-151
    [47]YACOUT A W, ISMAEEL A S. The Combined Effects of the Centripetal Inertia and the Surface Roughness on the Hydrostatic Thrust Spherical Bearings Performance[J]. Tribology International,2007,40(3):522-532
    [48]SAFAR Z S. Design of an Offset Hydrostatic Thrust Bearing under Dynamic Loading Conditionss [J].Wear,1983,84(8):87-96
    [49]VAN B A, SEGAL A A. Rubber Supported Hydrostatic Thrust Bearing with Rigid Bearing Surfaces[J]. Tribo.Int,1997,30(2):41-9
    [50]SOLMAZ E, BABALIK F C. Optimization of Circular Hydrostatic Axial Journal Bearings Using a Multicriteria Approach[J]. Engineering Tribology, 2003,217(5):235-241
    [51]KOC E, HOOKE C J. Considerations in the Design of Partially Hydrostatic Slipper Bearings[J]. Tribo.Int,1997,30(11):815-825
    [52]JAIN S C, SHARMA S C. Elastohydrostatic Lubrication of Capillary Compensated Circular Pad Thrust Bearings[J]. Wear,1983,91 (2):131-147
    [53]VAN B A, OSTAYEN R J. Analysis Solution for Tilted Hydrostatic Multu-Pad Thrust Bearings of Infinite Length [J]. Tribo.Int,1997,30(1):33-39
    [54]SINHASAN R, JAIN S C, SHARMA S C. Orifice-Compensated Flexible Thrust Pad Bearings of Different Configuration[J]. Tribo.Int,1986,19(5): 244-252
    [55]SINHAASAN R, JAIN S C. Lubrication of Orifice Compensated Flexible Thrust Pad Bearing[J]. Tribo.Int,1984,17(4):215-221
    [56]SINHASAN R, JAIN S C, SHARMA S C. Elastic Considerations in the Hydrostatic Lubrication of Capillary Compensated Thrust Bearing of Different Configuration[J]. Wear,1986,111(4):41-62
    [57]PANG Z,GOU Z. Theory of Holographic Photoelastic Experiment and Application of Elastohydrostatic Lubrication[J]. Wear,1991,146(1):99-105
    [58]SINHASAN R, JAIN S C, SHARMA S C. A Comparative Study of Flexible Thrust Pad Hydrostatic Bearings with Different Restrictors[J]. Wear, 1988,121(2):53-70
    [59]PETERSON J, FINN W E, DAREING D W. Non-Newtonina Temperature and Pressure Effects of a Lubricant Slurry in a Rotating Hydrostatic Step Bearing[J]. STLE Tribo. Trans,1994,37(4):857-863
    [60]JACKSON J D, SYMMOS G R. Characteristics of Multipad Hydrostatic under Rotation[J]. Wear,1984,93(2):219-231
    [61]PRABHU T J, GANESAN N. Finite Element Application to the Study of Hydrostatic Thrust Bearings[J]. Wear,1984,97(2):139-154
    [62]NOURELDEEN E M. Effects of Bearing Geometry and Operating Conditon on the Performance of Extemally Pressurized Rectangular Gas Bearing[D]. Faculty of Engineering,1994,12(5):213-221
    [63]程耕国,程平,李受人.液流通过节流孔的压力场的仿真研究[J].计算机工程与科学,2005,27(11):102-103
    [64]崔凤奎,赵魏,杨建玺.球磨机静压轴承静态压力场及流场仿真分析[J].轴承,2009,32(1):32-36
    [65]孙昂,马文琦,王祖温.环面节流平面气浮轴承大间隙下流场数值模拟[J].润滑与密封,2007,32(9):16-20
    [66]王锐昌.热流状态下新型动压推力轴承压力场的计算[J].鞍山钢铁学院学报,2000,23(2):99-102
    [67]于晓东.重型静压推力轴承力学性能及油膜态数值模拟[D].东北林业大学(博士学位论文),2007,6:9-20
    [68]张君安,方宗德.空气静压轴系支承的数值分析[J].机械科学与技术2008,27(7):84-88
    [69]谢黎明,徐铮.重载荷静压支承供油方式的选择[J].中国制造业信息化.2008,37(2):75-78
    [70]朱希玲.静压推力轴承压力场的有限元数值模拟[J].上海工程技术大学学报,2002,16(2):92-95
    [71]PRABHU T J, GANESAN N. Analysis of Multirecess Conical Hydrostatic Thrust Bearings under Rotation[J]. Wear,1983,89(2):29-40
    [72]YURUSOY M. A Study of Pressure Distribution of A Slider Bearing Lubricated with Powell-Eyring Fluid[J]. Turkish Journal of Engineering and Environmental Sciences,2003,27(5):299-304
    [73]CERTZOS K P, NIKOLAKOPOULOS P G. CFD Analysis of Journal Bearing Hydrodynamic Lubrication by Bingham Lubricant[J]. Tribology International,2008,41(12):1190-1204
    [74]PARANJPE R S. A Transient Thermohydrodynamic AnalysisIncluding Mass Conserving Cavitationf or Dynamically Load JournalBearings[J] ASME Journal of Tribology,1995,117(3):368-378
    [75]CANBULUT F, YIDIRIMAND S.Design of an Articial Neural Network for Analysis of Frictional Power Loss of Hydrostatic Slipper Bearings[J]. Tribology Letters,2004,17(4):887-899
    [76]MONMOUSS F M. Frequency Efects on the TEHD Behaviorof a Tilting-pad Journal Bearing under Dynamic Loading[J]. Journal ofTribology,Transactions of the ASME,1999,121 (2):321-329
    [77]谢德坚,王锐昌,徐旭.新型可逆式推力轴承油膜温度场对最优参数的影响[J].大连理工大学学报,1995,35(4):505-510
    [78]富彦丽,马希直.圆轴承三维温度场的研究[J].机械科学与技术,2002,21(5):711-713
    [79]潘依森,潘思能.液体动压滑动轴承油膜温度场的分析与计算[J].福州大学学报,1995,23(3):39-44
    [80]蒋书运,陈照波.航空燃气轮机挤压油膜阻尼器油膜温度场的理论分析[J].航空动力学报,1998,13(4):439-442
    [81]王创民等.基于ANSYS的油膜轴承油膜温度场分析[J].机械管理开发,2008,23(5):101-104
    [82]孟庆睿,侯友夫.基于Matlab的液体黏性传动油膜温度场有限元分析[J].煤矿机械,2007,28(9):78-80
    [83]马希直.滑动轴承瞬态热弹性流体动力润滑性能分析及实验研究[D].博士论文.西安交通大学,2002,8:23-40
    [84]刘莹,任宝平,郭溪泉.高速重载径向油膜轴承的温度场计算与试验研究[J].润滑与密封,1999,14(1):8-10
    [85]王晓力,温诗铸,桂长林.动载轴承的非稳态热流体动力润滑分析[J].清华大学学报自然科学,1999,39(8):1-8
    [86]王锐昌,黄秋波,段志达.用有限元法计算新型可逆式动压推力轴承的温度场[J].重型机械,2000,6:38-41
    [87]AGRODZKI P, LAM K B, BAHKALI E A. Nonlinear Transient Behavior of a Sliding System With Frictionally Excited Thermoelastic Instability[J].ASME Trans Journal of Tribology,2001,123(5):699-708
    [88]袁尤智,汪岩峰.基于FLUENT的TIG焊三维熔池热场与流场的数值模拟[J].江西科技,2008,26(6):880-883
    [89]邹继斌,张洪亮.机械臂关节用无刷直流电动机热场计算与实验[J].微电机,2008,41(2):52-55
    [90]ZHENGKO A, SHUL O. Calculation of the Thermal Field of Woven Heating Elements[J]. Journal of Machinery Manufacture and Reliability,2008,37(2):198-204
    [91]HEILANG H G, WOZNIAK K, Flow and temperature field measurements of thermal convection in a small vertical gap using liquid crystals[J]. Heat and Mass Transfer,2007,43(9):863-870
    [92]EDOARDO E C, GIORLEO L, BARBARA P. Modeling of local thermal fields in semiconducting barium titanate ceramics[J]. Journal of Engineering Physics and Thermophysics,2006,79(4):746-749
    [93]张君安.高刚度空气静压轴承研究[D].西北工业大学:博士论文,2006,12:25-36
    [94]付坤霞,朱煜,张鸣.基于非等温条件的空气静压轴承润滑问题研究[J].润滑于密封,2007,32(1):117-119
    [95]KARAMI G. K, KUHN G. A finite element-boundary element treatment for the analysis of elastohydrodynamic lubrication problems[J]. Computational Mechanics 1994,14(2):289-297
    [96]SCHULTHEISZ C R, PFAFF R D, G.KNAUSS W. An experimental/analytical comparison of three-dimensional deformations at the tip of a crack in a plastically deforming plate[J]. International Journal of Fracture,1998,9:27-46
    [97]KHLEBOV A G, KHLEBOV I L. Calculation of the Stressed State of a Rough Solid Surface[J]. Russian Physics Journal,2005,48(5):76-81
    [98]LEJEUNES S, BOUKAMEL A. Analysis of Laminated Rubber Bearings with a Numerical Reduction Model Method[J]. Journal of Engineering, 2006,76(10):311-326
    [99]ZHURAVKOV M, BOSIAKOV S P. The computer analysis of the temperature fields arising in bearing node at rotation of a rotor [J] European Conference on Computational Mechanics, 2006,6:5-8
    [100]陈燕生.静压支承原理和设计[M].国防工业出版社,1980,1:273-281
    [101]杨沛然.流体润滑数值分析[M].北京:国防工业出版社,1998,2:10-26
    [102]苏铭得,黄素逸.计算流体力学基础[M].北京清华大学出版社,1997,4:25-45
    [103]刘星,卞思荣,朱金福.非结构网格生成技术[J].南京航空航天大学学报,1999,12,(6):696-700
    [104]周天孝,白文.FLUENT多块网格生成新进展[J].力学进展,1999,29(8):344-368
    [105]Fluent Inc. GAMBIT Modeling Guide[M]. Fluent Inc,2003:20-32
    [106]Ansys Inc, ANSYS ICEM CFDTutorial Manual[M].Ansys Inc,2003:13-56

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700