用户名: 密码: 验证码:
四种三氯乙烯去除工艺的基础研究与比较
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工农业的迅速发展,以三氯乙烯(trichloroethylene, TCE)为代表的大量有机氯代烃因不合理的使用、处理和处置进入环境造成严重的水环境污染。颗粒活性炭(granular activated carbon, GAC)吸附工艺作为一套成熟可靠的工艺被广泛用于难降解有机污染物的去除,可以达到深度净化的目的(如<10μg/L);生物活性炭(biological activated carbon, BAC)工艺可以通过生物再生的方式克服活性炭吸附容量的限制,延长活性炭的使用周期;厌氧膨胀颗粒污泥床(expanded granular sludge bed, EGSB)反应器对高浓度有毒污染物有独特的处理优势;生物滴滤器(biotrickling filter, BTF)对于气体抽提后的难降解有机气体有良好的去除效果。本文探讨了上述这四种工艺用于去除TCE的可行性,考察不同工艺操作条件对TCE去除效果的影响,分析它们各自的适用场合和应用前景,从而为特定TCE污染情况的处理提供切实可行的方法。
     为评价活性炭对TCE的吸附性能,以10种不同原料制备的活性炭样品进行了TCE的平衡容量实验和连续流微型快速穿透(MCRB)实验。各种活性炭对TCE的吸附容量的排列与其苯酚值排列相同,TCE初始浓度和少量甲醇的加入不会影响活性炭的吸附容量。相比其他炭型,含有丰富中孔的煤质炭对TCE吸附容量较低,但吸附容量利用率较高,适合用于实际工艺中去除TCE;由毛竹制备而成的竹质炭,对TCE的去除量和吸附容量利用率均颇为可观,是一种值得开发的新型环保炭型。水体中的共存有机物会降低活性炭对TCE的吸附容量,其竞争吸附的程度跟水体中有机物的分子量大小分布有关。两个串联的活性炭炭床是高效低耗吸附处理工艺的关键单元,因为前置炭床的利用率能得到大幅度提升,后置炭床能保障出水达标。
     好氧条件下TCE只能通过共代谢方式降解。苯酚是一种高效的共代谢基质,以活性污泥培养驯化的苯酚混合菌为TCE降解菌源,通过批式降解实验评估其对TCE的降解性能。苯酚能诱导产生氧化酶和TCE共代谢需要的能量,是TCE共降解过程中必不可少的共代谢基质;TCE的大幅度降解要在苯酚基本利用后才会发生。通过接种驯化好的TCE降解菌,可以迅速启动BAC系统;在170天的连续运行期间,BAC对TCE的去除率维持在20-40%。使用对TCE具有高吸附量的活性炭能确保BAC工艺在运行初期和有冲击负荷情况下的高度处理效果。生长基质苯酚的进水浓度是TCE去除效率的关键因素,苯酚浓度过高会加重TCE共代谢的竞争性抑制,过低不足以维持其高效降解。苯酚浓度在2-4mg/L,苯酚/TCE进水负荷比率在15左右时,BAC对TCE的去除率最高达到40%左右。根据TCE-苯酚的共代谢降解规律,使用苯酚、TCE单独循环进水的工艺操作模式,有效避免了竞争性抑制,较好地维持了微生物的生长和降解活性,强化了TCE去除效率;在每天2h苯酚进水、22h TCE的进水情况下,TCE去除率最高为72%(进水浓度200μg/L),平均去除率达到65%,最大去除能力为0.39g/m3/h。
     厌氧条件下TCE能通过还原脱氯依次转化为二氯乙烯、一氯乙烯和乙烯。利用生物强化的方法将商业脱氯菌SDC-9投入到接种颗粒污泥的厌氧EGSB反应器中,达成快速启动;进水浓度在2-10mg/L,水力停留时间在6h时,TCE的去除率为85%左右,其最大去除能力超过1.5g/m3/h。将EGSB转为序批式操作模式,延长反应时间有助于乙烯的生成。厌氧颗粒污泥是一种优良的生物载体,可以很好地负载特定降解菌并有效防止微生物脱落,从而使EGSB反应器工艺达到长期稳定降解TCE的功能。
     通过接种SDC-9快速启动厌氧BTF;空床停留时间为12min时,稳定运行下的气态TCE去除率在99%以上(进气浓度为700mg/m3),终产物乙烯占到50%左右。厌氧BTF对TCE的最大去除能力达到9.0g/m3/h,显示出优越的处理性能,而且150多天的稳定运行证实了BTF不会因床层堵塞等问题造成处理性能的下降。在运行过程中,降解TCE的床层区域会逐渐转移到反应器前半部分。不同高度床层的处理性能与脱氯菌种和基因的种类、数量和活性之间存在关联性。停运60天后厌氧BTF内的微生物只剩2%的TCE降解活性,同时微生物总量减少了50%,但BTF重启后可以快速恢复TCE去除性能;停运28天和60天的厌氧BTF分别在1天和8天后基本恢复原先的TCE去除能力,但全面恢复之前的降解性能(乙烯转化率)则需要更长时间。
     本课题研究了四种各具特色并有各自适用场合的TCE去除工艺。GAC工艺主要用于去除TCE轻度污染水体,达到深度净化的目的;BAC工艺持续稳定、抗冲击负荷强,能长期稳定的处理低浓度TCE(<500μg/L)水体;厌氧EGSB反应器工艺具有较高的TCE去除能力,适用于TCE严重污染水体(<10mg/L)的处理;对于需要使用气提去除水体里TCE的场合,厌氧BTF工艺可以高效去除进气中的TCE,潜在的应用前景广阔。本文的特色在于:在GAC工艺研究阶段,提出使用苯酚值可以预测活性炭对于TCE的吸附性能,丹宁酸值能表征吸附容量利用率,竞争吸附对活性炭吸附容量的影响程度跟水体中有机物的分子量大小分布有关,同时验证了MCRB测试可以准确模拟传统穿透实验,并提出一套高效低耗的GAC吸附工艺;在BAC工艺中,通过研究TCE-苯酚的共代谢降解规律,研发了新型的苯酚、TCE循环进水的BAC运行模式,有效提高了BAC工艺对TCE的降解效率;在厌氧BTF中,研究了相关菌种和特定基因在BTF不同床层高度的分布变化及随时间的迁移转换,揭示了脱氯菌群和功能基因的种类、数量和活性与BTF处理性能之间的内在关联性;同时,还对厌氧BTF在停运闲置期间微生物的TCE脱氯性能、活性和数量的变化进行了分析,并评估了反应器在长期停运后的恢复运行效果
Along with the rapid industrial and agricultural development of the modern society, trichloroethylene (TCE) and other chlorinated hydrocarbons have entered environment due to improper disposal practices and accidental leaks resulting in serious contamination of groundwater in many parts of the world. Granular activated carbon (GAC) adsorption has often been employed for removing persistent organic pollutants (POPs) to produce a clean effluent meeting a very low discharge limit (<10μg/L); taking advantage of the concurrent biodegradation of the adsorbed POPs in many GAC adsorbers, biological activated carbon (BAC) process can be used to extend the GAC service life; expanded granular sludge bed (EGSB) process has been employed for treating influents containing high concentrations of toxic pllutants; biotrickling filter (BTF) process is capable of removing POPs from the exhaust stream of the stripping operation. This research has been conducted to determine the feasibility of the four treatment processes for removing TCE, to identify the potential applications, and to produce results useful for remediation of TCE contaminated groundwater.
     Ten GAC samples of different raw materials and preparation were employed in the batch adsorption isotherm runs for measuring their TCE capacities and the continuous flow breakthrough runs for simulating the TCE removal in actual treatment applications. The GACs'adsorptive capacities for TCE were in the same order as their phenol numbers; they were not affected by the starting TCE concentration and/or the presence of small amount of methanol. The higher utilization rate found for the meso pore rich coal based GAC makes it competitive despite its relatively low TCE capacity. The GAC made from toxicant free, low cost and renewable bamboo is attractive because of its relatively high TCE capacity and availability. GACs'capacities for TCE in pure water were reduced by competitive adsorption of other organic constituents of the water samples; small organic compounds in tap water were more competitive than the NOM in the higher TOC well water sample. The MCRB data confirmed the GACs'available TCE capacities and that the serial bed treatment is desirable because most of the first absorber's capacity can be utilized for removing the pollutants.
     Under the aerobic condition, TCE can be biodegraded only in the presence of a co-substrate such as phenol. Phenol can induce the production of oxidase and the energy necessary for TCE cometablism; high degree of TCE degradation would take place after most of the phenol has been biodegraded. Acclimated mixed phenol degraders originated from activated sludge were employed for the batch experiments to assess their TCE degrading capability. Inoculation of highly acclimated TCE degraders quickly established the BAC system which removed 20-40% TCE of the feed during the 170d treatment run. Using a GAC with a high TCE capacity ensured the treatment performance during the start-up stage and/or under the shock loading conditions. The TCE removal rate was dependent on the phenol concentration of the feed; a higher than the optimum concentration of phenol would cause competitive inhibition while too low a concentration would result in reduced rate of TCE degradation; up to 40% TCE removal was obtained in treating a feed of 2-4mg/L of phenol and a phenol/TCE loading ratio of 15. Based on the mechanism of cometabolism in the TCE-phenol system, sequential feeding of phenol (2h) and TCE (22h), which avoided competitive inhibition in the BAC and thus would enhanced the growth rate and activity of the TCE degraders, was employed to acheive a better treatment performance of 65% TCE removal (influent concentration=200ug/L) with a substantially higher max removal of 72% (0.39g/m3/h).
     TCE can be anaerobically dechlorinated to dichloroethylene, vinyl chloride and ethylene. In treating an influent with 2-10mg/L of TCE under a hydraulic retention time of 6h, the addition of the commercial SDC-9 bacteria to the anaerobic granular sludge in an EGSB bioreactor enhanced its performance with a faster start-up and a stable higher TCE removal of about 85%(max removal capability=1.5g/m3/h). More ethylene was produced in a longer treatment time when the EGSB treatment was conducted in the sequential mode. The results also have demonstrated that anerobic granular sludge was a good medium for retaining and growing the supplemented active bacteria which enabled the outstanding long term stable TCE removal of the EGSB process.
     Inoculation of SDC-9 accomplished rapid start-up of the BTF process; operating at an empty bed residence time of 12min, more than 99% of TCE was removed from the nitrogen influent (feed concentration=700mg/m3) with an outstanding TCE removal capability of up to 9.0g/m3/h; the bed plugging and other operating problems which would adversely affect the excellent treatment performance were not observed during the 150d+ test period. TCE removal capability of BTF sections was dependent on the type, density and activity of the residing TCE degraders; more TCE was degraded in the front part as the treatment progressed. The TCE removal capability of an ineffective BTF (2% of the former activity associated with the 50% remaining microorganisms 60d after the treatment ended) was mostly restored 8 days after the system was restarted. For the BTF which was suspended for 28d, its TCE removal capability was basically recovered 1d after the treatment was resumed; however, a longer time was required to achieve the same degree of ethylene yield.
     Overall, the results have confirmed the feasibility of the four researched processes for cost effective TCE removal from contaminated water bodies. The highly effective GAC process is the one to choose for achieving total TCE removal; the long lasting aerobic BAC process may be beneficially employed for treating a low concentration (<500μg/L) influent; the stable anaerobic EGSB process is preferred for treating a higher concentration (up to 10mg/L) influent; the high loading anaerobic BTF is the best for removing gaseous phase TCE after nitrogen stripping of TCE contaminated water body.
     The features and applications of the effective GAC process and the three innovative biological TCE removal processes are presented. The adsorption study results have demonstrated that the GACs'adsorptive capacities for TCE is in the same order as their phenol number, that the capacities for TCE in pure water are reduced more by the small molecule organic consistutents of tap water relative to the larger constituents of the well water, that the efficient MCRB method can be use to conclude the essential breakthrough in about 1% of the time required by the conventional method, and that the two-adsorber-in-series mode of treatment is the key to the cost effective application of the GAC process. The BAC study results have shown the aerobic TCE degradation was achieved by cometabolism and that the sequential addition of the co-substrate (phenol) and TCE produced better TCE removal due to avoid competitive inhibition. The TCE removal capabilities of the SDC-9 enhanced anaerobic EGSB and BTF processes have been defined and that advanced molecular biology techniques can be employed to identify the type, the dechlorination genes, the population dynamics and the distribution of the TCE degraders in the treatment systems.
引文
[1]张巍,生物活性炭技术去除地下水中BTEX和MTBE的基础研究,博士学位论文,华东理工大学,上海,2008.
    [2]Beneteau, K.M., Aravens, R.,Frape, S.K. Isotopic characterization of chlorinated solvents-laboratory and field results. Organic Geochemistry.1999,30(8):739-753.
    [3]Eguchi, M., Kitagawa, M., Suzuki, Y. A field evaluation of in situ biodegradation of trichloroethylene through methane injection. Water Research.2001,35(9):2145-2152.
    [4]Tartakovsky, B.,Manuel, M. Degradation of trichloroethylene in a coupled anaerobic-aerobic bioreactor:modeling and experiment. Biochemical Engineering.2005,26(1):72-81.
    [5]姜小东.修复土壤和地下水中三氯乙烯的探索.中国环境科学学会学术年会优秀论文集.
    [6]宋汉周,Allan, D. TCE的物理化学特性及其生物降解作用.河海大学学报.2000,28(1):52-56.
    [7]U.S. EPA, RREL treatablity database.1989.
    [8]高霏,刘菲,陈鸿汉.三氯乙烯污染土壤和地下水污染源区的修复研究进展.地球科学进展.2008,23(8):821-829.
    [9]王雪莲,三氯乙烯的好氧共代谢与挥发模型研究,博士学位,中国地质大学,北京,2006.
    [10]Umezu, T.,Yonemoto, J. Behavioral effects of trichloroethylene and tetrachloroethylene in mice. Pharmacology Biochemistry and Behavior.1997,58(3):665-671.
    [11]Ritalahti, K.M.,Amos, B.K.,Sung, Y.,Wu, Q.Z.,Koenigsberg, S.S.,Loffler, F.E. Quantitative PCR targeting 16S rRNAand reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains. Applied and Environmental Microbiology.2006,72(4):2765-2774.
    [12]Partrick, R., Ford, E.,Quarles, J., Ground water contamination in the USA.1987, Philadelphia: University of Pennsylvania Press.
    [13]Hirata, T., Nakasugi.Yoshioka, M. Groundwater pollution by volatile organochlorines in Japan and related phenomena in the substance environment. Water Science and technology.1992, 125(11):9-16.
    [14]Middeldorp, J.M., Aalst, A.,Rijnaarts, H.M. Stimulation of reductive dechlorination for in-situ bioremediation of a soil contaminated with chlorinated ethenes. Water Science and technology.1998, 37(8):105-110.
    [15]张达政,陈鸿汉,李海明.浅层地下水卤代烃污染初步研究.中国地质.2002,29(3):326-329.
    [16]何江涛,李烨,陈鸿汉.浅层地下水氯代烃污染的天然生物降解.环境科学.2005,26(2):121-125.
    [17]张积军,赵雁宁.2010年国内三氯乙烯市场情况及分析.氯碱工业.2010,(11):25-27.
    [18]郭华明,王焰新.地下水有机污染治理技术现状及发展前景.地质科技情报.1999,18(2):69-72.
    [19]赵康,地下水中挥发性有机污染物的原位气相生物修复新型技术研究,博士学位论文,华东理工大学,上海,2011.
    [20]Alan, S.G., Gregory, A.V.,Dennis, E.L. Technical aspects of site remediation:soil vapor vacuum extraction. Waste Management.1994,14:153-159.
    [21]张阳,李光哲,活性炭*纳滤在微污染水源水处理中的原理与应用.2011,北京:科学出版社.
    [22]Ying, W., Investigation and modeling of bio-physicochemical processes in activated carbon columns, PhD, University of Michigan,1978.
    [23]Ying, W.C.,Weber, W.J. Bio-physicochemical adsorption system model. Journal water pollution control federation.1979,50(12):2661-2677.
    [24]左剑恶,王研春,陈浩.膨胀颗粒污泥床(EGSB)反应器的研究进展.中国沼气.2000,18(4):3-8.
    [25]左剑恶,王研春,陈浩,申强.膨胀颗粒污泥床(EGSB)反应器处理高浓度自配水的试验研究.中国沼气.2001,19(2):8-11.
    [26]Popat, S., Trichloroethene removal from waste gases in anaerobic biotrickling filters through reductive dechlorination, PhD, University of California, Riverside, USA,2010.
    [27]Siggins, A., Enright, A.-M.,O'Flaherty, V. Low-temperature anaerobic treatment of a trichloroethylene-contaminated wastewater:Microbial community development. Water Research. 2011,45:4035-4046.
    [28]Yoochatchaval, W.,Ohashi, A.,Harada, H.,Yamaguchi, T.,Syutsubo, K. Intermittent effluent recirculation for the efficient treatment of low strength wastewater by an EGSB reactor. Int. J. Environ. Res.2008,2(3):231-238.
    [29]朱勇,张选君,张亚雷,蒋柱武,黄民生.溶解氧对厌氧颗粒污泥活性的影响.环境科学.2007,28(4):781-785.
    [30]Popat, S.,Deshusses, M. Reductive dehalogenation of trichloroethene vapors in an anaerobic biotrickling filter. Environ. Sci. Technol.2009,43:7856-7861.
    [31]李青花,挥发性有机氯化物TCE的活性炭吸附生物再生处理研究,硕士学位论文,大连理工大学,大连,2000.
    [32]向华,施俭,张青,陆峰.曝气吹脱法去除水中三氯乙烯等有机污染物.净水技术.2011,30(5):151-154.
    [33]Bruce, L.,Desmond, F. Selecting among physical/chemical processes for removing synthetic organics from water. Water Environment Research.1993,65:827-838.
    [34]Miyake, Y., Sakoda, A.,Yamanashi, H. Activated carbon adsorption of trichloroethylene vapor stripped from TCE contaminated water. Water Research.2003,37(8):1852-1858.
    [35]"Nakano, Y. Biodegradation of trichloroethylene adsorbed on granular activated carbon. Water Research.2000,34(17):4139-4142.
    [36]陈宜菲,陈少瑾.光催化氧化法降解含氯有机物的研究进展.河北化工.2008,31(6):20-27.
    [37]吴双桃,朱慧.零价金属对氯代有机物还原脱氯的研究进展.河北化工.2008,31(6):20-27.
    [38]Nelson, C.,Brown, R. Adapting ozonation for soil and groundwater cleanup Chem. Eng.1994, Suppl:EE18-EE24.
    [39]黎维彬,龚浩.催化燃烧去除VOCs污染物的最新进展.物理化学学报.2010,26(4):885-894.
    [40]赵永才,郑重VOCs催化燃烧技术及其应用.现代涂料与涂装.2007,10(11):19-23.
    [41]李静,张甲耀,夏盛林.污染地下水的生物修复技术.农业环境保护.1997,16(6):283-285.
    [42]Duba, A., Jackson, K.,Jovanovich, C. TCE remediation using an in situ, resting state bioaugmentation. Environmental Science and Technology.1996,30(6):1982-1989.
    [43]刘庆生,邱廷省.受污染土壤及地下水修复的新进展.能源环境保护.2004,18(5):25-28.
    [44]Chou, M.S.,Lu, S.L. Treatment of 1,3-butadiene in an air stream by a biotrickling filter and a biofilter. Journal of Air & Waste Management Association.1998,48:711-720.
    [45]Misra, C.,Gupta, S. Hybrid reactor for priority pollutant-trichloroethylene removal. Water Research.2001,35(1):160-166.
    [46]Tschantz, M.F.,Bowan, J.P.,Donaldson, T.L.,Bienkowski, P.R. Methanotrophic TCE biodegration in a multi-stage bioreactor. Environmental Science and Technology.1995,29(8):2073-2082.
    [47]张巍,常启刚,应维琪,徐斌,张睿,凌立成,戴伟娣,蒋剑春.新型水处理活性炭选型技术.环境污染与防治.2006,28(7):499-503.
    [48]Hsieh, C.T.,Teng, H. Influence of mesopore volume and adsorbate size on adsorption capacities of activated carbons in aqueous solutions. Carbon.2000,38:863-869.
    [49]Sutherland, J.M., Adams, C.D.,Kekobad, J. In pilot-scale treatment study of MTBE and alternative fuel oxygenates.2002. Monterey, CA., United States:Battelle Press:Monterey.
    [50]应维琪,常启刚,张巍,蒋文新.简易水处理活性炭的选择和应用方法.环境污染与防治.2005,27(6):430-439.
    [51]Ying, W.,Zhang, W.,Chang, Q.,Jiang, W.,Li, G. Improved methods for carbon adsorption studies for water and wastewater treatment. Environmental Progress.2006,25(2):110-120.
    [52]常启刚,张巍,应维琪,陈莅威.微型快速穿透实验技术在活性炭液相吸附中的应用.环境污染与防治.2006,28(6):442-447.
    [53]常启刚,应维琪,张巍,林卫.活性炭应用测试新技术—微型快速穿透实验方法.中国环境科学.2006,26(3):275-279.
    [54]张朝晖,吕锡武.生物活性炭滤池去除水中溶解性有机碳的研究.中国给水排水.2008,(1):105-108.
    [55]Wilson, J.,Wilson, B. Biotransformation of trichloroethylene in Soil. Appl. Environ. Microbiol. 1985,49:242.
    [56]Fogel, M., Taddeo, A.,Fogel, S. Biodegradation of chlorinated ethenes by a methane-utilizing mixed culture. Appl. Environ. Microbiol.1986,51:720-724.
    [57]Daniel, J.A. Understanding the diversity of trichloroethene co-oxidations Environmental Biotechnology.1995,6(3):352-358.
    [58]Fox, B.G.,Borneman, J.G.,Wackett, L.P.,J.D., L. Haloalkene oxidation by soluble methane monnooxygenase from Methylosinus trichosporium Ob3b:mechanistic and environmental implications. Biochemistry.1990,29:6417-6419.
    [59]Dispiritro, A.A.,Culledge, J.,Shiemke, A.K.,Murrel, J.C.,Lidstrom, M.E.,Krema, C.L. Trichloroethylene oxidation by the membrane-associated methane monooxygenase in type Ⅰ, type Ⅱ and type X methanotrophs. Biodegradation.1992,2:151-164.
    [60]Shields, M.S.,Montgomery, S.O.,Cuskey, S.M.,Chapman, P.J.,Pritchard, P.H. Mutants of Pseudomonas cepacia C4 defective in catabolism of aromatic compounds and trichloroethylene. Appl Environ Microbiol.1991,57:1935-1941.
    [61]Winter, R., Yen, K.,Ensley, B. Efficient degradation of trichloroethylene by a recombinant Escherichia. Biotechnology.1989,7:282-285.
    [62]Nelson, M., Montgomery, L.,Pritchard, P. Trichloroethylene metabolism by microorganisms that degrade aromatic compounds. Appl Environ Microbiol.1988,54:604-606.
    [63]Rasche, M., Hyman, M.,Arp, D. Factors limiting aliphatic chlorocarbon degradation by Nifrosomonas europea-cometabolic inactivation of ammonia monooxygenase and substrate specificity. Appl Environ Microbiol.1991,57:2986-2994.
    [64]Ensign, S., Hyman, M.,Arp, D. Cometabolic degradation of chlorinated alkenes by alkene monooxygenase in a propylenegrown Xanthobacter strain. Appl Environ Microbiol.1992,58:3038-3046.
    [65]Malachowsky, K.,Phelps, T.,Teboli, A.,Minnikin, D.,White, D. Aerobic mineralization of trichloroethylene, vinyl chloride, and aromatic compounds by Rhodococcus species. Appl Environ Microbiol.1994,60:542-548.
    [66]Dabrock, B.,Riedel, J.,Bertram, J.,Cottschalk, C. Isopropyl-benzene (cumene)-a new substrate for the isolation of trichloroethene-degrading bacteria. Arch Microbiol.1992,158:9-13.
    [67]Chen, Y., Lin, T.,Huang, C. Cometabolic degradation kinetics of TCE and phenol by Pseudomonas putida. Chemosphere.2008,72(11):1671-1680.
    [68]张锡辉,白志俳.难降解有机污染物共降解机理解析.上海环境科学.2000,19(7):297-301.
    [69]陈翠柏,杨琦,沈照理.地下水三氯乙烯生物修复的研究进展.华东地质学院学报.2003,26(1):10-14.
    [70]耿亮,陆光华.利用共代谢机制降解水体中的氯代芳烃.四川环境.2006,25(1):70-73.
    [71]董春娟,吕炳南,陈志强.处理生物难降解物质的有效方式—共代谢.化工环保.2003,23(2):82-86.
    [72]Lu, C., Lee, C.,Chung, M. Comparison of trichloroethylene removal rates by methane-and aromatic-utilizing microorganisms. Water Science and Technology.1998,38(7):19-24.
    [73]Fan, S.,Scow, K. Biodegradation of trichloroethylene and toluene by indigenous microbial population in soil. Appl Environ Microbiol.1993,59(6):1911-918.
    [74]段云霞,韩振为,隋红.三氯乙烯(TCE)和甲苯初始质量浓度的不同对共代谢的影响.石油化工.2003,32:751-753.
    [75]隋红,徐世民,李鑫钢.地下水中三氯乙烯共代谢规律.天津大学学报.2004,37(5):423-427.
    [76]Mars, A. Effect of Trichloroethylene on the competitive behavior of toluene-degrading bacteria. Applied Environmental Microbiology.1998,164:208-215.
    [77]孙芹菊.三氯乙烯污染的地下水生物修复技术研究进展.环境科学与管理.2007,32(6):42-46.
    [78]Distefano, T.D., Gossett, J.M.,Zinder, S.H. Hydrogen as an electron-donor for dechlorination of tetrachloroethene by an anaerobic mixed culture. Appl. Environ. Microbiol..1992,58:3622-3629.
    [79]Freedman, D.,Gossett, J. Biological reductive dechlorination of tetrachlorothylene and trichloroethylene to ethylene under methanogenic conditions. Applied Environmental Microbiology. 1989,55:2144-2151.
    [80]Maymo-Gatell, X.,Chien, Y.T.,Gossett, J.M.,Zinder, S.H. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science.1997,276:1568-1571.
    [81]He, J.Z.,Ritalahti, K.M.,Yang, K.L.,Koenigsberg, S.S.,Loffler, F.E. Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature 2003,424:62-65.
    [82]Sung, Y.,Ritalahti, K.M.,Apkarian, R.P.,Loffler, F.E. Quantitative PCR confirms purity of strain GT, a novel trichloroethene-to-ethene-respiring Dehalococcoides isolate. Appl. Environ. Microbiol. 2006,72:1980-1987.
    [83]Cupples, A.M. Real-time PCR quantification of Dehalococcoides populations:Methods and applications. Journal of Microbiological Methods.2008,72(1):1-11.
    [84]He, J.Z.,Ritalahti, K.M.,Aiello, M.R.,Loffler, F.E. Complete detoxification of vinyl chloride by an anaerobic enrichment culture and identification of the reductively dechlorinating population as a Dehalococcoides species. Applied and Environmental Microbiology.2003,69(2):996-1003.
    [85]Duhamel, M., Mo, K.,Edwards, E.A. Characterization of a highly enriched Dehalococcoides-containing culture that grows on vinyl chloride and trichloroethene. Applied Environmental Microbiology.2004,70(9):5538-5545.
    [86]Amos, B., Ritalahti, K.,Cruz-garcia, C. Oxygen effect on dehalococcoides viability and biomarker quantification. Environ. Sci. Technol..2008,42:5718-5726.
    [87]Magnuson, J.K.,Romine, M.F.,Burris, D.R.,Kingsley, M.T. Trichloroethene reductive dehalogenase from Dehalococcoides ethenogenes:sequence of tceA and substrate range characterization. Applied and Environmental Microbiology.2000,66(12):5141-5147.
    [88]He, J.,Sung, Y.,Krajmalnik-Brown, R.,Ritalahti, K.M.,Loffler, F.E. Isolation and characterization of Dehalococcoides sp. strain FL2, a trichloroethene (TCE) and 1,2-dichloroethene-respiring anaerobe. Environmental Microbiology.2005,7(9):1442-1450.
    [89]Muller, J.A.,Rosner, B.M.,Abendroth, G.V.,Simon-Meshulam, G.,McCarty, P.L.,Spormann, A.M. Molecular identification of the catabolic vinyl chloride reductase from Dehalococcoides sp. strain VS and its environmental distribution. Applied and Environmental Microbiology.2004,70(8):4880-4888.
    [90]Krajmalnik-Brown, R.,Holscher, T.,Thomson, I.N.,Saunders, F.M.,Ritalahti, K.M.,Loffler, F.E. Genetic identification of a putative vinyl chloride reductase in Dehalococcoides sp. strain BAV1. Applied and Environmental Microbiology.2004,70(10):6347-6351.
    [91]Chung, J., Krajmalnik-Brown, R.,Rittmann, B.E. Bioreduction of trichloroethene using a hydrogen-based membrane biofilm reactor. Environ. Sci. Technol.2008,42:477-483.
    [92]Holmes, V., He, J.,Lee, P. Discrimination of multiple Dehalococcoides strains in a trichloroethene enrichment by quantification of their reductive dehalogenase genes. Applied and Environmental Microbiology.2006,72(9):5877-5883.
    [93]王凯军,左剑恶,UASB工艺的理论与工艺实践.2000,北京:中国环境科学出版社.
    [94]Ghosh, U.,Weber, A.S.,Jensen, J.N.,Smith, J.R. Granular activated carbon and biological activated carbon treatment of dissolved and sorbed poly chlorinated biphenyls. Water Environment Research.1999,71(2):232-240.
    [95]Rodman, C.A. Factors involved with biological regeneration of activated carbon adsorbers. J. Water Pollut. Control Federation.1973,55:1168-1173.
    [96]Andrews, G.F.,Tien, C. Bacterial film growth in adsorbent surfaces. Am. Int. Chem. Environ. J. 1981,27:396-403.
    [97]Weber, W.J.,Ying, W.C. Integrated biological and physico-chemical treatment for reclamation of wastewater. in International Conference on Advanced Treatment and Reclamation of Wastewater. 1977. Johannesburg, S.Africa.
    [98]Ying, W. Successful application of biological activated carbon process for removing sulfolane from groundwater. in Proceedings of the 46th Industrial Waste Conference.1991.
    [99]La Motta, E. Kinetics of growth and substrate uptake in a biological film system. Applied and Environmental Microbiology.1976,31:286-293.
    [100]Lazarova, V.,Manem, J. Biofilm characterization and activity analysis in water and wastewater treatment. Water Research.1995,29(10):2227-2245.
    [101]Goeddertz, J.G., Matsumoto, M. R., Weber, A. S. Offline bioregeneration of granular activated carbon. Journal of Environmental Engineering.1988,114:1063-1076.
    [102]Chudyk, W.A.,Snoeyink, V.L. Bioregeneration of activated carbon saturated with phenol. Environmental Science and Technology.1984,18(1):1-5.
    [103]Aktas, O.,Cecen, F. Bioregeneration of activated carbon:A review. International Biodeterioration & Biodegradation.2007,59(4):257-272.
    [104]Putz, A.R.H., Losh, D.E.,Speitel Jr, G.E. Removal of nonbiodegradable chemicals from mixtures during granular activated carbon bioregeneration. Journal of Environmental Engineering. 2005,131(2):196-205.
    [105]Ha, S.R.,Vinitnantharat, S. Competitive removal of phenol and 2,4-dichlorophenol in biological activated carbon system. Environmental Technology.2000,21:387-396.
    [106]柏丽梅,石玉明,孙兴滨.厌氧膨胀颗粒床反应器在有机废水治理中的研究进展.环境科学与管理.2009,34(1):93-97.
    [107]Lettinga, G. Challenge of psychrophilic anaerobic wastewater treatment Trends in Biotechnology.2001,19(9):363-370.
    [108]Zoutbeng, G.R. Anaerobic treatment of potato processing wastewater Wat Sci Tech.1999, 40(1):297-304.
    [109]周洪波.五氯苯酚(PCP)对厌氧颗粒污泥微生物的毒性作用.中南工业大学学报.2002,33(5):469-472.
    [110]丁颖,生物滤器处理恶臭气体及其微生物生态研究,博士学位论文,浙江大学,杭州,2007.
    [111]刘永慧,生物过滤法处理挥发性有机物,硕士学位论文,大连理工大学,大连,2002.
    [112]陈建孟,王家德.生物技术在有机废气处理中的研究进展.环境科学进展.1998,6(3):30-36.
    [113]Cox, H.,Deshusses, M., eds. Biotrickling filters in bioreactors for waste gas treatment. ed. V.M. Kennes C, Eds.2001, Kluwer Academic Publishers:Dordrecht.
    [114]瞿畏,生物滴滤器中挥发性有机物去除的关键影响因素,硕士学位,湖南大学,长沙,2007.
    [115]Li, C.,Moe, W. Assessment of microbial populations in methyl ethyl ketone degrading biofilters by denaturing gradient gel electrophoresis. Appl. Microbiol. Biotechnol 2004,64:568-575.
    [116]Cai, Z.,Kim, D.,Sorial, G.A.,Saikaly, R.,Zein, M.,Oerther, D. Performance and microbial diversity of a trickle-bed air biofilter under interchanging contaminants. Eng. Life. Sci.2006,6:37-42.
    [117]Sanz, J.L.,Kochling, T. Molecular biology techniques used in wastewater treatment:An overview. Process Biochemistry.2007,42(2):119-133.
    [118]郑景生,吕蓓.PCR技术及实用方法.分子植物育种.2003,1(3):381-394.
    [119]袁亚男,刘文忠.实时荧光定量PCR技术的类型、特点与应用.中国畜牧兽医.2008,25(3):27-30.
    [120]张立国,张琚.实时定量PCR技术的介绍.生物技术.2003,13(2):39-40.
    [121]Huang, L.,Yang, Z.,Li, B.,Hu, J.,Zhang, W.,Ying, W. Granular activated carbon adsorption technology for removing trichloroethylene from groundwater. AICHE Journal.2011,57(2):542-550.
    [122]黄流雅,胡娟,张巍,杨植东,林匡飞,应维琪.颗粒活性炭吸附去除水中三氯乙烯的研究.环境污染与防治.2009,31(9):34-39.
    [123]Kilduff, J.E.,Karanfil, T. Trichloroethylene adsorption by activated carbon preloaded with humic substances:effects of solution chemistry. Water Research.2002,36(7):1685-1698.
    [124]Ying, W., Dietz, E.,Woehr, C. Adsorption capacities of activated carbon for organic constituents of wastewaters. Environmental Progress.1990,9(1):1-9.
    [125]Crittenden, J.C., Berrigan, J.K.,Hand, D.W. Design of rapid small-scale adsorption tests for a constant diffusivity. Journal Water Pollution Control Federation.1986,58(4):312-319.
    [126]Zhang, W.,Chang, Q.,Liu, W.,Jiang, W.,Li, B.,Ying, W. Selecting activated carbon for water and wastewater treatment studies. Environmental Progress.2007,26(3):289-299.
    [127]钟一铭,乔佳妮,陈月磊,李冰璟,张巍.颗粒活性炭去除水中甲基叔丁基醚的可行性研究.环境工程学报.2012,6(2):408-414.
    [128]Crittenden, J., Luft, P.,Hand, W. Prediction of multi-component adsorption equilibria using Ideal Adsorbed Solution Theory. Environmental Science & Technology.1985,19:1037-1043.
    [129]Dobbs, R.,Cohen, J. Carbon adsorption isotherms for toxic organics. US EPA Water Engineering. Research Laboratory.1980.,
    [130]Holthouse, A., Biological activated carbon:the relative role of metabolism and cometabolism in extending service life and improving process performance, PhD, The University of Texas at Austin, 2004.
    [131]Van Vliet, B., Weber, W.,Hozumi, H. Modeling and prediction of specific compound adsorption by activated carbon and synthetic adsorbents. Water Research.1980,14:1719-1728.
    [132]Yonge, D., Keinath, T.,Poznanska, K. Single-solute irreversible adsorption on granular activated carbon. Environmental Science & Technology.1985,19:690-694.
    [133]Kilduff, J.E., Karanfil, T.,Walter, J.W. TCE adsorption by GAC preloaded with humic substances. American Water Works Association.1998,90(5):76-89.
    [134]James, E.K.,Tanju, K. Trichloroethylene adsorption by activated carbon preloaded with humic substances:effects of solution chemistry. Water Research.2002,36(7):1685-1698.
    [135]胡娟,黄流雅,刘诺,张巍,刘友良,应维琪.颗粒活性炭吸附工艺对水体中甲基叔丁基醚的去除.中国环境科学.2011,31(10):1637-1643.
    [136]Newcomse, G., Morrison, J.,Hepplewhite, C. Simultaneous adsorption of MIB and NOM onto activated carbon I:Characterisation of the system and NOM adsorption. Carbon.2002,2:2135-2146.
    [137]Newcomse, G.,Morrison, J.,Hepplewhite, C.,Knappe, D. Simultaneous adsorption of MIB and NOM onto activated carbon Ⅱ:competitive effects. Carbon.2002,2:2147-2156.
    [138]乔春光,魏群山,王东升.典型南方水源溶解性有机物分子量分布变化及去除特性.环境科学学报.2007,27(2):195-200.
    [139]袁东.膜法深度处理地下水工艺中有机物分子量分布规律研究.膜科学与技术.2008,28(4):35-42.
    [140]Li, L., Patricia, A.,Derlef, R. Effects of activated carbon suface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution. Carbon.2002,40:2085-2100.
    [141]Love, O.T.,Eilers, R.G. Treatment of volatile organic compound in drinking water. J Am Water Works Assoc.1982,74(8):413.
    [142]Shih, T., Wangpaichitr, M.,Suffet, M. Evaluation of granular activated carbon technology for the removal of methyl tertiary butyl ether (MTBE) from drinking water. Water Research.2003,37:375-385.
    [143]Shurtliff, M., Parkin, G.,Weathers, L. Biotransformation of Trichloroethylene by a Phenol-induced Mixed Culture. J. Environ. Eng.1996,122(7):581-589.
    [144]Chen, W., Chang, J.,Wu, C. Characterization of phenol and trichloroethene degradation by the rhizobium Ralstonia taiwanensis. Research in Microbiology 2004,155(8):672-680.
    [145]Sipkema, E.,Koning, W. Trichloroethene degradation in a two-step system by methylosinus trichosporium OB3b. Optimization of system performance:Use of formate and methane. Biotechnol. Bioeng.1999,63(1):56-68.
    [146]Hopkins, G.D., McCarty, P.L. Field evaluation of in situ aerobic cometabolism of trichloroethylene and three dichloroethylene isomers using phenol and toluene as the primary substrates. Environ. Sci. Technol.1995,29:1628-1637.
    [147]Futamata, H., Harayama, S., Watanabe, K. Diversity in kinetics of trichloroethylene-degradation activities exhibited by phenol-degrading bacteria Appl. Microb. Microbiol.2001,55:248-253.
    [148]国家环境保护局,水与废水监测分析方法(第三版).1997,北京:中国环境科学出版社.233-237.
    [149]Chen, Y., Lin, T.,Huang, C. Degradation of phenol and TCE using suspended and chitosan-bead immobilized Pseudomonas putida. J. Hazardous Materials.2007,148(3):660-670.
    [150]Mu, D.Y.,Scow, K.M. Effect of trichloroethylene (TCE) and toluene concentrations on TCE and toluene biodegradation and the population density of TCE and toluene degraders in soil Appl. Environ. Microbiol..1994,60(7):2661-2665.
    [151]Alvarze-Cohen, L.,McCarty, P. Effects of toxicity, aeration, and reductant supply on TCE transformation by a mixed methanotrophic culture. Appl. Environ. Microbiol..1991,57(1):228-235.
    [152]Semprini, L. Strategies for the aerobic cometabolism of chlorinated solvents Curr. Opin. Biotechnol.1997,8(3):296-308.
    [153]李青花,挥发性有机氯化物TCE的活性炭吸附生物再生处理研究,硕士,大连理工大学,大连,2000.
    [154]吴耀国,谭英,胡思海,陈培榕,刘宝超.易降解有机物对难降解有机污染物生物降解的影响.化工进展.2008,27(4):495-498.
    [155]Segar, R.L.J., De Wys, S.L.,Speitel, G.E.J. Sustained trichloroethylene cometabolism by phenol-degrading bacteria in sequencing biofilm reactors. Water Environ. Res.1995,67(5):764-774.
    [156]Fieschko, J.,Humphrey, A.E. Acetate inhibition of Pseudomonas putida. Biotechnol. Bioeng. 1985,27:1362.
    [157]Futamata, H.,Nagano, Y.,Watanabe, K.,Hiraishi, A. Unique kinetic properties of phenol-degrading Variovorax strains responsible for efficient trichloroethylene degradation in a chemostat enrichment culture Appl. Environ. Microbiol.2005,71(2):904-911.
    [158]Sirotkin, A.S., Koshkina, L.Y.,Ippolitov, K.G. The BAC process for treatment of waste water containing non-ionogenic synthetic surfactants. Wat. Res.2001,35:3265-3271.
    [159]Wu, W., Shi, J.,Hickey, R.F. Long-term performance of co-metabolic degradation of trichloroethylene in a fluidized bed reactor fed with benzene, toluene and xylene. J Chem Technol Biotechnol.2008,83:513-523.
    [160]Kan, E.,Deshusses, M. Cometabolic degradation of TCE vapors in a foamed emulsion bioreactor. Environ Sci Technol.2006,40(3):1022-1028.
    [161]Jung, I.,Park, O. Enhancement of cometabolic biodegradation of trichloroethylene gas in biofiltration. Journal of Bioscience and Bioengineering.2005,100(6):657-661.
    [162]Speitel, G.E.J.,Segar, R.L.J. Cometabolism in biofilm reactors. War Sci Tech.1995,31(1):215-225.
    [163]马承愚,彭英利,高浓度难降解有机废水的治理与控制.2007,北京:化学工业出版社.
    [164]Chu, K.H.,Jewell, W.J. Treatment of Tetrachloroethylene with Anaerobic Attached Film Process. Journal of Environmental Engineering 1994,120(58):58-71.
    [165]Sponza, D.T. Rapid granulation and sludge retention for tetrachloroethylene removal in an upflow anaerobic sludge blanket reactor. Biotechnology Letters.2001,23:1209-1216.
    [166]Guiot, S.R.,Tartakovsky, B.,Lanthier, M.,Levesque, M.J.,Manuel, M.F.,Beaudet, R.,Greer, C.W.,Villemur, R. Strategies for augmenting the pentachlorophenol degradation potential of UASB anaerobic granules. Water Science and Technology.2002,45(10):35-41.
    [167]Horber, C.,Christiansen, N.,Arvin, E.,Ahring, B.K. Improved dechlorinating performance of upflow anaerobic sludge blanket reactors by incorporation of Dehalospirillum multivorans into granular sludge. Applied and Environmental Microbiology.1998,64(5):1860-1863.
    [168]吕华.生物强化技术在环境修复中的应用进展.北方环境.2011,23(6):48-49.
    [169]Yang, Y.,Mccarty, P.L. Competition for hydrogen within a chlorinated solvent dehalogenating anaerobic mixed culture. Environmental Science and Technology.1998,32(22):3591-3597.
    [170]Gunsch, C.K.,Kinney, K.A.,Szaniszlo, P.J.,Whitman, C.P. Relative gene expression quantification in a fungal gas-phase biofilter. Biotechnology and Bioengineering.2007,98(1):101-111.
    [171]Muyzer, G., Dewaal, E.,Uitterlinden, A. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol.1993,59:695-700.
    [172]Behrens, S.,Azizian, M.F.,McMurdie, P.J.,Sabalowsky, A.,Dolan, M.E.,Semprini, L.,Spormann, A.M. Monitoring abundance and expression of "Dehalococcoides" species chloroethene-reductive dehalogenases in a tetrachloroethene-dechlorinating flow column. Appl. Environ. Microbiol.2008, 74:5695-5703.
    [173]Loffler, F.E., Ritalahti, K.M.,Tiedje, J.M. Dechlorination of chloroethenes is inhibited by 2-Bromoethanesulfonate in the absence of methanogens. Applied and Environmental Microbiology. 1997,63(12):4982-4985.
    [174]Azizian, M.F.,Marshall, I.P.,Behrens, S.,Spormann, A.M.,Semprini, L. Comparison of lactate, formate, and propionate as hydrogen donors for the reductive dehalogenation of trichloroethene in a continuous-flow column. Journal of Contaminant Hydrology 2010,113(1-4):77-92.
    [175]Jin, Y.,Mattes, T. A quantitative PCR assay for aerobic, vinyl chloride- and ethene-assimilating microorganisms in groundwater. Environ. Sci. Technol.2010,44:9036-9041.
    [176]Ruijter, J.M.,Ramakers, C.Hoogaars, W.M.H.,Karlen, Y.,Bakker, O.,Van den Hoff, M.J.B.,Moorman, A.F.M. Amplification efficiency:linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res.2009,37(6):e45.
    [177]张斌,孙宝盛,刘慧娜.膜生物反应器中氨氧化菌群落结构的演替与分析.天津大学学报.2009,42(1):65-71.
    [178]李惠娣,杨琦,尚海涛.甲醇为共代谢基质时四氯乙烯的厌氧生物降解.环境科学.2004,25(3):84-88.
    [179]王妍春,左剑恶,肖晶华EGSB反应器处理含氯苯有机废水的试验研究.环境科学.2003,24(2):116-120.
    [180]Azizian, M., Behrens, S.,Sabalowsky, A. Continuous-flow column study of reductive dehalogenation of PCE upon bioaugmentation with the Evanite enrichment culture. Journal of Contaminant Hydrology.2008,100(1):11-21.
    [181]Huang, S.,Wu, Y., eds. Kinetic evaluation of anaerobic biodegradation of trichloroethylene using activated carbon fluidized bed. Hazardous Waste Management Handbook:Technology, Perception and Reality,, ed. Y.U. Wu.1994, Chermisinoff, P.N:Prentice Hall, Englewood Cliffs.293-307.
    [182]Prakash, S.M., Gupta, S.K. Biodegradation of tetrachloroethylene in up flow anaerobic sludge blanket reactor. Bioresource Technology.2000,72:47-54.
    [183]张书景,李坚,李依丽.非稳态条件下生物滴滤塔净化甲苯废气的实验.环境工程.2007,26(3):53-56.
    [184]Cox, H.,Deshusses, M. Effect of starvation on the performance and re-acclimation of biotricking filters for air pollution control. Environ. Sci. Technol.2002,36:3069-3073.
    [185]Kim, D., Miyahara, T., Noike, T. Effect of C/N ratio on the bioregeneration of biological activated carbon. Water Science and Technology.1997,36:239-249.
    [186]Martin, F.J. Effect of periods of non-use on biofilter performance J Air& waste Manage. Assoc. 1996,46(6):539-546.
    [187]Zilli, M., Converti, A.,Lodi, A. Phenol removal from waste gases with a biological filter by pseudomonas putida. Biotechnol. Bioeng.1993,41:693-702.
    [188]Popat, S.,Deshusses, M. Kinetics and inhibition of reductive dechlorination of trichloroethene, cis-1,2-dichloroethene and vinyl chloride in a continuously fed anaerobic biofilm reactor. Environ. Sci. Technol.2011,45:1569-1578.
    [189]Shukla, A., Vishwakarma, P.,Singh, R. Bio-filtration of trichloroethylene using diazotrophic bacterial community. Bioresource Technology.2010,101:2126-2133.
    [190]Cox, H.,Deshusses, M. Biomass control in waste air biotrickling filtefs by protozoan predation. Biotechnol. Bioeng.1999,62(2):216-220.
    [191]Futamata, H.,Yoshida, N.,Kurogi, T.,Kaiya, S.,Hiraishi, A. Reductive dechlorination of chloroethenes by Dehalococcoides-containing cultures enriched from a polychlorinated-dioxin-contaminated microcosm. ISME J.2007,1:471-479.
    [192]杨琦,席宏波,尚海涛.四氯乙烯的生物吸附和厌氧生物降解研究.现代地质.2007,21(1):170-174.
    [193]Kao, C.M., Chen, S.C.,Wang, J.Y. Remediation of PCE contaminated aquifer by an in situ two-layer biobarier:laboratory batch and column studies Water Research.2003,37:27-38.
    [194]Jenkins, R.O.,Heald, S.C. Stability of toluene oxidation by. Pseudomonas putida under nutrient deprivation. Appl. Microbiol. Biotechnol.1996,46:388-392.
    [195]Pijuan, M., Werner, U.,Yuan, Z. Effect of long term anaerobic and intermittent anaerobicaerobic starvation on aerobic granules. Water Research.2009,43:3622-3632.
    [196]羌宁,季学李,都基峻.苯系混合气体生物滴滤器非稳态工况性能.环境科学.2005,26(1):16*19.
    [197]Konopka, A., Zakharova, T.,Nakatsu, C. Effect of starvation length upon microbial activity in a biomass recycle reactor. Journal of Industrial Microbiology & Biotechnology.2002,29:286-291.
    [198]Siegrist, H.,Brunner, I.,Koch, G.,Phan, L.C.,Le, V.C. Reduction of biomass decay rate under anoxic and anaerobic conditions. Water Science and Technology.1999,39(1):129-137.
    [199]Cox, H.H.J.,Deshusses, M.A. Toluene degradation in the recycle liquid of bitrickling filters for air pollution control. Environ. Technol.2000,21:427-435.
    [200]Cox, H.H.J.,Deshusses, M.A. Biomass control in waste air biotrickling filters by protozoan predation. Biotechnol. Bioeng.1998,62:216-224.
    [201]Hekmat, D.,Linn, A.,Stephan, M.,Vortmeyer, D. Biodegradation dynamics of aromatic compounds from waste air in a trickle-bed reactor. Appl. Microbiol. Biotechnol.1997,48:129-134.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700