用户名: 密码: 验证码:
不同运营环境下可再生能源发电的短期优化及其风险管理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
短期运行是可再生能源发电运行的最关键环节之一,但是可再生能源发电的出力随机性使其短期运行决策伴随着一定的风险,可再生能源发电的决策者必须对这种风险进行控制才能制定出合理的短期运行计划。不同运营环境下上述风险的承受者和决策者是不同的,因此可再生能源发电的短期决策需要依据不同的风险承受者分别建模和求解。另外近年来可控负荷(如储能,电动汽车,智能家居等)发展迅速,其能够为可再生能源发电的优化提供更多的可利用资源,因此本文将在考虑可控负荷因素的前提下对不同运营环境下的可再生能源发电的短期优化及其风险管理展开研究。
     可再生能源发电优先入网的环境下风险承受者和管理者是系统管理人员,非市场环境和可再生能源优先市场环境都属于这个范畴,本文首先针对非市场环境展开研究。这种环境下可控负荷的投资主要源于系统运行侧,因此此时考虑可控负荷因素的可再生能源发电的短期优化就变成了含可再生能源发电与可控负荷电力系统的短期优化。本部分研究内容从系统运行角度出发,将包含储能、电动汽车、可控消费负荷等在内的可控负荷作为控制量融入传统的经济运行模型,以机会备用约束的置信度作为系统风险度量和管理的手段,提出了基于机会备用约束的含可再生能源发电与可控负荷电力系统的短期优化运行模型并求解,研究成果可为含可再生能源发电与可控负荷系统提供短期优化及风险管理的工具。
     在可再生能源优先的电力市场环境下风险承受者仍然是由整个系统承担。由于能量市场的决策模型与非市场环境类似,因此本文第二部分研究内容落点于市场环境下含可再生能源系统的旋转备用优化决策及其风险管理上。首先以旋转备用容量成本、弹性消费负荷的响应成本和传统负荷的停电损失为综合成本,以综合成本期望和条件价值风险为经济性度量指标,建立了考虑弹性消费负荷的含可再生能源发电系统的旋转备用优化和风险管理模型并采用改进的多目标克隆免疫算法和模糊风险决策方法进行求解。在此基础上为了辨识可再生能源发电所需备用占系统总备用的比例以便于能源管理部门制定宏观决策,本文提出采用“备用需求贡献”概念进行备用需求分摊的方法,该方法能够有效的区分市场每个参与方包括各可再生能源发电的备用需求。此外,无论机会备用约束还是基于成本效益的备用决策模型都会使系统面临一定的小概率但有可能是巨额损失的尾部风险,为了进一步减少系统面临的风险,本文还提出了基于保险理论的尾部风险转移的方法,该方法能够给系统提供通过支付保费来减少所面临的小概率厚尾风险的选择。
     为了鼓励可再生能源自我进步,许多国家在给可再生能源发电一定补贴的情况下让其自由参与电力市场竞争,这种情况下可再生能源发电不确定性造成的风险将由可再生能源发电设备的拥有者自行承担。考虑可再生能源发电设备的拥有者主要为以下两种:一是大规模的可再生能源发电商,二是含小规模可再生能源发电设备的微网。本文的第三部分研究以二者为研究对象对完全市场环境下可再生能源发电的短期优化运行展开研究。首先提出了市场环境下含可再生能源和可控负荷的微网的优化运行模型,所建模型同时考虑了储能设备的负荷转移功能和能量备用功能并采用多目标优化和模糊决策方法求解。然后针对含储能设备的大规模可再生能源发电商建立了基于条件价值风险或基于收益乐观值为风险度量的最优竞标模型并求解,之后为了满足具有主观风险态度决策者的决策需求,本部分研究首创的将累积前景理论用于可再生能源发电商的风险决策中,丰富了当前可再生能源发电商的短期优化决策模型。
Short operation is one of the most critical factors for optimizing the utilization ofintermittent renewable energy generations (RGs). But the uncontrollable characteristic ofRGs adds risks on their short-term operation, the decision-makers must take those risksinto account in order to make a good plan. Because the risk takers and managers are not thesame under different operating environments, the optimization of short-term operation ofRGs should be modeled and solved depending on different risk takers. Furthermore, therapid development of controllable loads in recent years (such as energy storage, electricvehicles, smart home, etc.) offers more available resources for optimizing RGs, so thisthesis carries researches on short-term optimization and its risk management of RGs fordifferent operating environments with the consideration of controllable loads.
     Risk takers of RGs are the whole system and the risk manager is the operators ofpower grid when governments force the power system to meet generating demand of thoseRGs. Both non-market and RG priority market are belonged to this category and the firstpart of the thesis focuses on the non-markets environment. Since the investment ofcontrollable loads in this environment are mainly due to the power grid, such as the batteryswitch stations of electric vehicles, intelligent community and energy storage stations inour country are most invested by the State Grid. So short-term optimization of RGs in thisenvironment is actually the short-term optimization of power system with RGs andcontrollable loads. From the system’s view, it proposes a chance reserve constrainedoptimization model for short-term operation of those power systems by adding the storages,electric vehicles and other controllable loads into the traditional economic operation modeland utilizing the confidence level of chance reserve constraint as the risk measure of theschedule plan. These researches can offer an optimization and risk management tool forpower system with RGs and controllable loads.
     The risk taker is still the whole power system in RG priority markets. The decision-making of energy markets is similar with the non-market environment, so thesecond part of this thesis pays attentions on making decisions of spinning reserve markets.It builds a multi-objective optimization model with two objectives: expectation andconditional value at risk of tatal cost, which consists of costs of reserve capacity, outagelosses and the cost of elastic demands. The proposed model is solved with the improvedmulti-objective immune algorithm and a risk decision-making method based on fuzzytheory. In order to identify the reserve demand of renewable generations from the totaldemand of power system, this section carries researches on the reserve allocation of powersystem with renewable generations. It proposes a new method to allocate the total reserveby proposing a concept of reserve demand contribution. Furthermore, the reserve plansdecided by risk management tools will face a problem of tail risk which is with smallprobability but large losses, so the third part of this section proposes a method to solve thetail risk by covering insurances which can offer a choice for power system to change theuncertainty losses into a fixed losses by paying insurance fees.
     In order to promote technological advance of RGs, many countries give them somegenerating allowance and put renewable generations into the competitive markets. Theowners of RGs will bear the risks caused by their uncertainties in this situation. So thethird section of the thesis focuses on the optimization of RGs under a competitive market.It chooses two types of RG owners as the research objective: one is the microgrid withRGs and the other is the large scale renewable energy power producers. It first proposes amulti-objective short-term optimization model for those microgrids with the considerationof risk aversion by energy storage and solves it with a improved multi-objective immunealgorithm and fuzzy decision theory. Then it proposes an optimal bidding model for largescale RGs with the conditional value at risk or the optimal value of profits as risk measures.And in order to satisfy the demand of decision makers who want make decisions with theirown risk experiences, the last part of this section puts forward a new decision model basedon the prospect theory which enriches the short-term optimization model of large scaleRGs.
引文
[1] A. Brooks,E. Lu,D. Reicher,C. Spirakis,etal. Demand Dispatch[J].IEEE Power&Energy Magazine,2010,8(3):20-29.
    [2]刘振亚.智能电网技术[M].北京:中国电力出版社,2010.
    [3] C. Nichita,D. Luca,B. Dakyo,E. Ceanga. Large band simulation of the wind speed for real time windturbine simulators[J].IEEE Transactions on Energy Conversion,2002,17(4):523-529.
    [4]吴学光,张学成,印永华,戴慧珠.异步风力发电系统动态稳定性分析的数学模型及其应用[J].电网技术,1998,(06):70-74.
    [5]王松岩,于继来.风速与风电功率的联合条件概率预测方法[J].中国电机工程学报,2011,(07):7-15.
    [6]潘迪夫,刘辉,李燕飞.基于时间序列分析和卡尔曼滤波算法的风电场风速预测优化模型[J].电网技术,2008,(07):82-86.
    [7]李俊芳,张步涵,谢光龙,李妍,等.基于灰色模型的风速-风电功率预测研究[J].电力系统保护与控制,2010,(19):151-159.
    [8] G. Sideratos, N. D. Hatziargyriou. An Advanced Statistical Method for Wind PowerForecasting[J].Power Systems, IEEE Transactions on,2007,22(1):258-265.
    [9] C. W. Potter, M. Negnevitsky. Very short-term wind forecasting for Tasmanian powergeneration[J].Power Systems, IEEE Transactions on,2006,21(2):965-972.
    [10] M. G. De Giorgi,A. Ficarella,M. Tarantino. Error analysis of short term wind power predictionmodels[J].Applied Energy,2011,88(4):1298-1311.
    [11] H. Bludszuweit,J. A. Dominguez-Navarro,A. Llombart. Statistical Analysis of Wind Power ForecastError[J].Power Systems, IEEE Transactions on,2008,23(3):983-991.
    [12]李东东,陈陈.风力发电系统动态仿真的风速模型[J].中国电机工程学报,2005,(21):44-47.
    [13]林今,孙元章,P.SΦRENSEN,李国杰,等.基于频域的风电场功率波动仿真(二)变换算法及简化技术[J].电力系统自动化,2011,(05):71-76.
    [14]林今,孙元章,P.SΦRENSEN,李国杰,等.基于频域的风电场功率波动仿真(一)模型及分析技术[J].电力系统自动化,2011,(04):65-69.
    [15] Cheng Lin,Lin Jin,Sun Yuan-Zhang,C. Singh,etal. A Model for Assessing the Power Variation of aWind Farm Considering the Outages of Wind Turbines[J].Sustainable Energy, IEEE Transactions on,2012,3(3):432-444.
    [16]王建东,汪宁渤,何世恩,刘光途,等.甘肃酒泉风电基地风电预测预报阶段性研究[J].中国电力,2010,(10):66-69.
    [17]彭虎,郭钰锋,王松岩,于继来.风电场风速分布特性的模式分析[J].电网技术,2010,(09):206-210.
    [18] L. M. Fernandez,J. R. Saenz,F. Jurado. Dynamic models of wind farms with fixed speed windturbines[J].Renewable Energy,2006,31(8):1203-1230.
    [19]曹娜,赵海翔,任普春,戴慧珠.风电场动态分析中风速模型的建立及应用[J].中国电机工程学报,2007,27(36):68-72.
    [20]曹娜,于群.风速波动情况下并网风电场内风电机组分组方法[J].电力系统自动化,2012,36(2):42-46.
    [21] A. Mellit,S. A. Kalogirou,L. Hontoria,S. Shaari. Artificial intelligence techniques for sizingphotovoltaic systems: A review[J].Renewable and Sustainable Energy Reviews,2009,13(2):406-419.
    [22] S. A. Kalogirou. Artificial neural networks in renewable energy systems applications: Areview[J].Renewable and Sustainable Energy Reviews,2001,5(4):373-401.
    [23] A. Mills,M. Ahlstrom,M. Brower,A. Ellis,etal. Dark shadows: Understanding variability anduncertainty of photovoltaics for integration with the electric power system[J].IEEE Power and EnergyMagazine,2011,9(3):33-41.
    [24] A. Golnas,S. Voss. Power Output Variability of Pv System Fleets in Three Utility Service Territories inNew Jersey and California[J].35th IEEE Photovoltaic Specialists Conference,2010,535-539.
    [25] T. E. Hoff,R. Perez. Modeling PV fleet output variability[J].Solar Energy,2012,86(8):2177-2189.
    [26] T. E. Hoff,R. Perez. Quantifying PV power Output Variability[J].Solar Energy,2010,84(10):1782-1793.
    [27] I. G. Damousis,M. C. Alexiadis,J. B. Theocharis,P. S. Dokopoulos. A fuzzy model for wind speedprediction and power generation in wind parks using spatial correlation[J].IEEE Transactions on EnergyConversion,2004,19(2):352-361.
    [28] M. C. Alexiadis,P. S. Dokopoulos,H. S. Sahsamanoglou. Wind speed and power forecasting based onspatial correlation models[J].Energy Conversion, IEEE Transactions on,1999,14(3):836-842.
    [29]李剑楠,乔颖,鲁宗相,李兢,等.大规模风电多尺度出力波动性的统计建模研究[J].电力系统保护与控制,2012,(19):7-13.
    [30]丁明,徐宁舟.基于马尔可夫链的光伏发电系统输出功率短期预测方法[J].电网技术,2011,(01):152-157.
    [31] A. Murata,H. Yamaguchi,K. Otani. A method of estimating the output fluctuation of many photovoltaicpower generation systems dispersed in a wide area[J].Electrical Engineering in Japan (Englishtranslation of Denki Gakkai Ronbunshi),2009,166(4):9-19.
    [32] J. Wid é n. Correlations between large-scale solar and wind power in a future scenario forSweden[J].IEEE Transactions on Sustainable Energy,2011,2(2):177-184.
    [33] P. Baredar,V. K. Sethi,M. Pandey. Correlation analysis of small wind-solar-biomass hybrid energysystem installed at RGTU Bhopal, MP (India)[J].Clean Technologies and Environmental Policy,2010,12(3):265-271.
    [34] Y. Li,V. G. Agelidis,Y. Shrivastava. Wind-Solar Resource Complementarity and its CombinedCorrelation with Electricity Load Demand[J].Iciea:20094th IEEE Conference on Industrial Electronicsand Applications, Vols1-6,2009,3614-3619.
    [35]曹娜,于群,戴慧珠.风速波动时风电场动态特性分析[J].太阳能学报,2009,30(4):497-502.
    [36] Y. Hirata,T. Tani. Output variation of photovoltaic modules with environmental factors-I. The effect ofspectral solar radiation on photovoltaic module output[J].Solar Energy,1995,55(6):463-468.
    [37] Y. Hirata,T. Inasaka,T. Tani. Output variation of photovoltaic modules with environmental factors-II:Seasonal variation[J].Solar Energy,1998,63(3):185-189.
    [38]范荣奇,陈金富,段献忠,李慧杰,等.风速相关性对概率潮流计算的影响分析[J].电力系统自动化,2011,(04):18-22+76.
    [39] R. Boqiang,J. Chuanwen. A review on the economic dispatch and risk management considering windpower in the power market[J].Renewable and Sustainable Energy Reviews,2009,13(8):2169-2174.
    [40] J. Hetzer,D. C. Yu,K. Bhattarai. An Economic Dispatch Model Incorporating Wind Power[J].EnergyConversion, IEEE Transactions on,2008,23(2):603-611.
    [41] C. Harris,J. P. Meyers,M. E. Webber. A unit commitment study of the application of energy storagetoward the integration of renewable generation[J].Journal of Renewable and Sustainable Energy,2012,4(1):
    [42]张舒,胡泽春,宋永华,刘辉,等.考虑电动汽车换电站与电网互动的机组组合问题研究[J].中国电机工程学报,2012,32(10):49-55.
    [43]赵俊华,文福拴,薛禹胜,董朝阳,等.计及电动汽车和风电出力不确定性的随机经济调度[J].电力系统自动化,2010,v.34;No.450(20):22-29.
    [44] W. Zhou,Y. Peng,H. Sun. Optimal wind-thermal coordination dispatch based on risk reserveconstraints[J].European Transactions on Electrical Power,2011,21(1):740-756.
    [45] W. Zhou,H. Sun,Y. Peng. Risk Reserve Constrained Economic Dispatch Model with Wind PowerPenetration[J].Energies,2010,3(12):1880-U333.
    [46] Yujiao Liu,Chuanwen Jiang,Guiting Xue,Jingshuang Shen. Risk reserve constrained economicdispatch of wind power penetrated power system based on upsmc and SAGA algorithms[J].ResearchJournal of Applied Sciences, Engineering and Technology,2013,5(3):1067-1074.
    [47]王乐,余志伟,文福拴.基于机会约束规划的最优旋转备用容量确定[J].电网技术,2006,(20):14-19.
    [48]葛炬,王飞,张粒子.含风电场电力系统旋转备用获取模型[J].电力系统自动化,2010,v.34;No.436(06):32-36.
    [49] M. A. Ortega-Vazquez,D. S. Kirschen. Estimating the Spinning Reserve Requirements in Systems WithSignificant Wind Power Generation Penetration[J].IEEE Transactions on Power Systems,2009,24(1):114-124.
    [50] X. H. Li,C. W. Jiang. Short-Term Operation Model and Risk Management for Wind Power PenetratedSystem in Electricity Market[J].IEEE Transactions on Power Systems,2011,26(2):932-939.
    [51] Fan Wenshuai,Zhou Renjun,Tang Hao,Ran Xiaohong. Conditional risk constraint model of spinningreserve in wind power integrated system[C]. Innovative Smart Grid Technologies-Asia (ISGT Asia),2012IEEE,2012:1-6.
    [52]李文沅.电力系统风险评估模型、方法和应用[M].北京:科学出版社,2006.
    [53] A. H. Ergonul,G. Kahraman. Computation of loss of load probability using a Markov Chain withtwo-day memory[J].Energy Education Science and Technology Part a-Energy Science and Research,2012,29(2):1115-1124.
    [54] X. C. Luo, C. Singh, Q. Zhao. Loss-of-load probability calculation using learning vectorquantization[C].2000International Conference on Power System Technology, Vols I-Iii, Proceedings,2000:1707-1712.
    [55] A. A. Oka. Demand not supplied, loss of load probability, and the joint loss of load probabilityreliability indices for industrial customers[C]. Ninth International Conference on Harmonics andQuality of Power Proceedings, Vols I-Iii,2000:602-607.
    [56] Y. T. Yoon, F. A. Felder. Study of Loss of Load Probability in designing installed capacitymarket[C].2002IEEE Power Engineering Society Summer Meeting, Vols1-3, ConferenceProceedings,2002:830-835.
    [57] A. H. Arab,F. Chenlo,M. Benghanem. Loss-of-load probability of photovoltaic water pumpingsystems[J].Solar Energy,2004,76(6):713-723.
    [58] A. N. Celik. Effect of different load profiles on the loss-of-load probability of stand-alone photovoltaicsystems[J].Renewable Energy,2007,32(12):2096-2115.
    [59] C. Hambly,E. J. Harper,J. R. Speakman. The energy cost of loaded flight is substantially lower thanexpected due to alterations in flight kinematics[J].Journal of Experimental Biology,2004,207(22):3969-3976.
    [60] J. H. Lucio,R. Valdes,L. R. Rodriguez. Loss-of-load probability model for stand-alone photovoltaicsystems in Europe[J].Solar Energy,2012,86(9):2515-2535.
    [61]万官泉,任震,郭小龙,黄晓天,等.考虑馈线自动化的用户停电损失计算[J].电网技术,2005,(01):24-29.
    [62]毛安家,熊超中,张粒子,舒隽.基于改进Tobit模型的负荷停电损失估算方法[J].电力系统自动化,2010,(09):29-33.
    [63]李天友,赵会茹,欧大昌,乞建勋.短时停电及其经济损失的估算[J].电力系统自动化,2012,36
    [64]李蕊,李跃,苏剑,卜宪德,等.配电网重要电力用户停电损失及应急策略[J].电网技术,2011,(10):170-176.
    [65]耿光飞,唐巍,许跃进,郭喜庆.农村电网停电损失估算方法研究[J].中国农业大学学报,2008,(06):91-94.
    [66] C. W. Yu,L. Wang,F. S. Wen,T. S. Chung. Optimal spinning reserve capacity determination using achance-constrained programming approach[J].Electric Power Components and Systems,2007,35(10):1131-1143.
    [67] H. Y. Yamin. Spinning reserve uncertainty in day-ahead competitive electricity markets forGENCOs[J].IEEE Transactions on Power Systems,2005,20(1):521-523.
    [68] C. C. Wu,N. Chen. Online methodology to determine reasonable spinning reserve requirement forisolated power systems[J].Iee Proceedings-Generation Transmission and Distribution,2003,150(4):455-461.
    [69] H. Y. Yamin,S. M. Shahidehpour. Risk and profit in self-scheduling for GenCos[J].Power Systems,IEEE Transactions on,2004,19(4):2104-2106.
    [70] J. Valenzuela,M. Mazumdar. Monte Carlo computation of power generation production costs underoperating constraints[J].Power Systems, IEEE Transactions on,2001,16(4):671-677.
    [71] N. M. Pindoriya,S. N. Singh,J. stergaard. Day-Ahead Self-Scheduling of Thermal Generator inCompetitive Electricity Market Using Hybrid PSO[C]. Intelligent System Applications to PowerSystems,2009. ISAP '09.15th International Conference on,2009:1-6.
    [72] M. Olsson,L. Soder. Generation of regulating power price scenarios[C].Probabilistic Methods Appliedto Power Systems,2004International Conference on,2004:26-31.
    [73] E. Ni,P. B. Luh. Optimal integrated generation bidding and scheduling with risk management under aderegulated daily power market[C]. Power Engineering Society Winter Meeting,2002. IEEE,2002:70-76vol.1.
    [74] J. S. Dhillon,S. C. Parti,D. P. Kothari. Fuzzy decision-making in stochastic multiobjective short-termhydrothermal scheduling[J].Generation, Transmission and Distribution, IEE Proceedings-,2002,149(2):191-200.
    [75] Zhang Zhe,Xu Jiuping. A mean-semivariance model for stock portfolio selection in fuzzy randomenvironment[C]. Industrial Engineering and Engineering Management,2008. IEEM2008. IEEEInternational Conference on,2008:984-988.
    [76] Huo Xiaojiang,Huang Xuncheng,Liu Zhongjing. Semi-variance of risk decision-making for purchasingelectricity in multi-market[C]. World Non-Grid-Connected Wind Power and Energy Conference,2009.WNWEC2009,2009:1-4.
    [77]李莉,王建军,李宁,谭忠富,等.低碳经济下能效电厂的半方差风险投资组合优化模型[J].电网技术,2011,(08):26-29.
    [78] P. Giot, S. Laurent. Value-at-risk for long and short trading positions[J]. Journal of AppliedEconometrics,2003,18(6):641-664.
    [79] P. Glasserman, P. Heidelberger, P. Shahabuddin. Portfolio value-at-risk with heavy-tailed riskfactors[J].Mathematical Finance,2002,12(3):239-269.
    [80] S. Basak, A. Shapiro. Value-at-risk-based risk management: Optimal policies and assetprices[J].Review of Financial Studies,2001,14(2):371-405.
    [81] S. S. Zhu,M. Fukushima. Worst-Case Conditional Value-at-Risk with Application to Robust PortfolioManagement[J].Operations Research,2009,57(5):1155-1168.
    [82] S. Uryasev,R. T. Rockafellar. Conditional Value-at-Risk: Optimization approach[M]. vol.54,2001.
    [83] R. Schultz, S. Tiedemann. Conditional value-at-risk in stochastic programs with mixed-integerrecourse[J].Mathematical Programming,2006,105(2-3):365-386.
    [84] R. T. Rockafellar,S. Uryasev. Conditional value-at-risk for general loss distributions[J].Journal ofBanking&Finance,2002,26(7):1443-1471.
    [85] A. G. Quaranta, A. Zaffaroni. Robust optimization of conditional value at risk and portfolioselection[J].Journal of Banking&Finance,2008,32(10):2046-2056.
    [86] R. Mansini,W. Ogryczak,M. G. Speranza. Conditional value at risk and related linear programmingmodels for portfolio optimization[J].Annals of Operations Research,2007,152227-256.
    [87] R. A. Jabr. Robust self-scheduling under price uncertainty using conditional value-at-risk[J].IEEETransactions on Power Systems,2005,20(4):1852-1858.
    [88] J. Y. Gotoh,Y. Takano. Newsvendor solutions via conditional value-at-risk minimization[J].EuropeanJournal of Operational Research,2007,179(1):80-96.
    [89] R. F. Engle, S. Manganelli. CAViaR: Conditional autoregressive value at risk by regressionquantiles[J].Journal of Business&Economic Statistics,2004,22(4):367-381.
    [90] F. Andersson, H. Mausser, D. Rosen, S. Uryasev. Credit risk optimization with ConditionalValue-at-Risk criterion[J].Mathematical Programming,2001,89(2):273-291.
    [91]王壬,尚金成,冯旸,周晓阳,等.基于CVaR风险计量指标的发电商投标组合策略及模型[J].电力系统自动化,2005,(14):5-9.
    [92]张兴平,陈玲,武润莲.加权CVaR下的发电商多时段投标组合模型[J].中国电机工程学报,2008,(16):79-83.
    [93]周娟,江辉,李鹏.基于WCVaR风险度量的发电商电量分配模型[J].电力系统及其自动化学报,2012,(01):156-160.
    [94]刘嘉佳,刘俊勇,田立峰,张力,等.基于分位数的CVaR方法在水电多风险分析中的应用[J].电力系统自动化,2007,(21):20-25.
    [95] B. Roberts,J. McDowall. Commercial successes in power storage[J].Power and Energy Magazine,IEEE,2005,3(2):24-30.
    [96] J. A. M. Bleijs. Wind turbine dynamic response-difference between connection to large utility networkand isolated diesel micro-grid[J].Iet Renewable Power Generation,2007,1(2):95-106.
    [97] P. Palensky,D. Dietrich. Demand Side Management: Demand Response, Intelligent Energy Systems,and Smart Loads[J].IEEE Transactions on Industrial Informatics,2011,7(3):381-388.
    [98] H. H. Zhou,T. Bhattacharya,D. Tran,T. S. T. Siew,etal. Composite Energy Storage System InvolvingBattery and Ultracapacitor With Dynamic Energy Management in Microgrid Applications[J].IEEETransactions on Power Electronics,2011,26(3):923-930.
    [99] S. Obara,S. Watanabe,B. Rengarajan. Operation method study based on the energy balance of anindependent microgrid using solar-powered water electrolyzer and an electric heat pump[J].Energy,2011,36(8):5200-5213.
    [100] M. Mohammadi,S. H. Hosseinian,G. B. Gharehpetian. Optimization of hybrid solar energysources/wind turbine systems integrated to utility grids as microgrid (MG) under pool/bilateral/hybridelectricity market using PSO[J].Solar Energy,2012,86(1):112-125.
    [101] D. Menniti,F. Costanzo,N. Scordino,N. Sorrentino. Purchase-bidding strategies of an energy coalitionwith demand-response capabilities[J].IEEE Transactions on Power System,24(3):1241-1255.
    [102] N. W. A. Lidula,A. D. Rajapakse. Microgrids research: A review of experimental microgrids and testsystems[J].Renewable&Sustainable Energy Reviews,2011,15(1):186-202.
    [103] S. A. P. Kani,H. Nehrir,C. Colson,C. S. Wang. Real-Time Energy Management of a Stand-AloneHybrid Wind-Microturbine Energy System Using Particle Swarm Optimization[J].2011IEEE Powerand Energy Society General Meeting,2011,
    [104]郑雅楠,李庚银,周明.大用户模糊优化购电组合策略的研究[J].中国电机工程学报,2010,v.30;No.345(10):98-104.
    [105]张钦,王锡凡,王秀丽,王建学.需求侧实时电价下用户购电风险决策[J].电力系统自动化,2008,No.395(13):16-20+66.
    [106] A. J. Conejo,M. Carrin. Risk-constrained electricity procurement for a large consumer[J].IeeProceedings-Generation Transmission and Distribution,2006,153(4):407-413.
    [107] Sortomme E,El-Sharkawi M.A. Optimal charging strategies for unidirectional vehicle-to-grid[J].IEEETransactions on Smart Grid,2011,2(1):119-126.
    [108] Y. Ota, H. Taniguchi, T. Nakajima, K. M. Liyanage, etal. Autonomous Distributed V2G(Vehicle-to-Grid) Satisfying Scheduled Charging[J].Smart Grid, IEEE Transactions on,2012,3(1):559-564.
    [109] H. Kanchev,D. Lu,F. Colas,V. Lazarov,etal. Energy Management and Operational Planning of aMicrogrid With a PV-Based Active Generator for Smart Grid Applications[J].IEEE Transactions onIndustrial Electronics,2011,58(10):4583-4592.
    [110] M. Q. Wang,H. B. Gooi. Spinning Reserve Estimation in Microgrids[J].IEEE Transactions on PowerSystems,2011,26(3):1164-1174.
    [111]苗轶群,江全元,曹一家.考虑电动汽车及换电站的微网随机调度研究[J].电力自动化设备,2012,v.32;No.221(09):18-24+39.
    [112]曾鸣,李晨,王致杰,魏阳,等.基于CVaR报童模型的风力发电商最优投标策略[J].电力系统保护与控制,2012,(24):14-20.
    [113]吴政球,王韬.风电功率预测偏差管理与申报出力决策[J].电网技术,2011,(12):160-164.
    [114] H. F. Zhang,F. Gao,J. Wu,K. Liu,etal. Optimal Bidding Strategies for Wind Power Producers in theDay-ahead Electricity Market[J].Energies,2012,5(11):4804-4823.
    [115]张海峰,吴江,高峰,刘坤.基于机会约束规划的风电商日前市场竞标策略[J].电力系统自动化,2012,(13):67-71.
    [116] Q. F. Wang, J. H. Wang, Y. P. Guan. Wind Power Bidding Based on Chance-constrainedOptimization[J].2011IEEE Power and Energy Society General Meeting,2011,
    [117] J. Usaola,M. A. Moreno. Optimal Bidding of Wind Energy in Intraday Markets[J].20096thInternational Conference on the European Energy Market,2009,228-234.
    [118] A. Botterud,J. Wang,R. J. Bessa,H. Keko,etal. Risk Management and Optimal Bidding for a WindPower Producer[J].IEEE Power and Energy Society General Meeting2010,2010,
    [119] D. Das,B. F. Wollenberg. Risk assessment of generators bidding in day-ahead market[J].PowerSystems, IEEE Transactions on,2005,20(1):416-424.
    [120]刘宝碇,彭锦.不确定理论教程[M].北京:清华大学出版社,2005.
    [121] Zadeh L A. Fuzzy sets[J].Information and Control,1965,(8):
    [122]黄祖辉,胡豹.经济学的新分支:行为经济学研究综述[J].浙江社会科学,2003,(02):70-77.
    [123]何大安.行为经济学基础及其理论贡献评述[J].商业经济与管理,2004,(12):4-10.
    [124]陈春霞.行为经济学和行为决策分析:一个综述[J].经济问题探索,2008,(01):124-128.
    [125]吴盼玉,非线性数学期望及倒向随机微分方程理论[D].,山东大学,2012.
    [126]王伟,非线性数学期望及其在金融中的应用[D].,山东大学,2009.
    [127]胡明尚,非线性数学期望及相关领域[D].,山东大学,2010.
    [128]胡锋,非线性数学期望的性质及其在金融风险中的应用[D].,山东大学,2011.
    [129] Z. Y. Peng,Y. P. Qin,B. B. Zhang,R. J. Lu,etal. A test of the power-law relationship betweengamma-ray burst pulse-width ratio and energy expected in fireballs and uniform jets[J].MonthlyNotices of the Royal Astronomical Society,2006,368(3):1351-1358.
    [130] Wang Peng,R. Billinton,L. Goel. Unreliability cost assessment of an electric power system usingreliability network equivalent approaches[J].Power Systems, IEEE Transactions on,2002,17(3):549-556.
    [131] S. M. Peng,G. Shi,Y. F. C. X. Cao. Control of different-rating battery energy storage system interfaceto a microgrid[J].Przeglad Elektrotechniczny,2011,87(11):256-262.
    [132] S. G. Peng, X. H. Zhu. Viability property on Riemannian manifolds[J]. Comptes RendusMathematique,2009,347(23-24):1423-1428.
    [133] S. G. Peng, Z. Yang. ANTICIPATED BACKWARD STOCHASTIC DIFFERENTIALEQUATIONS[J].Annals of Probability,2009,37(3):877-902.
    [134] S. G. Peng,X. M. Xu. BSDEs with random default time and related zero-sum stochastic differentialgames[J].Comptes Rendus Mathematique,2010,348(3-4):193-198.
    [135] S. G. Peng, M. Y. Xu. NUMERICAL ALGORITHMS FOR BACKWARD STOCHASTICDIFFERENTIAL EQUATIONS WITH1-D BROWNIAN MOTION: CONVERGENCE ANDSIMULATIONS[J]. Esaim-Mathematical Modelling and Numerical Analysis-ModelisationMathematique Et Analyse Numerique,2011,45(2):335-360.
    [136] S. G. Peng,M. Y. Xu. Reflected BSDE with a constraint and its applications in an incompletemarket[J].Bernoulli,2010,16(3):614-640.
    [137] S. G. Peng. Survey on normal distributions, central limit theorem, Brownian motion and the relatedstochastic calculus under sublinear expectations[J].Science in China Series a-Mathematics,2009,52(7):1391-1411.
    [138] S. G. Peng. Multi-dimensional G-Brownian motion and related stochastic calculus underG-expectation[J].Stochastic Processes and Their Applications,2008,118(12):2223-2253.
    [139] S. Peng. G-expectation, G-Brownian motion and related Stochastic calculus of ito type[M]. vol.2,2007.
    [140] Daniel Kahneman, Amos Tversky. Prospect Theory: An Analysis of Decision underRisk[J].Econometrica,1979,47(2):263-292.
    [141]潘俊涛,彭建春,孙芊,周娟,等.基于前景理论的发电商电量分配策略[J].电网技术,2011,35(4):170-175.
    [142]林海涛,蒋传文,任博强,栾士岩.基于模糊聚类的风速短期组合预测[J].华东电力,2010,v.38;No.453(02):295-299.
    [143]蒋小亮,蒋传文,彭明鸿,林海涛,等.基于时间连续性及季节周期性的风速短期组合预测方法[J].电力系统自动化,2010,v.34;No.445(15):75-79.
    [144] P. Sorensen,N. A. Cutululis,A. Vigueras-Rodriguez,H. Madsen,etal. Modelling of power fluctuationsfrom large offshore wind farms[J].Wind Energy,2008,11(1):29-43.
    [145]谢毓广,江晓东.储能系统对含风电的机组组合问题影响分析[J].电力系统自动化,2011,35(5):19-24.
    [146]王锡凡,邵成成,王秀丽,杜超.电动汽车充电负荷与调度控制策略综述[J].中国电机工程学报,
    [147] L. Y. Sun,Y. Zhang,C. W. Jiang. A matrix real-coded genetic algorithm to the unit commitmentproblem[J].Electric Power Systems Research,2006,76(9-10):716-728.
    [148] Audun Botterud,ZhiZhou,Jianhui Wang,Jean Sumaili,etal. Demand Dispatch and Probabilistic WindPower Forecasting in Unit Commitment and Economic Dispatch: A Case Study of Illinois[J].IEEETransactions on Sustainable Energy,2013,4(1):250-261.
    [149]焦李成,尚荣华,马文萍.多目标优化免疫算法、理论和应用[M].北京:科学出版社,2010.
    [150] Jens Leth Hougaard. An Introduction to Allocation Rules[M]. Berlin:Springer-Verlag BerlinHeidelberg,2009.
    [151]陈琳,王国青,唐铁英.基于合作博弈成本分摊理论的电力系统备用容量分配的研究[J].浙江电力,2011,(01):4-7.
    [152]王建学,王锡凡,邱伟,冯长有.市场环境下分区备用的费用分摊研究[J].西安交通大学学报,2007,(02):209-213.
    [153]孙丽娟.风险定量分析[M].北京:北京大学出版社,2011.
    [154]刘玉娇,蒋传文.考虑负荷周期性和变化率的短期电价预测[J].电机与控制学报,2010,v.14(06):21-26.
    [155] A. J. Conejo,M. A. Plazas,R. Espinola,A. B. Molina. Day-ahead electricity price forecasting using thewavelet transform and ARIMA models[J].IEEE Transactions on Power Systems,2005,20(2):1035-1042.
    [156] G. Li,C. C. Liu,C. Mattson,J. Lawarree. Day-ahead electricity price forecasting in a gridenvironment[J].IEEE Transactions on Power Systems,2007,22(1):266-274.
    [157] J. Chen,S. J. Deng,X. M. Huo. Electricity price curve modeling and forecasting by manifoldlearning[J].IEEE Transactions on Power Systems,2008,23(3):877-888.
    [158]张显,王锡凡,陈芳华,叶斌,等.分时段的短期电价预测[J].中国电机工程学报,2005,25(15):2-6.
    [159] Z. Zhou,W. K. V. Chan. Reducing Electricity Price Forecasting Error Using Seasonality and HigherOrder Crossing Information[J].IEEE Transactions on Power Systems,2009,24(3):1126-1135.
    [160]朱建良,闻彦,李国辉.基于灰色理论与BP神经网络的电力系统负荷预报[J].电机与控制学报,2006,10(4):440-442.
    [161]张显,王建学,王锡凡,王秀丽.考虑多重周期性的短期电价预测[J].电力系统自动化,2007,No.360(03):4-8.
    [162] R. Bo,F. X. Li. Probabilistic LMP Forecasting Considering Load Uncertainty[J].IEEE Transactions onPower Systems,2009,24(3):1279-1289.
    [163] A. J. Conejo,F. J. Nogales,J. M. Arroyo,R. Garcia-Bertrand. Risk-constrained self-scheduling of athermal power producer[J].IEEE Transactions on Power Systems,2004,19(3):1569-1574.
    [164] M. A. Moreno,M. Bueno,J. Usaola. Evaluating risk-constrained bidding strategies in adjustment spotmarkets for wind power producers[J].International Journal of Electrical Power&Energy Systems,2012,43(1):703-711.
    [165] AMOS TVERSKY, DANIEL KAHNEMAN. Advances in Prospect Theory: CumulativeRepresentation of Uncertainty[J].Journal of Risk and Uncertainty,1992,(5):297-323.
    [166]张晓,樊志平.基于前景理论的风险型混合多属性决策方法[J].系统工程学报,2012,27(6):772-781.
    [167]王敬,张莹,李延喜.期望理论及价值函数的实证研究[J].大连理工大学学报(社会科学版),2006,27(2):37-41.
    [168]张海峰,前景理论、波动不对称与资产定价[D].,天津大学,2011.
    [169] D. Prelec. The probability weighting function[J].Econometrica,1998,66(3):497-527.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700