用户名: 密码: 验证码:
基于视觉感知的鱼群目标检测与跟踪技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物式水质监控监测技术是指利用生物个体、种群或群落对环境污染所产生的反应,利用相关生物学方法,运用生物学视角对环境状况进行监测和评价的一种技术,其监测结果直接反映水环境质量状况。利用生物特征的变化来反映水质情况,是实现水质监测的一种有效的手段。因此,如何快速有效地获取相关生物的运动特征,是生物水质监测方法的主要研究内容。
     本文以鱼群作为生物式水质监控的指示物体,主要研究了计算机视觉在生物式水质监测系统中应用,其主要目的是获取与生物式水质监测有关的鱼群运动特征,建立一套完整的生物式水质监控体系。研究内容主要包括:鱼群目标的实时检测与跟踪、鱼群监测平台与系统的设计。主要研究工作归纳如下:
     1.研究了基于图割的运动目标检测方法
     提出了一种新的基于图割的运动目标检测算法,该算法首先运用分水岭方法对视频图像进行预处理,把图像分割成若干区域,在每个区域中分别构建网络图结构,然后构造能量函数,该函数包括:软约束、硬约束和时间约束。最后,分别在每个网络中求解最小化能量函数,找到最小割。
     2.研究了基于Delaunay三角网的鱼群目标跟踪算法
     提出了Delaunay三角网的群目标跟踪算法。该算法首先在检测后的图像中提取每条鱼的坐标点。然后,利用这些点构建Delaunay三角网,接着计算这些点的群目标力度。最后根据设定的阈值把适合的目标归入到群目标,并计算其群目标中心,达到群目标跟踪的目的。
     3.研究了基于视觉感知的鱼群运动监控平台与系统设计
     为了营造与真实环境比较接近的实验环境,对现有的实验平台作了适当改进。同时设计了基于视觉感知的鱼群目标跟踪系统体系结构,初步开发了鱼群目标的视频采集模块和跟踪模块。
Biological monitoring techniques for water quality are technology, the basic principle of which is that using the reaction of biological individual, population and group to environmental pollution to expound the pollution state of the environment. The result of monitoring techniques can reflect the change of the water quality of water environment directly and real-time. Using the changes of biodiversity characteristics to monitoring the water quality is an effective way. So, how to get the characteristics of biodiversity behavior is a very important part of the water quality monitoring system
     In order to get the information of characteristics of fish group to make a completed water quality monitoring system, this paper used fish group as the indicator organism of biomonitoring for water quality monitoring, and mainly study the outline of computer vision applications in movement behavior monitoring by fish group. The main content of the article includes: real-time detecting fish group, tracking fish group object and design and realization for the monitoring System and platform. The main results of this paper summarized as follows:
     First, Study on real-time detection method for the moving objects Based on graph cut. A new moving object detection algorithm based on graph cut. Firstly, a method of watershed transform is adopted to divide the image into parts, and build the net in every part. Then a new energy function was constructed, which contain soft constraints, hard constraints and time constraints. Finally, get the minimum cut by minimizing the energy function by graph cut.
     Second, Study on fish group tracing Based on delaunay triangulation. In order to accurately track fish group, a new algorithm is proposed, which is based on the traditional background subtraction algorithm and the Delaunay Triangulation network. At first, the traditional background subtraction algorithm is used to deal with the video image sequence; Then, the coordinates of each fish are evaluated; Third, the constraint Delaunay Triangulation is established and some objects are removed so that fish group can be detected. Experimental results show that this algorithm can track fish groups accurately and provide effective data for monitoring water quality.
     Last, study on the system and platform of fish group detecting and tracking based on computer vision. In order to make the experiment environment to similar to the real environment, the existed experiment platform has been appropriately modified. The architecture of fish group detecting and tracking based on computer vision has been designed and vision processing model and fish group tracking model initially constructed.
引文
[1]刘伟成,单乐州,谢起浪,林少珍.生物监测在水环境污染监测中的应用[J].环境与健康, 2008, 25(5): 456-458.
    [2]李俊文.辽河水质监测与分析[J].地下水, 2008, 30(1): 61-64.
    [3]谢建春.水体污染与水生动物[J].生物学通报, 2001, 36(6): 10-11.
    [4]马文漪,杨柳燕.环境微生物工程[M].南京:南京大学出版社, 1998.
    [5]王海洲,刘文华,侯福林.在线生物监测技术及其应用研究[J].生物学通报, 2007, 42(1): 15-16.
    [6]凯思斯著,曹凤中译.水污染的生物监测[M].北京:中国环境科学出版社, 1989.
    [7]北京正兴联合电机有限公司.生物传感器[N].中国水利, 2007, 22: 72:72.
    [8]李志良.鱼类行为学在水质在线监测与预警中的应用研究[D].山东师范大学, 2008, 04.
    [9]横田陆郎,王黎,唐川钟,阿丽娜,李波,腾晓鹏.毒性物质的快速生物监测方法与应用[J].沈阳化工大学学报. 2010, 24(3): 283-288.
    [10] Morgan W. S. G. Fish locomotor behaviour paaems as a monitoring tool[J]. Wat. Pollut Control, 1979, 51: 580-589.
    [11]房英春,刘广纯,田春,何小惠,宋钢.浅析河流水体污染的生物监测及指示生物[J].水土保持研究, 2005, 12(2): 151-153.
    [12] Manju G., Asha C., Malhotra B. Application of conducting polymers to biosensors[J]. Biosensors & Bioelectronics, 2002, 17: 345-359.
    [13]许木启,曹宏,王玉龙.原生动物群落多样性变化与汉沽稳定塘水质净化效能相互关系的研究[J].生态学报, 2002, 20(2): 283-287.
    [14]郑怀礼,龚迎昆.用于环境监测的生物传感技术[J].光谱学与光谱分析, 2003, 23(2): 411-414.
    [15] Kumaran R., Bengt D. Principles and applications of thermal biosensors[J]. Biosensors & Bioelectronics, 2001, 16: 417-423.
    [16]张志杰,张维平.环境污染生物监测与评价[M].第一版.北京:中国环境科学出版社,1991.
    [17]高继军,张力平,马梅.应用淡水发光菌研究二元重金属混合物的联合毒性[J].上海环境科学, 2003, 22(11):772-775.
    [18]吴永贵,黄建国,袁玲.利用水溞的趋光行为监测水质[J].中国环境科学, 2004,3(10):336-339.
    [19]李志良,任宗明,马梅.利用大型蚤运动行为变化预警突发性有机磷水污染[J].中国给水排水, 2007, 23(12): 73-75
    [20] Kolkwitz R., Marsson W.. Okologie detierischen saprobien [J]. Hydrobiologia, 1909, 2: 145-152.
    [21]康瑞娟,施定基.用于微藻培养的气升式光生物反应器[J].化学反应工程与工艺, 2001:12(2)42-49.
    [22]王春凤,方展强.汞和硒对剑尾鱼的急性毒性及其安全浓度评价[J].环境科学与技术, 2005,28(2):32-34.
    [23]汤一平,尤思思,叶永杰,金顺敬.基于机器视觉的生物式水质监测仪的开发[J].工业控制计算机, 2006, 19(6): 64-66.
    [24] Gang Xiao, Zhangzan Jin, Jiujun Chen, Fei Gao. Application of Artificial Immune System and Machine Vision in Anomaly Detection of Water Quality. International Journal of Software Engineering and Computing, 1(2), 2009: 47-51.
    [25]温芬章,宗涉龚,循矩等.微型生物监测新技术第一版.中国建筑工业出版社, 1990 : 107-111.
    [26] S. Dasiopoulou, V. Mezaris, I. Kompatsiaris, V. K. Papastathis, M. G. Strintzis. Knowledge-assisted semantic video object detection [J]. IEEE Transactions on Circuits ans System for Video Technology, 2005, 15(10): 1210-1224.
    [27] Z. Yin, R. Collins. Belief propagation in a 3d spatio-temproal mrf for moving object detection [C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2007.
    [28] A. Mittal, N. Paragios, Motion-based background subtraction using adaptive kernel density estimation[C]. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004, 302-309.
    [29] G. Zhang, J. Jia, W. Xiong, T.T. Wong, P.A. Heng, H. Bao. Moving object extraction with a hand-held camera[C]. IEEE International Conference on Computer Vision, 2007.
    [30] A. Bugeau, P. Perez. Detection and segmentation of moving objects in highly dynamic scenes [C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2007.
    [31] J. J. Gibson. The perception of the visual world. Boston: Houghton Mifflin, 1950.
    [32]章毓晋.图像工程(中册):图像分析[M],第二版.北京:清华大学出版社, 2005.
    [33] Lucas B and Kanade T. An Iterative Image Registration Technique with an Application to Stereo Vision [C]. Proc. Of 7th International Joint Conference on Artificial Intelligence (IJCAI), 1981, 674-679.
    [34] Bruce D. Lucas. Generalized Image Matching by the Method of Differences [R].Robotics Institute, Carnegie Mellon University, 1984.
    [35] Horn B KP,Schunck B G. Determining Optical Flow[J]. Artificial Intelligence, 1981, 17: 185-203.
    [36] H. H. Nagel, On the Estimation of Optical Flow: Relation Between Different. Approaches and Some New Results, AI,33 (1987), 29 9-324.
    [37] R. T. Collins, A. J. Lipton, T. Kanade, H. Fujiyoshi, D.Duggins, Y.Tsin, D.Tolliver, N. Enomoto, O.Hasegawa, P. Burt, L. Wixson. Asystem for video surveillance and monitoring [R]. 2000.
    [38] R. T. Collins, A. J. Lipton, T. Kanade, H. Fujiyoshi, D.Duggins, Y.Tsin, D.Tolliver, N. Enomoto, O.Hasegawa, P. Burt, L. Wixson. Asystem for video surveillance and monitoring [R]. 2000.
    [39] Y. Kameda, M. Minoh. A human motion estimation method using 3-successive video frames [C]. ICVSM, 1996, 135-140.
    [40] C. Wren, A. Azarbayejani, T. Darrell, A. Pentland. Pfinder: Real-time tracking of the human body[J]. IEEE Trans. On Patt. Anal. and Machine Intell, 1997, 19(7): 780-785.
    [41]朱明旱,罗大庸.基于帧间差分背景模型的运动物体检测与跟踪[J].计算机测量与控制, 2006, 14(8): 1004-1006.
    [42] C. Stauffer, W.E.L. Grimson. Adaptive background mixture models for real-time tracking [C]. Proc IEEE CVPR 1999, 1999, 246-252.
    [43] C. Stauffer, W.E.L. Grimson. Adaptive background mixture models for real-time tracking [C]. Proc IEEE CVPR 1999, 1999, 246-252.
    [44] Comaniciu D, Ramesh V, Meer P, Real-time tracking of non-rigid objects using Mean Shift [A]. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition [C], South Carolina, USA, 2000: 142-149.
    [45] Xu C, Prince J L. Snakes, shapes, and gradient vector flow [J]. IEEE Trans Image Processing, 1998, 7:359-369.
    [46] Caselles V., Catte F., Coll T. Ageometric model for active contours [J]. Numerische Mathematik, 1993, 66(1): 1-31.
    [47] Malladi R., Sethian J. A., Vemuri B. C. Shape modeling with front propagation: A level set approach [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(2): 158-175.
    [48]奚慧婷.刚体运动目标的跟踪算法研究[D].上海:华东师范大学,2008.
    [49]周鸿斌.基于计算机视觉的鱼类运动监测系统研究[ D ].浙江工业大学, 2009.
    [50] V. Kolmogorov, R. Zabih. What Energy Functions Can Be Minimized via Graph Cuts?[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2004, 26(2):147-1 59.
    [51] Yuri Boykov and Marie-Pierre Jolly. Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. In International Conference on Computer Vision, volume I, pages 105–112, July 2001.
    [52] Y. Boykov and G. Funka-Lea. Graph cuts and efficient N-D image segmentation. IJCV, 70:109–131, 2006.
    [53] D. Freedman and T. Zhang. Interactive graph cut based segmentation with shape priors. In CVPR, pages 755–762, 2005.
    [54] J. Malcolm, Y. Rathi, and A. Tannenbaum. A graph cut approach to image segmentation in tensor space. In Workshop on Component Analysis (CVPR), pages 18–25, 2007.
    [55] Y. Boykov and V. Kolmogorov,“Computing Geodesics and Minimal Surfaces via Graph Cuts,”Proc. Int’l Conf. Computer Vision, pp. 26-33, 2003.
    [56] Vladimir Kolmogorov and Ramin Zabih. Multi-camera scene reconstruction via graph cuts. In 7th European Conference on Computer Vision, volume III of LNCS 2352, pages 82–96, Copenhagen, Denmark, May 2002. Springer-Verlag.
    [57] H. Ishikawa and D. Geiger,“Occlusions, Discontinuities, and Epipolar Lines in Stereo,”Proc. European Conf. Computer Vision, pp. 232-248, 1998.
    [58] J. Kim, V. Kolmogorov, and R. Zabih,“Visual Correspondence Using Energy Minimization and Mutual Information,”Proc. Int’l Conf. Computer Vision, pp. 1033-1040, 2003.
    [59] Kolmogorov V.Graph based algorithms for scene reconstruction from two or more views[D].Cornell University,2004
    [60] Dan Snow, Paul Viola, and Ramin Zabih. Exact voxel occupancy with graph cuts[C]. In I EEE Conference on Computer Vision and Pattern Recognition, pages 345-352, 2000.
    [61] S. Roy and I. Cox,“A Maximum-Flow Formulation of the n-Camera Stereo Correspondence Problem,”Proc. Int’l Conf. Computer Vision, 1998.
    [62] Kim and R. Zabih,“Automatic Segmentation of Contrast Enhanced Image Sequences,”Proc. Int’l Conf.Computer Vision, pp. 502-509, 2003.
    [63] J. Kim, J. Fisher, A. Tsai, C. Wible, A. Willsky, and W. Wells,”Incorporating Spatial Priors into an Information Theoretic Approach for FMRI Data Analysis,”Proc. Medical Image Computing and Computer-Assisted Intervention, pp. 62-71, 2000.
    [64] Jos B. T M. Roerdink and Arnold Meijster The Watershed Transform: Definitions, Algorithms and Parallelization Strategies, Fundamenta Informaticae 41(2001) 187-228.
    [65] Yuri Boykov and Vladimir Kolmogorov. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. In International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR), number 2134 in LNCS, pages 359–374, Sophia Antipolis, France, September 2001. Springer-Verlag.
    [66] L. Ladicky, C. Russell, P. Kohli, and P. H. Torr. Graph cut based inference with co-occurrence statistics. In ECCV, 2010.
    [67] Y. Boykov, O. Veksler, and R. Zabih,“Markov Random Fields with Efficient Approximations,”Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 648-655, 1998.
    [68] Zhenyu Wu and Richard Leahy. An optimal graph theoretic approach to data clustering: Theory and its application to image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(11):1101–1113, November 1993.
    [69] Boykov Y, Veksler O, Zabih R. Fast approximate energy minimization via graph cuts[J]. IEEE Trans. on Patt. Anal. and Mach.Intell.,2001, 23(11): 1222-1239.
    [70] Y. Boykov, V. Kolmogorov, An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision[J]. PAMI, 2004,26(9:1124-1137
    [71] Gui Gao, Gangyao Kuang, Qi Zhang, et al. Fast detecting and locating groups of targets in high-resolution SAR images. Pattern Recognition, Vol 44, pp.1378-1384.
    [72] Zhang Zhi-long, Li Ji-cheng, Shen Zhen-kang. A teeming targets recognition method combining texture and distribution features. Remote sensing technology and application. vol. 19, 2004, pp. 437–442.
    [73] Lian Feng, Han Chong-Zhao, Liu Wei-Feng, et al. Tracking Partly Resolvable Group Targets Using SMC-PHDF. vol. 36. ACTA Automatica Sinica, 2010, pp.731–741.
    [74] Amadou Gning, Lyudmila Mihaylova, Simon Maskell, et al. Ground target group structure and state estimation with particle filtering. 2008 11th international conference on information fusion, pp.1-8.
    [75] Stephen J. McKenna, Sumer Jabri, Zoran Duric, et al. Tracking groups of people. Computer Vision and Image Understanding, Vol. 80, pp.42-56.
    [76] R. Mahler, Statistical Multisource-multitarget Information Fusion, Artech House, Boston, 2007.
    [77] S. N. Dorogovtsevand J. F. F.Mendes. Evolution of networks. Advances in Physics, vol. 51.2002:1079-118
    [78] R. Albert and A.-L. Barabsi. Statistical mechanics of complex networks. Reviews of Modern Physics. 74(1). 2002:47-97.
    [79] LAWSON C L Generation of a triangular grid with application to contour plotting [A]. In: Technical Memorandum [C], Institute of Technology, Jet Pollution Laboratory, California, 1972.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700