用户名: 密码: 验证码:
多介质可压缩大变形流体及辐射热传导数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文致力于研究惯性约束聚变(ICF)内爆压缩过程数值模拟中需要解决的两个关键问题,一是探索内爆过程中遇到的多介质可压缩大变形流体及流体界面不稳定性的高精度Euler数值模拟方法,二是寻求内爆过程数值模拟所涉及的三温辐射热传导方程的更为有效的数值解法。
     本文首次系统地探索了高阶加权本质上无振荡格式(weighted essentially nonoscillatoryscheme,简记为WENO)用于ICF内爆压缩过程数值模拟的实际可能性。对于ICF内爆过程所遇到的各种流体不稳定性问题及多介质可压缩大变形流体问题,本文将一律使用经典的高阶WENO方法或者针对具体疑难问题设计基于高阶WENO的新的计算方法进行计算和测试,并与低阶方法进行比较,最终目标是试图在国内外率先研制一个基于高阶WENO方法的高精度ICF内爆程序,为我国国防和现代化建设服务。这既是本文的主旨,也是本文的主要创新之一。本文主要工作如下:
     (1)提出了求解辐射热传导方程的一类无网格方法(见本文第二章)。这项工作首次将无网格方法成功地应用于求解ICF数值模拟中经常遇到的二维三温方程。理论分析和大量数值试验表明,本文提出的方法在不规则网格上的计算精度以及对于网格不规则程度的适应性均明显优于目前在国内应用最广的九点差分格式。由此可见,本文提出的无网格方法不仅对于求解几何边界复杂的非线性抛物型方程有重要实用价值,而且在ICF数值模拟研究领域具有广阔应用前景。
     (2)针对多介质可压缩大变形流体,提出了一类基于准守恒γ-模型或准守恒体积分数模型的高阶混合型有限体WENO方法,简记为FV-WENO-MT,而且在求解控制方程的同时,我们用水平集方法(或者Lagrange方法)为多介质问题提供了一张清晰的物质界面(见本文第七章)。这是国内外此前无人涉足的一项创造性成果。这项工作不仅解决了流体混合型方法界面不十分清晰的问题,同时突破了二阶精度方法的局限,为各种高密度比、强激波、大变形、具有多个界面且界面拓扑结构变化十分复杂的高维问题的高精度计算开辟了新的途径。
     (3)用高阶有限差分WENO格式(简记为FD-WENO)模拟了ICF内爆过程中经常遇到的各种高密度比Rayleigh-Taylor不稳定性(简称RT不稳定性),激光烧蚀RT不稳定性及高马赫数Richtmyer-Meshkov不稳定性(简称RM不稳定性),均获得了令人满意的数值结果,而且通过进行定性及定量比较,表明高阶FD-WENO格式的确明显优于已有的低阶方法,如MUSCL和PPM等(见本文第三章和第四章)。由此证明高阶FD-WENO格式用于内爆压缩过程数值模拟不仅是可行的,而且是十分可取的。
     (4)在综述多介质可压缩流体界面捕捉方法及界面追踪方法的基础上,对基于高阶FD-WENO格式的流体体积方法(volume of fluid,简记为VOF),基于高阶FD-WENO格式的水平集方法(level set)及界面跟踪方法(front tracking)进行了数值测试、比较和理论分析,表明后二种方法效果很好,但第一种方法欠佳(见本文第六章)。从而得出了一个有指导意义的结论:在使用高阶FD-WENO格式进行ICF数值模拟时,应尽量避免使用VOF方法捕捉界面。
     (5)为了避免辐射流体力学方程组的表达形式过于复杂和降低求解难度,其中的三温能量方程通常采用内能(而不是总能量)作未知函数,这就导致整个方程组不是守恒型的,以致各种经典的求解双曲守恒律组的数值格式,如高阶FD-WENO格式等在这里不能直接使用。为了解决这个矛盾,我们于本文第五章专门设计了两类用于求解以内能作未知函数的Euler方程组的高阶FD-WENO方法,数值试验表明计算效果较好,这两类新的方法明显优于文献【29】中所介绍的方法。
This dissertation is devoted to the study of two subjects which are important for the numerical simulation of implosion compression process of inertial confinement fusion(ICF).The first subject is to search for high accuracy order Eulerian methods for the numerical simulation of multicomponent compressible large distortion flow problems and fluid interface instability problems in implosion compression process,the other one is to find more efficient numerical methods for solving three-temperature radiation heat conduction equations related to the implosion compression process.
     We are among the first to investigate systematically the feasibility of high order weighted essentially non-oscillatory(WENO) schemes when applied to the numerical simulation of ICF implosion compression process.To every kind of fluid instability problems and multicomponent compressible large distortion flow problems,which will be met in the implosion compression process of ICF,we will all use classical high order WENO schemes or design new numerical methods based on high order WENO schemes to compute them,and then compare our high order methods with the commonly used lower order methods.Our final goal is trying to develop a high accuracy applied software for the numerical simulation of ICF implosion process for serving national defense and modernization construction,which is also one of the main innovations of the dissertation.The main work in the dissertation are as follows:
     (1) A class of meshiess methods for heat conduction equations are presented (see Chapter 2).The methods are first successfully applied to solve two-dimension three-temperature equations which are often met in the numerical simulation of ICF.Theoretical analysis and lots of numerical simulations show that our methods are superior to the nine-point difference schemes——the most popular in domestic at present,both in the calculation accuracy and the adaptability to irregular degree of meshes.Thus it can be seen that the meshless methods not only have important practical value for solving nonlinear parabolic equations with complex geometric boundary but have broad application prospects in the researching fields of ICF numerical simulation.
     (2) To multicomponent compressible large distortion flows,a class of high order mixture type finite volume WENO(FV-WENO-MT) methods are developed on the quasi-conservativeγ-based model or the quasi-conservative volume-fraction model,also when solving the control equations,a clear material interface is provided for the multicomponent problems by using the level set methods or Lagrange methods(see Cheaper 7).The original work solves the not quite clear interface's problem and breaks through the second-order accuracy methods' limitation, that open a new approach for the high accuracy calculation of the high dimensional problems which with high density-ratio,strong shock,large distortion, multi-interface and very complex changing of interface topological structures.
     (3) With high order finite difference WENO(FD-WENO) schemes,the satisfactory results are obtained in the numerical simulation of high density-ratio Rayleigh-Taylor(RT) instability problems,laser ablative RT instability problems and high march number Richtmyer-Meshkov(RM) instability problems,which are often met in the implosion compression process of ICF.Furthermore,according the qualitative and quantitative comparison,it is observed that high order FD-WENO schemes are obviously better than the lower order schemes,such as MUSCL and PPM(see Chapter 3 and Chapter 4).It proved that applying the high order FD-WENO schemes in the numerical simulation of the implosion compression process is feasible and quite advisable.
     (4) Based on the summary of the interface capturing methods and the interface tracking methods of multicomponent compressible flows,three methods including volume of fluid(VOF) methods,level set methods based on FD-WENO schemes and front tracking methods are tested.Numerical results and theoretical analysis show that the first method is not very suitable and the other two are much more appropriate(see Chapter 6).Then there is a significant conclusion that we should try to avoid using VOF methods to capture interface while applying the high order FD-WENO schemes in the numerical simulation of ICF.
     (5) In order to avoid forming too complicated formulas in radiation hydrodynamic equations and reduce difficulties in calculation,the internal energy(but not the total energy) is usually used as an unknown function in the three-temperature energy equations.This causes the whole system of equaions not conservative, which make the classical numerical schemes for solving hyperbolic conservation laws can't be used directly here,e.g.high order FD-WENO schemes.To deal with the contradictions,in Chapter 5,two classes of high order FD-WENO methods are designed for solving the nonconservative Euler equations.The numerical experiments show that the calculation effects are good and these two classes of new methods are obviously superior to the method introduced in[29].
引文
[1]R.Abgrall,Generalisation of the Roe scheme for the computation of mixture of perfect gases,Rech.Aerospatiale,6(1988),31-43.
    [2]R.Abgrall,How to prevent pressure oscillations in multicomponent flow calculations:A quasi conservative approach,J.Comput.Phys.,125(1996),150-160.
    [3]R.Abgrall and S.Karni,Computations of compressible multifluids,J.Comput.Phys.,169(2001),594-623.
    [4]N.Ashgriz and J.Y.Poo,Flair:Flux line-segment model for Advection and interface reconstruction,J.Comput.Phys.,93(1991),449-468.
    [5]D.Balsara and C.W.Shu,Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order accuracy,J.Comput.Phys.,160(2000),405-452.
    [6]R.M.Baltrusaitis,M.L Gittings,R.P.Weaver,et al.,Simulation of shock-generated instabilities,Phys.Fluids,8(1996),2471-2483.
    [7]D.J.Benson,Computational methods in Lagrangian and Eulerian hydrocodes,Comput.Methods Appl.Mech.Engrg.,99(1992),235-394.
    [8]D.J.Benson,Volume of fluid interface reconstruction methods for multi-material problerns,Appl.Mech.Rov.,55(2002) 151-165.
    [9]F.Bianco,G.Puppo and G.Russo,High order central schemes for hyperbolic systems of conservation laws,SIAM J.Sci.Comput.,21(1999),294-322.
    [10]B.E.Blue,H.F.Robey,S.G.Glendinning,et al.,Three-dimensional hydrodynamic experiments on the National Ignition Facility,Phys.Plasmas,12(2005),056313.
    [11]柏劲松,陈森华,李平,等,多介质可压缩流体动力学界面捕捉方法,爆炸与冲击,24(2004),1:37-43.
    [12]常铗强,张钧,张家泰,等,激光等离子体相互作用与激光聚变,湖南科技出版社,长沙,1991.
    [13]D.Chargy,R.Abgrall,L.Fezoui,et al.,Comparisons of several upwind schemes for multicomponent one-dimensional inviscid flows,INRIA Rep.1253,1990.
    [14]陈光南,张永慧,基于变分原理的二维热传导方程差分格式,计算物理,19(2002),4:299-304.
    [15]I.L.Chern,J.Glimm,O.McBryan,et al.,Front tracking for gas dynamics,J.Comput.Phys.,62(1986),83-110.
    [16]J.P.Cocchi,R.Saurel and J.C.Lorand,Treatment of interface problems with Godunovtype scheme,Shock Waves,5(1996) 347-357.
    [17]B.Cockbum and C.W.Shu,The Runge-Kutta discontinuous Galerkin method for conservation laws V:multidimensional systems,J.Comput.Phys.,141(1998),199-224.
    [18]R.H.Cohen,W.P.Dannevik,A.M.Dimits,et al.,Three-dimensional simulation of a Richtmyer-Meshkov instability with a two-scale initial perturbation,Phys.Fluids,14(2002),3692-3709.
    [19]P.Colella and P.R.Woodaward,The picewise parabolic method(PPM) for gas-dynamics simulations,J.Comput.Phys.,54(1984),174-201.
    [20]M.G.Crandall sad P.L.Lions,Two approximations of solutions of Hamilton-Jacobi equations,Math.Comput.,43(1984),1-19.
    [21]N.Crnjaric-Zic,S.Vukovic and L.Sopta,Balanced finite volume WENO and central WENO schemes for the shallow water and the open-channel flow equations,J.Comput.Phys.,200(2004),512-548.
    [22]S.F.Davis,TVD finite difference scheme and artificial viscosity,NASA-CR-172373,ICASE Report No.84-20,1984.
    [23]R.DeBar,A method in two-d Eulerian hydrodynamics,Technical Report UCID-19683,Lawrence Livermore National Laboratory,March 1974.
    [24]R.P.Fedkiw,T.Aslam,B.Merriman,et al.,A non-oscillatory Eulerian approach to interfaces in multimaterial flows(the Ghost Fluid method),J.Comput.Phys.,152(1999),457-492.
    [25]R.Fedkiw,A.Marquina and B.Merriman,An isobaric fix for the overheating problem in multimaterial compressible flows,J.Comput.Phys.,148(1999),545-578.
    [26]R.P.Fedkiw,G.Sapiro and C.W.Shu,Shock capturing,level sets,and PDE based methods in computer vision and image processing:a review of Osher's contributions,J.Comput.Phys.,185(2003),309-341.
    [27]J.M.Floryan and H.Rasmussen,Numerical methods for viscous flows with moving boundaries,Appl.Mech.Rev.,42(1989),323-340.
    [28]O.Friedrichs,Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructred grids,J.Comput.Phys,144(1998),194-212.
    [29]傅德薰,流体力学数值模拟,国防工业出版社,北京,1993.
    [30]傅德薰.马延文,计算空气动力学中的一个新的激渡捕捉法——耗散比拟法,中国科学(A辑),22(1992),263-271.
    [31]符尚武,付汉清,沈隆钧,等,二维三温能量方程的九点差分格式及其迭代解法。计算物理,15(1998),489-496.
    [32]符尚武,付汉清,沈隆钧,二维三温热传导方程组的九点差分格式,数值计算与计算机应用,3(1999),237-240.
    [33]符尚武,沈隆钧,黄书科,激光驱动内爆二维数值模拟方法及其程序(lared-I)的研究,高技术通讯,8(1998),7:51-54.
    [34]符尚武,黄书科,李生,间接驱动,高收缩内爆实验的数值模拟,计算物理,16(1999),
    [35]D.Gao,N.B.Morley and V.Dhir,Numerical simulation of wavy falling film flow using VOF method,J.Comput.Phys.,192(2003),624-642.
    [36]J.H.Gardner,A.J.Schraitt,J.P.Dahlburg,et al.,Computational modeling of directdrive fusion pellets and KrF-driven foil experiments,Phys.Plasmas 5(1998),1935-1944.
    [37]葛全文,ICF中流体不稳定性的数值模拟研究与Hamilton-Jacobi方程的运动网格方法,中国工程物理研究院博士论文,2003.
    [38]J.Glimm,J.W.Grove,X.L.Li,et al.,A critical analysis of Rayleigh-Taylor growth rates,J.Comput.Phys.,169(2001),652-677.
    [39]J.Glimm,J.W.Grove,X.L.Li,et al.,Three-dimensional front tracking,SIAM J.Sci.Comput.,19(1998),703-727.
    [40]J.Glimm,E.Isaacson,D.Marchesin,et al.,Front tracking for hyperbolic systems,Adv.Appl.Math.,2(1981),91-119.
    [41]J.Glimm,X.L.Li,Y.J.Liu,et al.,Conservative front tracking and level set algorithms,Proc.Natl.Acad.Sci.USA,98(2001),25:14198-14201.
    [42]S.Gottlieb,C.W.Shu and E.Tadmor,Strong stability-preserving high-order time discretization methods,SIAM Rev.,42(2001),89-112.
    [43]D.Gueyffer,J.Li,A.Nadim,et al.,Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows,J.Comput.Phys.,152(1999),423-456.
    [441 A.Harten,High resolution schemes for hyperbolic conservation laws,J.Comput.Phys.,49(1983),357-393.
    [45]A.Harten and B.Engquist,S.Osher,et al.,Uniformly high order essentially nonoscillatory schemes Ⅲ,J.Comput.Phys.,71(1987),231-303.
    [46]A.Harten and M.J.Hyman,Self adjusting grid methods for one-dimensional hyperbolic conservation laws,J.Comput.Phys.,50(1983),235-269.
    [47]A.K.Henrick,T.D.Aslam and J.M.Powers,Mapped weighted essentially non-oscillatory schemes:Achieving optimal order near critical points,J.Comput.Phys.,207(2005),542-567.
    [48]F.Hermeline,A finite volume method for the approximation of diffusion operators on distorted Meshes,J.Comput.Phys.,160(2000),481-499.
    [49]D.J.Hill and D.I.Pullin,Hybrid tuned center-difference-WENO method for large eddy simulations in the presence of strong shocks,J.Comput.Phys.,194(2004),435-450.
    [50]C.W.Hirt,A.A.Amsden and J.L.Cook,An arbitrary Lagrangian-Eulerian computing method for all flow speeds,J.Comput.Phys.,14(1974),227-243.
    [51]C.W.Hirt and B.D.Nichols,Volume of fluid(VOF) method for the dynamics of free boundaries,J.Comput.Phys.,39(1981),201-225.
    [52]R.L.Holmes,G.Dimonte,B.Fryxell,et al.,Richtmyer-Meshkov instability growth:Experiment,simulation and theory,J.Fluid Mech.,389(1999),1:55-79.
    [53]T.Y.Hou,Numerical solutions to free boundary problems,Acta Numerica,4(1995),335-415.
    [54]C.Hu and C.W.Shu,Weighted essentially,non-oscillatory schemes on triangular meshes,J.Comput.Phys.,150(1999),97-127.
    [55]J.M.Hyman,Numerical methods for tracking interfaces,Physica D,12(1984),396-407.
    [56]G.S.Jiang and D.P.Peng,Weighted ENO schemes for Hamilton-Jacobi equations,SIAM J.Sci.Comput.,21(2000),2126-2143.
    [57]G.S.Jiang and C.W.Shu,EfBcient implementation of weighted ENO schemes,J.Comput.Phys.,126(1996),202-228.
    [58]江军.舒适,黄云清,ICF数值仿真研究中的保对称有限体元方法,系统仿真学报,18(2006),12:3354-3357.
    [59]S.Jiang and G.Ni,A γ-model BGK scheme for compressible multifluids,Int.J.Numer.Methods Fluids,46(2004),163-182.
    [60]E.Johnsen and T.Colonius,Implementation of WENO schemes in compressible multicomponent flow problems,J.Comput.Phys.,219(2006),715-732.
    [61]S.Karni,Hybrid multifluid algorithms,SIAM J.Sci.Comput.,17(1996),1019-1039.
    [62]S.Karni,Multicomponent flow calculations by a consistent primitive algorithm,J.Comput.Phys.,112(1994),31-43.
    [63]S.Karni,Viscous shock profiles and primitive formulations,SIAM J.Numer.Anal.,29(1992),1592-1609.
    [64]B.Larrouturou,How to preserve the mass fraction positive when computing compressible multicomponent flow,J.Comput.Phys.,95(1991),59-84.
    [65]B.Larouturou and L.Fezoui,On the equations of multicomponent perfect or real gas inviscid Flow,In:C.Carasso,P.Charrier,B.Hanouzet and J.L.Joly(Eds.),Lecture Notes in Mathematics,Springer-Verlag,Berlin/New York,(1402)1989,69-98.
    [66]P.Lax and X.D.Liu,Solution of two-dimensional Riemann problems of gas dynamics by positive schemes,SIAM J.Sci.Comput.,19(1998),319-340.
    [67]R.J.LeVeque,Wave propagation algorithms for multidimensional hyperbolic systems,J.Comput.Phys.,131(1997),327-353.
    [68]R.J.LeVeque and K.M.Shyue,Two-dimensional front tracking based on high resolution wave propagation methods,J.Comput.Phys.,123(1996),354-368.
    [69]D.Levy,G.Puppo and G.Russo,A third order central WENO scheme for 2D conservation laws,Appl.Numer.Math.,33(2000),415-421.
    [70]D.Levy,G.Puppo and G.Rnsso,Central WENO schemes for hyperbolic systems of conservation laws,Math.Model.Numer.Anal.,33(1999),547-571.
    [71]李德元,陈光南,抛物型方程差分方法引论,科学出版社,北京,1998.
    [72]李德元,水鸿寿,汤敏君,关于非矩形网格上的二维抛物型方程的差分格式,数值计算与计算机应用,1(1980),217-224.
    [73]李德元,徐国荣,水鸿寿,等,二维非定常流体力学数值方法,科学出版社,北京,1998.
    [74]李寿佛,二维三温热传导方程时间离散化的二阶BDF方法,总体与靶物理理论研究专题2002年度工作报告,2002,197-200.
    [75]李寿佛,刚性微分方程算法理论,湖南科学技术出版社,1997.
    [76]李寿佛,李双贵,RadauIIA型Runge-Kutta法用于求解辐射流体力学中的二维三温热传导方程,《全国流体力学数值方法学术会议》大会特邀报告,昆明,2001.
    [77]刘全,水鸿寿,张晓轶,数值模拟界面流方法进展,力学进展,32(2002),259-274.
    [78]刘儒勋,舒其望,计算流体力学的若干新方法,科学出版社,北京,2003.
    [79]X.D.Liu,S.Osher and T.Chan,Weighted essentially non-oscillatory schemes,J.Comput.Phys.,115(1994),200-212.
    [80]马东军,孙德军,尹协远,高密度比多介质可压缩流动的PPM方法,计算物理,18(2001),6:517-522.
    [81]马延文,傅德薰,群速度直接控制四阶迎风紧致格式,中国科学(A辑),31(2001),554-561.
    [82]M.M.Marinak,S.W.Haan,et al.,A comparison of three-dimensional multimode hydrodynamic instability growth on various National Ignition Facility capsule designs with HYDRA simulations,Phys.Plasmas,5(1998),1125-1132.
    [83]莫则尧,符尚武,沈隆钧,二维三温流体力学数值模拟程序的并行化,计算物理,17(2000),6:625-632.
    [84]P.Montarnal and C.W.Shu,Real gas computation using an energy relaxation method and high-order WENO schemes,J.Comput.Phys.,148(1999),59-80.
    [85]W.Mulder,S.Osher and J.A.Sethian,Computing interface motion in compressible gas dynamics,J.Comput.Phys.,100(1992),209-228.
    [86]B.D.Nichols and C.W.Hirt,Methods for calculating multi-dimensional,transient free surface flows past bodies,Proceedings of the First International Conference on Numerical Ship Hydrodynamics,Gaithersburg,ML,October 1975,253-277.
    [87]W.F.Noh and P.R.Woodward,SLIC(Simple Line Interface Method),In:A.I.van der Vooren and P.J.Zandbergen(Eds.),Lecture Notes in Physics,Springer-Verlag,Berlin/New York,59(1976),330-340.
    [88]R.R.Nourgaliev,T.N.Dinh and T.G.Theofanous,Adaptive characteristics-based matching for compressible multifluid dynamics,J.Comput.Physics,213(2006),500-529.
    [89]E.Oisson and G.Kreies,A conservative level set method for two phase flow,J.Comput.Physics,210(2005),225-246.
    [90]S.Osher and R.P.Fedkiw,Level set methods and dynamic implicit surfaces,Springer-Verlag,Berlin/New York,2002.
    [91]S.Osher and R.P.Fedkiw,Level set methods:an overview and some recent results,J.Comput.Phys.,169(2001),463-502.
    [92]S.Osher and J.A.Sethian,Fronts propagating with curvature-dependent speed:Algorithms based on Hamilton-Jacobi formulations,J.Comput.Phys.,(79)1988,12-49.
    [93]S.Osher and C.W.Shu,High-order essentially non-oscillatory schemes for Hamilton-Jacobi equations,J.Numer.Anal.,28(1991),907-922.
    [94]B.J.Parker and D.L.Youngs,Two and three dimensional Eulerian simulation and fluid flow with material interfaces,Technical Report 01/92,UK Atomic Weapons Establishment,February 1992.
    [95]J.E.Pilliod,An analysis of piecewise linear interface reconstruction algorithms for volume-of-fluid methods,M.S.Thesis,University of California,Davis,CA,September 1992.
    [96]J.E.Pilliod Jr.and E.G.Puckett,Second-order accurate volume-of-fluid algorithms for tracking material interfaces,J.Comput.Phys.,199(2004),465-502.
    [97]S.Pirozzoli,Conservative hybrid compact-WENO schemes for shock-turbulence interaction,J.Comput.Phys.,178(2002),81-117.
    [98]E.G.Puckett,A volume-of-fluid interface tracking algorithm with applications to computing shock wave refraction,International Symposium on Computational Fluid Dynamics,Davis,CA,1991,933-938.
    [99]E.G.Puckett and J.S.Saltzman,A 3D adaptive mesh refinement algorithm for multimaterial gas dynamics,Physica D,60(1992),84-93.
    [100]J.X.Qiu and C.W.Shu,Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method:one-dimensional case,J.Comput.Phys.,193(2004),115-135.
    [101]J.X.Qiu and C.W.Shu,Hermite WENO schemes for Hamilton-Jacobi equations,J.Comput.Phys.,204(2005),82-99.
    [102]J.X.Qiu and C.W.Shu,On the construction,comparison,and local characteristic decomposition for high-order central WENO schemes,J.Comput.Phys.,183(2002),187-209.
    [103]P.B.Radha,T.J.B.Collins,J.A.Delettrez,et al.,Multidimensional analysis of directdrive plastic-shell implosions on OMEGA,Phys.Plasmas,12(2005),056307.
    [104]Y.X.Ren,M.E.Liu and H.X.Zhang,A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws,J.Comput.Phys.,192(2003),365-386.
    [105]William J.Rider and Douglas B.Kothe,Reconstructing volume tracking,J.Comput.Phys.,141(1998),112-152.
    [106]P.L.Roe,Generalized formulation of TVD Lax Wendroff schemes,NASA CR-172478,ICASE Report No.84-53,1984.
    [107]R.Samtaney and D.I.Pullin,Initial-value and self-similar solutions of the compressible Euler equations,Phys.Fluids,8(1996),2650-2655.
    [108]R.Saurel and R.Abgrall,A simple method for compressible multifluid flows,SIAM J.Sci.Comput.,21(1999),1115-1145.
    [109]R.Scardovelli and S.Zaleski,Direct numerical simulation of free-surface and interfacial flow,Annu.Rev.Fluid Mech.,31(1999),567-603.
    [110]A.J.Schmitt,D.G.Colombant,A.L.Velikovich,et al.,Large:scale high-resolution simulations of high gain direct-drive inertial confinement fusion target,Phys.Plasmas,11(2004),2716-2722.
    [111]J.A.Sethian,Level Set Methods and Fast Marching Methods,Cambridge Univ.Press,Cambridge UK,1999.
    [112]J.A.Sethian,Level Set Methods:Evolving Interfaces in Computational Geometry,Fluid Mechanics,Computer Vision,and Materials Science,Cambridge University Press,Cambridge UK,1996.
    [113]J.A.Sethian,Theory,Algorithms,and Applications of Level Set Methods for Propagating Interface,Acta Numerica,Cambridge University Press,Cambridge UK,1995.
    [114]J.A.Sethian and P.Smereka,Level set methods for fluid interface,Annu.Rev.Fluid Mech.,35(2003),341-372.
    [115]J.Shi,C.Hu and C.W.Shu,A technique of treating negative weights in WENO schemes,J.Comput.Phys.,175(2002),108-127.
    [116]J.Shi,Y.T.Zhang and C.W.Shu,Resolution of high order WENO schemes for complicated flow structures,J.Comput.Phys.,186(2003),690-696.
    [117]C.W.Shu,Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws,NASA/CR-97-206253,ICASE Report No.97-65,1997.
    [118]C.W.Shu,High-order finite difference and finite volume WENO schemes and discontinuous Galerkin methods for CFD,Int.J.Comput.Fluid Dynamics,17(2003),2:107-118.
    [119]C.W.Shu,Total-variation-diminishing time discretizations,SIAM J.Sci.Comput.,8(1988),1073-1084.
    [120]C.W.Shu,TVB uniformly high-order schemes for conservation laws,Math.Comp.,49(1987),105-121.
    [121]C.W.Shu and S.Osher,Efficient implementation of essentially non-oscillatory shock capturing schemes,J.Comput.Phys.,77(1988),439-471.
    [122]C.W.Shu and S.Osher,Efficient implementation of essentially non-oscillatory shock capturing schemes Ⅱ,J.Comput.Phys.,83(1989),32-78.
    [123]S.Shu,H.Y.Yu,Y.Q.Huang,et al.,A symmetric.finite volume element scheme on quadrilateral grids and superconvergence,Int.J.Numer.Anal.Model.,3:3(2006),348-360.
    [124]水鸿痔,一维流体力学差分方法,国防工业出版社,北京,1998.
    [125]K.M.Shyue,A efficient shock-capturing algorithm for compressible multicomponent problems,J.Comput.Phys.,142(1998),208-242.
    [126]K.M.Shyue,A fluid-Mixture type algorithm for compressible multicomponent flow with van der Waals equation of state,J.Comput.Phys.,156(1999),43-88.
    [127]K.M.Shyue,A fluid-mixture type algorithm for compressible multicomponent flow with Mie-Gr(u|¨)neisen equation of state,J.Comput.Phys.,171(2001),678-707.
    [128]K.M.Shyue,A Wave-propagation based volume tracking method for compressible multicomponent flow in two space dimensions,J.Comput.Phys.,215(2006),219-244.
    [129]W.Shyy,H.S.Udaykuma,M.M.Rao and R.W.Smith,Computational Fluid Dynamics with Moving Boundaries,Taylor and Francis,London UK,1996.
    [130]P.E.Souganidis,Approximation schemes for viscosity solutions of Hamilton-Jacobi equations,J.Diff.Eqns.,59(1985),1-43.
    [131]M.Sussman,P.Smereka and S.Osh'er,A level set approach for computing solutions to incompressible two-phasc flow,J.Comput.Phys.,114(1994),146-159.
    [132]P.K.Sweby,High resolution schemes using flux limiters for hyperbolic conservation laws,SIAM J.Mumer.Anal.,21(1984),995-1011.
    [133]V.A.Titarev and E.F.Toro,Finite-volume WENO schemes for three-dimensional conservation laws,J.Comput.Phys.;201(2004),238-280.
    [134]V.Ton,Improved shock-capturing methods for multicomponent and reacting flows,J.Comput.Phys.,128(1996),237-253.
    [135]M.Torrilhon and D.S.Balsara,High order WENO schemes:investigations on nonuniform convergence for MHD Riemann problems,J.Comput.Phys.,201(2004),586-600.
    [136]O.Ubbink and R.I.Issa,A method for capturing sharp fluid interfaces on arbitrary meshes,J.Comput.Phys.,153(1999),26-50.
    [137]B.Van Leer,Towards the ultimate conservative difference scheme.V.A second order sequel to Godunov's method,J.Comput.Phys.,32(1979),101-136.
    [138]S.Vukovic and L.Sopta,ENO and WENO schemes with the exact conservation property for one-dimensional shallow water equations,J.Comput.Phys.,179(2002),593-621.
    [139]Z.J.Wang and R.F.Chen,Optimized weighted essentially noncsciliatory schemes for linear waives with discontinuity,J.Comput.Phys.,174(2001),381-404.
    [140]J.M.Wu,Linearly exact method and the difference scheme for diffusion equation on quadrilateral meshes,Annual Report of LCP,Beijing,2005,256-169.
    [141]吴俊峰,叶文华,ICF收缩几何中流体不稳定性数值模拟研究,中国国防科学技术报告,GF-A0091787N,2006.
    [142]Y.L.Xing and C.W.Shu,High order finite difference WENO schemes with the exact conservation property for the shallow water equations,J.Comput.Phys.,208(2005),206-227.
    [143]J.J.Xu,Z.Li,J.Lowengrub,et al.,A level-set method for interracial flows with surfac-tant,J.Comput.Phys.,212(2006),590-616.
    [144]Z.F.Xu and C.W.Shu,Anti-diffusive flux corrections for high order finite difference WENO schemes,J.Comput.Phys.,205(2005),458-485.
    [145]叶文华,张维岩,陈光南,激光烧蚀瑞利-泰勒不稳定性模拟,强激光与粒子束,10(1998),403-408.
    [146]叶文华,张维岩,陈光南,等,激光烧蚀瑞利-泰勒不稳定性数值研究,强激光与粒子束,11(1999),613-618.
    [147]H.C.Yee,Construction of explicit and implicit symmetric TVD schemes and their applications,J.Comput.Phys.,68(1987),151-179.
    [14B]袁光伟,扩散方程九点格式中网格节点值的计算与分析,计算物理实验室年报,200,5.512-529.
    [149]袁光伟,扭曲网格上扩散方程九点格式的构造与分析,计算物理实验室年报,2005,530-575.
    [150]衰光伟,杭旭登,九点格式中网格边上切向流的计算-节点自适应加权格式,计算物理实验室年报,2005,500-511.
    [151]R.Young,J.Glimm and B.Boston,Proceedings of the 5th International Workshop on Compressible Turbulent Mixing,World Scientific,Privet Edge,NJ,1995.
    [152]D.L.Youngs,Time dependent multi-material flow with large fluid distortion,In:Morton K W and Baincs M J(Eds.),Numerical Methods for Fluid Dynamics,Academic Press,New York,1982,273-285.
    [153]张涵信,无波动、无自由参数的耗散差分格式,空气动力学学报,6(1988),143-165.
    [154]M.P.Zhang,C.W.Shu,G.C.K.Wong,et al.,A weighted essentially non-oscillatory numerical scheme for a multi-class Lighthill-Whitham-Richards traffic flow model,J.Comput.Phys.,191(2003),639-659.
    [155]P.Zhang,S.C.Wong and C.W.Shu,A weighted essentially non-oscillatory numerical scheme for a multi-class traffic flow model on an inhomogeneous highway,J.Comput.Phys.,212(2006),739-756.
    [156]S.H.Zhang and C.W.Shu,A new smoothness indicator for the WENO schemes and its effect on the convergence to steady state solutions,J.Sci.Computing,31(2007),273-305.
    [157]张学莹,赵宁,朱君,多流体界面不稳定性的守恒和非守恒高精度效值模拟方法,爆炸与冲击,26(2006),1:65-70.
    [158]张瑗,李寿佛,不规则四边形网格上逼近扩做算子的五点及九点差分格式的测试,湘潭大学自然科学学报,24(2002),4:12-17.
    [159]Y.T.Zhang,J.Shi,C.W.Shu,et al.,Numerical viscosity and resolution of high-order weighted essentially nonoscillatory schemes for compressible flows with high Reynolds numbers,Phys.Rev.E,68(2003),046709.
    [160]T.Zhou,Y.Li and C.W.Shu,Numerical comparison of WENO finite volume and Runge-Kutta discontinuous Galerkin methods,J.Sci.Comp.,16(2001),145-171.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700