用户名: 密码: 验证码:
近场水下爆炸气泡载荷及对结构毁伤试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,水下爆炸气泡、冲击波载荷及其对舰船结构的毁伤特性已经成为了国际上研究的前沿和热点。纵观国内外,在舰船远场水下爆炸、冲击波的传播特性、气泡的运动形态及结构响应等方面取得了丰硕的研究成果;对于近场水下爆炸,载荷情况较为复杂,冲击波压力、气泡脉动、气泡射流及近边界空化效应等都会对舰船结构产生恶劣的冲击环境。由于近场水下爆炸复杂的边界条件,加之载荷的特殊性和结构响应的强非线性,使得适用于远场水下爆炸的基本方程和假设都不适用,给近场水下爆炸的研究带来了极大的困难,迄今为止,近场水下爆炸载荷及其对舰船结构的毁伤机理仍未被完全揭示。
     实船试验作为水下爆炸研究的最好手段,发达国家及我国相继开展了一定数量实船水下爆炸的试验,经费虽然惊人但是可以开展;而近场水下爆炸实船试验由于破坏力较强,受到了技术因素和经济因素的双重制约,目前在我国较少开展,故开展舰船的模型试验及机理性试验对近场水下爆炸载荷和结构毁伤的研究尤为重要。为此,本文以舰船安全性为工程应用背景,以近场水下爆炸气泡载荷为研究对象,采用机理试验与模型试验相结合的方法,研究近场水下爆炸气泡载荷特性及其对结构毁伤。
     本文首先从水下爆炸分类及近场特性入手,确定了本文的研究内容及范围,从试验、理论及数值三方面回顾了国内外关于近场水下爆炸冲击波、气泡载荷的研究进展,以及其对舰船结构响应的研究进展,分析了现有研究中低压电火花气泡试验无法计入浮力影响因素以及近场气泡射流载荷对舰船结构毁伤研究中存在的不足。同时提出了开展近场水下爆炸气泡载荷及结构毁伤试验研究的必要性,为全文奠定了基础。
     通过对气泡动力学的经典理论和数值算法的回顾,提出本文气泡三维数值模拟方法,针对目前常压电火花试验无法计入浮力影响,而水下爆炸过程中浮力却又是影响气泡坍塌、上浮的重要因素这一问题,本文根据模型试验相似原理,建立了减压条件下电火花气泡生成方法,从而利用试验室的条件营造与水下爆炸浮力参数相似的强浮力环境,针对试验过程中边界的影响问题,本文论证了试验方法的可行性。
     采用减压条件下机理试验的方法,配合高速摄影技术,首先研究不同压力下无边界影响的自由场气泡表征运动形态的物理量:半径、周期、中心迁移、上下表面位移等,给出气泡周期、最大半径、射流速度随环境压力的变化规律。研究气泡脉动过程不局限于以往试验研究中的第一个周期,对气泡可见周期内的表征形态的物理量都进行了规律性的总结。在此基础上,一方面研究气泡作为边界时的融合、坍塌、对射流、反射流等现象,总结计及浮力影响的两个同相气泡之间的相互作用随距离参数和浮力参数共同影响的变化规律,得到两同相气泡处于水平和竖直位置时融合机理,为多发导弹发射方案提供参考;另一方面对计及浮力影响下气泡的―水幕‖(水冢)和射流现象进行分类,分析各种类型水冢和射流形成的原因,研究水冢形态、高度以及气泡射流速度、中心迁移高度、周期等随距离参数及浮力参数共同影响的变化规律,并将试验结果与Blake准则进行对比,为―水幕‖反导的设计提供参考。
     利用减压试验的方法研究计及浮力影响的复杂边界附近气泡运动形态,对气泡所受浮力与固壁的Bjerknes力同向、反向以及成90度角时,刚性壁面附近气泡动力学特性开展研究,通过对气泡周期、中心迁移及射流方向、角度、速度等物理量的研究,得出壁面上方气泡―撕裂区间‖及固壁侧方气泡射流角度与特征参数之间的关系。此外,还讨论了柱形边界、弹性边界、壁面与自由表面组合边界附近气泡动力学特性,为水中兵器的设计和使用提供参考。
     通过减压条件下气泡试验,营造不同浮力的环境来模拟真实水下爆炸气泡与边界相互作用过程,利用本文建立的气泡动力学数值模型与其减压条件下电火花试验对比研究气泡在无边界影响的自由场、自由表面、刚性壁面附近膨胀、坍塌、射流及撕裂等复杂的动力学行为,数值结果与试验吻合良好,从而完善了水下爆炸气泡三维数值方法。同时,利用减压试验的方法弥补了数值模型不能模拟超近壁面(距离参数小于0.5)及第一周期之后气泡的运动等局限性,从而为后文利用减压试验对舱段模型试验进行分析奠定了基础。
     通过开展实尺度舱段模型试验,对近场水下爆炸冲击载荷作用下舰船局部结构弾塑性动态响应进行研究,得到了气泡射流载荷对结构的影响范围及毁伤效果。利用机理试验与舱段模型试验对比分析的方法,对压力、应变及位移等物理量进行分析,得到了舰船在受到初始冲击波的打击后,气泡后续载荷对结构的毁伤特性,为近场水下爆炸载荷作用下舰船结构毁伤机理的研究提供参考。
In recent years, the shock wave and the bubble of underwater explosions and theirdamage effects to ship structures have become the forefront and heated issues in theresearches internationally. Fruitful results have been achieved on the far-field underwaterexplosions, shock wave propagations, bubble dynamics and structure responses both at homeand aboard. The structural load is more complicated in the near field underwater explosionswhere impacts are caused by not only shock pressure but also bubble pulsations, jets andcavitation on the structures, and hence can be much severer. As a result of the complexboundary conditions, the specificity of the loads and the strong non-linearity of the structuralresponses, the basic formulations and assumptions for far-field explosions become invalid innear-field cases, hence immense difficulties arise in the researches. So far, the loadcharacteristics and the mechanism of structural damages in near-field underwater explosionsare still far from being fully revealed.
     As the best research method for underwater explosions, the full-scale test, despite itshigh cost, has been carried out in small amounts in China and some developed countries.However, there is much constraint to the full-scale test for the near-field explosion in bothtechnical and financial aspects due to its great destructive power, and it has been rarelyconducted domestically. Therefore, model tests and principle experiments become favorableand particularly important for the studies on the loads and structural damages in near-fieldunderwater explosions. In this paper, the loads and structural damages induced by theunderwater explosion bubbles are studied with a combined method of principle experimentsand model tests, with respect to the engineering in ship safety.
     A classification of underwater explosions and analysis on the characteristics of thenear-field cases were presented first, with which the scope and content of this study wasidentified. The research progress on shock wave and bubble load as well as ship structureresponses was then reviewed in three aspects, namely the experiments, analytical analysis andnumerical simulations. The major defect, i.e. the neglecting of buoyancy effects, in existingmedium and low voltage spark-discharge bubble experiments, as well as the deficiencies inthe researches on the damage effects of near-field bubble jets was analyzed. The necessity ofexperimental studies on bubble loads and structural damages in near-field underwaterexplosions were identified. All of these laid the foundation of this study.
     Based on a review of classical theories and algorithms of bubble dynamics, a3-D bubblesimulation method is proposed. Since the buoyancy effect, which atmospheric experiments fail to capture, is dominating the contraction and upward migration of the bubble in actualunderwater explosions, the spark-discharge bubble experiments in this study are conducted insub-atmospheric pressure; in this way, the strong buoyancy effect in full scale tests can bereproduced under laboratory conditions by adjusting the air pressure above the water.
     With the pressure reduction and a high-speed photographing system, principleexperiments were first conducted for bubble pulsations in free fluid field with differentpressures. Physical quantities representing bubble behaviors, including bubble radius,pulsation period and migrations of bubble center, top and bottom, etc., were obtained.Variations of the period, the maximum radius and jet speed with the fluid pressure werestudied. The measurements and analysis were carried out not only within the first pulsationperiod of the bubble, as in most of the previous works, but also in all visible periods thereafter.On this basis, the interactions of two in-phase bubbles were investigated, where one of thebubbles is seen as a special boundary for the other. The coalescence, contraction, counter jetsand reverse jets of the bubble and the variations of these behaviors with the distanceparameter and the buoyancy parameter were examined. The principles were obtained for thecoalescence of two bubbles located horizontally or vertically, and could be utilized in thedesign of launch schemes for multiple missiles. Besides, the "water curtain"(or the "waterspike") and the bubble jet, both strongly affected by buoyancy, were categorized into differenttypes. Their formation mechanisms were analyzed; the combined effects of both the buoyancyparameter and the distance parameter on the form and height of the water spike, the jet speed,the migration of bubble center and the pulsation period were studied. The results werecompared with the "Blake principle" and could be of use in the development of anti-missilewater curtains.
     Further, experiments were conducted on bubble behaviors near complex boundary underbuoyancy effect with reduced pressure. The dynamics of the bubble close to a rigid wall wasstudied with the direction of the Bjerknes force being the same, the opposite andperpendicular to that of the buoyancy. Through analysis of the pulsation period and themigration of the bubble and the direction, angle and speed of the jet, a "bubble splitting zone"over a horizontal wall, together with a relationship between the angle of the jet and the featureparameters, were identified. In addition, bubble dynamics were discussed near a rigid cylinder,an elastic boundary and combined boundaries of rigid wall and free surface, which could bereferred to in underwater weapon designs and utilizations.
     With the pressure reduction, different levels of buoyancy effect were obtained and thusfull scale underwater explosion bubbles and their interactions with different boundaries were simulated. The study on the complex bubble behaviors including expansion, contraction, jetand splitting in free field, near free surface or near a rigid wall was combined with numericalsimulations with the3-D dynamic bubble model constructed in this paper. The numericalresults were validated by the reduced-pressure experiments and contribute to the3Dnumerical methods for underwater explosions. The pulsations after the first period and thebehaviors of the bubble generated very close to the boundary (distance parameter less than0.5)were unable to be simulated numerically but can be easily observed in the experiments; thislaid the foundation for the following analysis on the model tests utilizing the reduced-pressureexperiments.
     A full scale cabin model was tested in near-field underwater explosion experiments tostudy the plastic dynamic response of local ship structures under explosion loads withdifferent impact factors; the structural damage due to the bubble jet and the area affected bythe jet were obtained. The results of the model test were combined with that of the principleexperiments in the analysis of pressure, strain, displacement, etc. of the structure; on this basis,the pattern of the structural damage induced by the bubble load preceded by the impact of aninitial shock wave was obtained. The results could offer references for researches on thedamage mechanism of ship structures under near-field underwater explosion loads.
引文
[1] Cole R H. Underwater Explosion. New Jersey: Princeton University Press,1948:118-127P
    [2] Zamyshlyayev B V. Dynamic loads in Underwater Explosion.1973, AD-757183
    [3] Molyneaux T C K, Li L Y, Firth N. Numerical simulation of underwater explosions.Computer and Fluids,1994,23:903-911P
    [4] Brett J M. Numerical modeling of shock wave and pressure pulse generation byunderwater explosion.1997, DSTO-TR-0677, Austrian.
    [5] Chan S K. An Improvement in the Modified Finite Element Procedure for UnderwaterShock Analysis. Proceeding of62nd Shock And Vibration Symposium. New Jersey:Princeton University Press,1992
    [6] Swegle J W. Attaway S W. Feasibility of Using Smoothed Particle Hydrod-ynamics forUnderwater Explosion Calculations. DE95008799,1995.
    [7] Liu M B, Liu G R, Lam K Y, Zong Z. Smoothed particle hydrodynamics for numericalsimulation of underwater explosion. Computational Mechanics,2003,30(2):106-118P
    [8] Liu M B, Liu G R, Lam K Y. Comparative study of the real and artificial detonationmodels in underwater explosions. Electronic Modeling,2003,25(2):113-124P
    [9]宗智,邹丽,刘谋斌等.模拟二维水下爆炸问题的光滑粒子(SPH)方法.水动力研究与进展A辑,2007,22(1):61-67P
    [10]柏劲松,陈森华,李平等.水下爆炸过程的高精度数值计算.应用力学学报,2003,20(1):103-106P
    [11]张志江,徐更光,史锐.基于Level-Set的多介质流体动力学数值分析.北京理工大学学报,2007,27(11):948-951P
    [12]王兵,许厚谦,谭俊杰.运动网格上的水下爆炸数值模拟方法.高压物理学报,2008,22(3):291-297P
    [13]顾文彬,叶序双,刘文华,刘强.界面对浅层水中爆炸冲击波峰值压力影响的研究.解放军理工大学学报,2001,2(5):61-63P
    [14]张振华,朱锡,白雪飞.水下爆炸冲击波的数值模拟研究.爆炸与冲击,2004,24(2):182-188P
    [15]方斌,朱锡,张振华,梅志远.水下爆炸冲击波数值模拟中的参数影响.哈尔滨工程大学学报,2005,26(4):419-424P
    [16]贾宪振,胡毅亭,董明荣等.基于ANSYS/LS-DYNA模拟水下爆炸冲击波的等效质量法.弹箭与制导学报,2008,28(3):159-162P
    [17]肖秋平,陈网桦,贾宪振,吴涛,饶国宁.基于AUTODYN的水下爆炸冲击波模拟研究.舰船科学与技术,2009,31(2):38-43P
    [18]金辉,张庆明,高春生等.装药水下沉底爆炸压力场特性研究.科技导报,2009,27(14):32-37P
    [19] Liddiard T P. Forbes J W. Shockwaves in Fresh Water Generated by the Detonation ofPentolite Spheres. ADA132088,1983
    [20] Itoh S, Kira A, Kubot S. Optical Study of Underwater Explosion of High Explosive.Journal of the Japan Explosives Society.1995,56(5):181-187P
    [21] Saito T, Marumoto M, Yamashita H, etal. Experimental and Numerical Studies ofUnderwater Shock Wave Attenuation. Shock Waves.2003,13:139-148P
    [22]钱胜国,张伟林,徐光耀.近自由水面水下爆炸时水中激波特性.爆炸与冲击,1983,3(4):53-63P
    [23]李玉节,赵本立.水下爆炸压力测量中的若干问题.试验力学.1992,7(1):17-22P
    [24]刘文华,罗松林,顾文斌.单个球形装药浅层水中爆炸冲击波特性的研究.工程爆破,1999,5(3):1-5P
    [25]周睿,冯顺山.气泡帷幕对水中冲击波峰值压力衰减特性的研究.工程爆破,2001,7(2):13-17P
    [26]顾文彬,马海洋,唐勇等.水底对浅水中装药爆炸效果的影响.爆破,2003,20(4):88-92P
    [27]李金河,赵继波,谭多望等.炸药水下爆炸冲击波远场传播规律研究.第八届全国爆炸力学学术会议论集,399-402P
    [28]金辉,周学滨,周华等.水下爆炸中自由场压力和船体壁压的测量与分析.海军工程大学学报,2009,21(5):82-87P
    [29] Rayleigh L. On the pressure developed in a liquid during the collapse of a sphericalcavity, Phil. Mag,1917,34:94-98P
    [30] Plesset M S, Prosperetti A. Bubble dynamics and cavitation. Ann. Rev. Fluid Mech,1977,9:145-85P
    [31] Rogers J C W, Szymczak W G, Berger A E, Solomon J M. Numerical solution ofhydrodynamic free boundary problems. International Journal of Numerical Mathematics.1990,95:241-266P
    [32] Mulder W, Osher S, Sethian J A. Computing interface motion in compressible gasdynamics. Journal of Computational Physics.1992:100-129P
    [33] Blake J R, Gibson D C. Growth and collapse of a vapour cavity near a free surface.Fluid Mechanics.1981,111:123-140P
    [34] Zhang Y L, Yeo K S, Khoo B C, Wang C.3D Jet impact and toroidal bubbles. Journal ofComputational Physics.2001,166(2):336-360P
    [35] Prosperetti A, Lezzi A. Bubble dynamics in a compressible liquid. Part1. First-ordertheory. Journal of Fluid Mechanics,1986,168:457-478P
    [36] Blake J R, Gibson D C. Cavitation bubbles near boundaries. Ann. Rev. Fluid Mech,1987:99-123P
    [37] Geers T L, Hunter K S. An integrated wave-effects model for an underwater explosionbubble. Acoustical Society of America.2002,111(4):1584-1601P
    [38] Chahine G L, Frederick G S, Lambrecht C J, et al. Spark-generated Bubbles asLaboratory-scale Models of Underwater Explosions and Their Use for Validation ofSimulation Tools. SAVIAC Proceedings66th Shock and Vibrations Symposium, Biloxi,MS,1995,2:265-276P
    [39] Akio K. Underwater Explosion of Spherical Explosive.Journal of Materials ProcessingTechnology,1999,85:64.
    [40] Lindau O, Lauterborn W. Cinematographic observation of the collapse and rebound of alaserproduced cavitation bubble near a wall, Journal of Fluid Mechanics.2003,479:327-348P
    [41] Boyce P, Debono S. Report of underwater explosion tests. Centre Technique DesSysteme Navals, France,2003
    [42] Lewa K S F, Klaseboer E. A collapsing bubble-induced microinjector: an experimentalstudy. Sensors and Actuators A133(2007)161–172P
    [43] Dadvand A, Khoo B C. A collapsing bubble-induced microinjector: an experimentalstudy. Exp Fluids (2009)46:419–434P
    [44] Kedrinskii V K. Approximate models of one-dimensional pulsation of a cylindricalcavity in an incompressible fluid, Fizika Goreniya i Vzryva,1976,12(5):768-773P
    [45] Menon S, Mihir L. On the dynamics and instability of bubbles formed duringunderwater explosions. Experimental Thermal and Fluid Science.1998.16:305-321P
    [46] Link R, Ripley R, Norwood M, et al. Analysis of The Loading and Response of FlatPlate Targets Subjected to Close-proximity Underwater Explosions, Proceedings74thShock&Vibration Symposium,2003, San Diego, CA
    [47] Boyce P, Debono S. Report of underwater explosion tests. Centre Technique DesSysteme Navals, France,2003
    [48] Klaseboer E, Hung K C, Wang C, et al. Experimental and numerical investigation of thedynamics of an underwater explosion bubble near a resilient/rigid structure. Journal ofFluid Mechanics.2005,537:387-413P
    [49] Brett J M, Yiannakopolous G. A Study of explosive effects in close proximity to asubmerged cylinder. International Journal of IMPact Engineering.2008,35:206-225P
    [50] Huang C F, Hwangfu J J. Experimental study of the behaviour of mini-chargeunderwater explosion bubbles near different boundaries. Journal of Fluid Mechanics,2010,605:1-26P
    [51]李国华,李玉节,张效慈等.舰船设备冲击环境的能源研究.船舶力学,1998,2(1):37-54P
    [52]李国华,李玉节,张效慈等.气泡运动与舰船设备冲击振动关系的试验验证.船舶力学,2005,9(1):98-105P
    [53]朱锡,牟金磊,洪江波等.水下爆炸气泡脉动特性的试验研究.哈尔滨工程大学学报,2007,28(4):365-369P
    [54]汪斌,张远平,王彦平.水中爆炸气泡脉动现象的试验研究.爆炸与冲击,2008,28(6):572-577P
    [55]荣吉利,李健,杨荣杰,王玺.水下爆炸气泡脉动的试验及数值模拟.北京理工大学学报,2008,28(12):1035-1038P
    [56]赵生伟,周刚,王占江等.小当量水中爆炸气泡的脉动现象.爆炸与冲击,2009,29(2):213-216P
    [57]洪江波,李海涛,朱锡等.水下爆炸的高速摄影测试技术研究.武汉理工大学学报,2008,30(5):82-86P
    [58]胡宏伟,王建灵,郭炜,徐洪涛等.刚性池壁和试验支架对水中爆炸气泡脉动周期的影响.火炸药学报,2010,33(4):60-62P
    [59]汪斌,谭多望.水中爆炸形成水射流现象的试验研究.哈尔滨工程大学学报,2010,31(1):42-46P
    [60]牟金磊,朱锡,黄晓明,李海涛.水下爆炸气泡射流现象的试验研究.哈尔滨工程大学学报,2010,31(2):154-158P
    [61]黄晓明,朱锡,牟金磊,李海涛.圆柱壳在水下爆炸作用下鞭状运动响应试验研究.哈尔滨工程大学学报,2010,31(10):1278-1285P
    [62]牟金磊,朱锡,李海涛,黄晓明.水下爆炸气泡载荷在加筋板塑性变形中的作用.振动与冲击,2010,29(5):74-77P
    [63]黄超,汪斌,朱枫,刘仓理,张阿漫.柱形装药水下爆炸气泡运动的试验和数值模拟研究.兵工学报,2011,32(2):149-154P
    [64] Naude C F. Ellis A T. On the mechanism of cavitation damage by nonhemisphericalcavities collapsing in contact with a solid boundary. Trans. ASME D: J. Basic Engng,1961,83:648-656P
    [65] Shutler N D, Mesler R B. A photographic study of the dynamics and damagecapabilities of bubbles collapsing near solid boundaries. Journal of Basic Engineering.1965,87:511P
    [66] Kornfeld M, Suvoroy L, On the destructive action of cavitation. Journal of AppliedPhysics.1944,15,495-506P
    [67] Benjamin T B, Ellis A T. The collapse of cavitation bubbles and the pressures therebyproduced against solid boundaries. Philosophical Transactions of the Royal SocietyLondon A,1966,260:221-240P
    [68] Chahine G L, Frederick G S, Lambrecht C J, et al. Spark-generated Bubbles asLaboratory-scale Models of Underwater Explosions and Their Use for Validation ofSimulation Tools. SAVIAC Proceedings66th Shock and Vibrations Symposium, Biloxi,MS,1995,2:265-276P
    [69] Tomita Y, Shima A, Takahashi K. The collapse of a gas bubble attached to a solid wallby a shock wave and the induced iMPact pressure. J. Fluids Engng.1983,105:341–349P
    [70] Shima A, Takayama K, Tomita Y. Mechanism of the bubble collapse near a solid walland the induced iMPact pressure generation. Rep. Inst. High Speed Mech.,1984,48:77–97P
    [71] Tipton R E, Steinberg D J, Tomita Y. Bubble explosion and collapse near a rigid wall.JSME Intl J. Series II,1992,35:67–75P
    [72] Shima A, Tomita Y, Gibson D C, Blake J R. The growth and collapse of cavitationbubbles near composite surfaces. J. Fluid Mech.1989,203:199–214P
    [73] Lauterborn W, Bolle H. Experimental investigations of cavitation-bubble collapse in theneighbourhood of a solid boundary. Journal of Fluid Mechanics,1975,72:391-399P
    [74] Plesset M S, Chapman R B. Collapse of an initially spherical vapour cavity in theneighbourhood of a solid boundary. Journal of Fluid Mechanics,1971,47:283-290P
    [75] Vogel A, Lauterborn W, Timm R. Optical and acoustic investigations of the dynamicsof laser-produced cavitation bubbles near a solid boundary. Journal of Fluid Mechanics.,1989,1101(206):299-338P
    [76] Tomita Y, Shima A, Tsubota M&Kano I. An experimental investigation on bubblemotion in liquid nitrogen. The2nd Intl Symp. on Cavitation, Tokyo, Japan,1994:311-316P
    [77] Lauterborn W. High-speed photography of laser-induced breakdown in liquids. AppliedPhysics Letter.1972,21:27-29P
    [78] Lauterborn W, Bolle H. Experimental investigations of cavitation-bubble in theneighbourhood of a solid boundary. Journal of Fluid Mechanics,1975,72:391-399P
    [79] Philipp A, Lauterborn W. Cavitation erosion by single laser-produced bubble, Journal ofFluid Mechanics.1998,361:75-116P
    [80] Lindau O, Lauterborn W. Cinematographic observation of the collapse and rebound of alaserproduced cavitation bubble near a wall, Journal of Fluid Mechanics.2003,479:327-348P
    [81] Brujan E A, Keen G S, Vogel A&Blake J R. The final stage of collapse of a cavitationbubble close to a rigid boundary. Physics of Fluids,2002,14(1):85-92P
    [82] Klaseboer E, Turangan C K, Khoo B C. Dynamic behaviour of a bubble near an elasticinfinite interface. International Journal of Multiphase Flow32(2006)1110–1122P
    [83] Lew K S F, Klaseboer E, Khoo B C. A collapsing bubble-induced micropump: Anexperimental study, Sensors and Actuators A,2007,133:161–172P
    [84] Fong S W, Adhikari D, Klaseboer E, Khoo B C. Interactions of multiple spark-generatedbubbles with phase differences. Experiments in fluids (2009)46:705–724P
    [85] Dadvand A, Khoo B C, Mohammad T, Tabar S. A collapsing bubble-inducedmicroinjector: an experimental study, Experiments in Fluids.2009,46:419-434P
    [86] Chew L W, Klaseboer E, Ohl S W, Khoo B C. Interaction of two differently sizedoscillating bubbles in a free field, Physical Review E,2011,84:066307,1-11P
    [87] Karri B, Avila S R G, Loke Y C, Shea S J, Klaseboer E, Khoo B C, Ohl C D. High-speedjetting and spray formation from bubble collapse, Physical Review E,2012,85:015303(R),1-5P
    [88]张阿漫,王诗平,白兆宏,黄超.不同环境下气泡脉动特性试验研究,力学学报,2011,43(1):71-83P
    [89]张阿漫,王超,王诗平,程晓达.气泡与自由液面相互作用的试验研究,物理学报,2012,61(8):0847011-13P
    [90]倪宝玉,水下粘性气泡(空泡)运动和载荷特性研究,哈尔滨工程大学博士学位论文
    [91]张阿漫,肖巍,王诗平,程潇欧.不同沙粒底面下气泡脉动特性试验研究.物理学报,2013,62(1):220-201P
    [92]王诗平,张阿漫,刘云龙,吴超.圆形破口附近气泡动态特性试验研究.物理学报,2013,62(6):06470301-07P
    [93] Gong S W, Ohl S W, Klaseboer E, Khoo B C. Scaling law for bubbles induced bydifferent external sources: theoretical and experimental study. Physics Review E,2010,81(5):450-457P
    [94] Besant W H. Hydrostatics and hydrodynamics, Deighton Bell, Cambridge,1859
    [95] Rayleigh J W. On the pressure developed in a liquid during the collapse of a sphericalcavity. Philosophy Magazine,1917,34:94-98P
    [96] Plesset M S. The dynamics of cavitation bubbles. Journal of Applied Mechanics.1949,16:277-282P
    [97] Lamb H. The early stages of a submarine explosion. Philosophical Magazine.1923,45:257-262P
    [98] Beeching R. Resistance to Cavitation Erosion, Transaction of Institute Engineers andShipbuilders,1942
    [99] Neppiras E A, Noltingk B E. Caviation produced by ultrasonics. Proceeding of PhysicsSociety, London,1950,63:674-685P
    [100] Khoroshev G A, Collapse of vapor-air cavitation bubbles, Soviet Physics Acoustics,1964,9:275-284P
    [101] Herring C. Theory of the pulsations of the gas bubble produced by an underwaterexplosion. Underwater Explosion Research. Office of Naval Research, Washington.1941,2:35-131P
    [102] Kirkwood J G, Bethe H. The pressure wave produced by an underwater explosion.Shock and Detonation Waves,1942,1-34P
    [103] Keller J B, Kolodner I I. Damping of underwater explosion bubble oscillations. Journalof Applied Physics.1956.27:1152-1161P
    [104] Prosperetti A, Lezzi A. Bubble dynamics in a compressible liquid. Part I. First-orderTheory. Journal of Fluid Mechanics,1986,168:457-478P
    [105] Lezzi A, Prosperetti A. Bubble dynamics in a compressible liquid. Part II. Second-orderTheory. Journal of Fluid Mechanics,1987,185:289-321P
    [106] Herring C. Theory of the pulsations of the gas bubble produced by an underwaterexplosion. Underwater Explosion Research. Office of Naval Research, Washington.1941,2:35-131P
    [107] Heaton K. The Effect of Non-sphericity on the Migration of the Gas Bubble fromUnderwater Explosion. Quebec, DREV,1985
    [108] Vernon T A. Whipping Response of Ship Hulls from Underwater Explosion BubbleLoading. ADA178096,1986
    [109] Geers T L, Hunter K S. An Integrated Wave-Effects Model for an UnderwaterExplosion Bubble. Acoustic Society of America.2002,111(4):1584-1601P
    [110] Blake J R, Gibson D C. Growth and collapse of a vapour cavity near a free surface.Fluid Mech.,1981,111:123-140P
    [111] Chahine G L, Perdue T O. Simulation of the three-dimensional behaviour of anunsteady large bubble near a structure. In Proc.3rd Int. Colloq. on Bubbles and Drops,Monterey, California,1988
    [112] Krieger J R, Chahine G L. Dynamics and acoustic signature of non-sphericalunderwater explosion bubbles.1990
    [113] Wilkerson S A. A Boundary Integral Approach to Three Dimensional UnderwaterExplosion Bubble Dynamics. Johns Hopkins University, Baltimore,1990
    [114] Harris P J, A numerical model for determining the motion of a bubble close to a fixedrigid structure in a fluid. International Journal for Numerical Methods in Engineering.1992,22:1813P
    [115] Harris P J, A numerical method for predicting the motion of a bubble close to a movingrigid structure. Communications in Numerical Methods in Engineering.1993,9:81P
    [116] Blake J R, Boulton-Stone J M, Tong P R. Boundary integral methods for rising,bursting and collapsing bubbles. In BE Applications in Fluid Mechanics, edited by H.Power.(Computational Mechanics, Southampton, UK),1995,4:31P
    [117] Tong R P. A new approach to modeling an unsteady free surface in boundary integralmethods with application to bubble-structure interactions, Math. Comput. Simulation,1997,44(4):415-426P
    [118] Zhang Y L, Yeo K S, Khoo B C. Three-dimensional computation of bubbles near a freesurface, J. Compt. Phys,1998,146:105-123P
    [119] Zhang Y L, Yeo K S, Khoo B C.3D jet iMPact and toroidal bubbles, J. Comput. Phys,2001,166(2):336-360P
    [120] Wang C, Khoo B C, Yeo K S. Elastic mesh technique for3D BIM simulation with anapplication to underwater explosion bubble dynamics. Computers Fluids,2003,(32):195-212P
    [121] Keil A H. The response of ships to underwater explosions. Trans Soc Naval Archit MarEng,1961,69:366-410P
    [122] Menkes S B, Opat H J. Broken Beams. Experimental Mechanics,1973,13(11):480-486P
    [123] Rentz T R. Experimental Investigation into the Dynamic Response of a Stiffened FlatPlate Loaded Impulsively by an Underwater Shockwave. AD-A15131,1984.
    [124] Gifford L N, Carlberg J R. Explosive Testing of Full Thickness Precracked Weldments.David Taylor Research Center report DTRC-SSPD-88-172-42,1988.
    [125] Shima A,Tomita Y, Gibson D C. The Growth and Collapse of Cavitation Bubbles NearComposite Surfaces. Journal of Fluid Mechanics,1989,203:199-214P
    [126] Brasek T P, Kwon Y W, Shin Y S. Response of Dual-Layered Structures Subjected toShock Pressure Wave.1994, AD-A289355
    [127] Schmidt R M, Voss M E, Housen K R. Subscale Experiments to Measure Shock andBubble Loading on Responding Structures. Sloshing, Fluid-Structure Interaction andStructural Response Due to Shock and IMPact Loads.New York:ASME Press,1994:272P
    [128] Nurick G N, Shave G C. The Deformation and Tearing of Thin Square Plates Subjectedto Impulsive Loads-an Experimental Study. Intl. J. of Impact Engin.1996,18(l):99-116P
    [129] Reid W D. Response of Surface Ship to Underwater Explosions.1996, AD-A326738
    [130] Slater J E, Rude G. Experimental Study of Fluid-Structure Interaction DuringClose-Proximity Underwater Explosions. Proceedings of ASME PVP-96Conference onStrucrures under Extreme Loading Conditions,1996,325:1-10P
    [131] John M B, George Y, Paul J S. Time-resolved Measurement of the Deformation ofSubmerged Cylinders Subjected to Loading from a Nearby Explosion. InternationalJournal of Impact Engin.,2000,24:875-890P
    [132] Rajendran R, Narasimhan K. Damage prediction of clamped circular plates subjected tocontact underwater explosion. International Journal of Impact Engin.,2001,25:373-386P
    [133]李玉节,张孝慈,吴有生等.水下爆炸气泡激起的船体鞭状运动.中国造船,2001,42(3):1-7P
    [134]李国华,李玉节,张效慈等.气泡运动与舰船设备冲击振动关系的试验验证.船舶力学,2005,9(1):98-105P
    [135]李海涛,朱锡,牟金磊,黄晓明.水下近距爆炸作用下弹性钢板处的空化特性研究.海军工程大学学报,2008,20(1):21-24P
    [136]朱锡,李海涛,牟金磊,黄晓明.水下近距爆炸作用下船体梁的动态响应特性.高压物理学报,2010,24(5):343-350P
    [137] Taylor G I, The Pressure and Impulse of Submarine Explosion Waves on Plates.Underwater Explosion Research,1950,1:1155-1173P
    [138] Snay H G, Christian E A. The Response of Air-Backed Plates to High-AmplitudeUnderwater Shockwaves. Navord Report,1952.
    [139] Cox A D, Morland L W. Dynamic Plastic Deformations of Simply-Supported Squareplates. J. Mech. phys. Solids.1959,7:229-241P
    [140] Huang H. Transient Bending of a large Elastic Plate by an Incident Spherical PressureWave. Journal of Applied Mechanics,1974,41(3):772-776P
    [141] Schechter R S, Bort R L. The Response of Two Fluid-Coupled Plates to an IncidentPressure Pulse. Naval Research Laboratory Memorandum Report4647,1981.
    [142] Jones H. A Theoretical Study of the Dynamic Plastic Behavior of Beams and Plateswith Finite-Deflections. Intl. J. Solids and Structures,1971,7:1007-1029P
    [143] Jiang J, Olson M D. Rigid-plastic Analysis of Underwater Blast Loaded Stiffened Plates.International Journal of Mechanic Science.1995,37(8):843-859P
    [144] Carrier G F. The Interaction of an Acoustic Wave and an Elastic Cylindrical Shell.Brown University Technical Report, No4,1951.
    [145] Geers T L. Excitation of an Elastic Cylindrical Shell by a Transient Acoustic Wave, J.App1. Mechs.1969,36:459-469P
    [146] Huang H, Wang Y F. Transient Interaction of Spherical Acoustic Waves and aCylindrical Elastic Shell. Journal of the Acoustical Society of America.1970,48(1):228-235P
    [147] Huang H. Transient interaction of Plane Acoustic Waves with a Spherical Elastic Shell.J. Acoust. Soc. Am.1969,45:661-670P
    [148] Zhang P, Geers T L. Excitation of a Fluid-Filled, Submerged Spherical Shell by aTransient Acoustic Wave. Journal of the Acoustical Society of America,1993(93):696-705P
    [149] Nokes D S. Analysis of Prolate Spheroidal Shell under Undex Load. Defense NuclearAgency technical report, DNA-TR-90-171,1992.
    [150]吴成,倪艳光,郭磊等.水下爆炸载荷作用气背固支方板的动态响应分析.北京理工大学学报,2007,27(3):205-209P
    [151]刘士光,胡要武,郑际嘉.固支加筋方板在爆炸载荷作用下的刚塑性动力响应分析.爆炸与冲击,1994,14(1):55-65P
    [152]朱锡,刘艳红,张振中等.非接触爆炸载荷作用下舰船板架的塑性动力响应.武汉造船,1998(6):1-4P
    [153] Jeffrey W S. Damping Mechanisms and Their Effects on the Whipping Response of aSubmerged Submarine Subjected to an Underwater Explosion. ADA298743,1983.
    [154] Shin Y S, Ilbae H. Damping Modeling Strategy for Naval Ship System. USA:NPS-ME-03-003,2003.
    [155]李海涛,朱锡,王路等.球面冲击波作用下船体梁整体运动的简化理论模型.爆炸与冲击,2010,20(1):85-91P
    [156]李玉节,张孝慈,吴有生等.水下爆炸气泡激起的船体鞭状运动.中国造船,2001,42(3):1-7P
    [157]姚熊亮,陈建平.水下爆炸二次脉动压力下舰船抗爆性能研究.中国造船,2001,42(2):48-55P
    [158] Chahine G L, Bovis A G. Pressure field generated by nonspherical bubble collapse.Proc ASME symp Cavitation erosion in fluid systems. Boulder, Colorado,1981:27-41P
    [159] Geers T L. Doubly asymptotic approximations for transient motions of submergedstructures. The Journal of the Acoustical Society of America.1987,64:1500-1508P
    [160] Klaseboer E, Khoo B c, Hung K C. Dynamics of an Oscillating Bubble near a FloatingStructre. Journal of Fluids and Structures,2005,21:395-412P
    [161] Chahine G L. Experimental and asymptotic study of nonspherical Bubble Collapse,Apf, Sci. Res,1982,38:187-197P
    [162] Hooton M C, Blake J R, Soh W K. Behaviour of an Underwater Explosion Bubble neara Rigid Boundary: Theory and Experiment in Bubble Dynamics and InterfacePhenomena. Proc. IUTAM Symp., Birmingham, U.K,1993:421-428P
    [163] Naude C F, Ellis A T. On the mechanism of cavitation damage by nonhemisphericalcavities collapsing in contact with a solid boundary. California Institute of technology.Ph.D.1960
    [164] Turangan C K, Ong G P, Klaseboer E, et al. Experimental and numerical study oftransient bubble-elastic membrane interaction. Journal of Applied Physics,2006,100:054910-1-054910-7P
    [165] Menon S, Lal M. On the dynamics and instability of bubbles formed during underwaterexplosions. Experimental Thermal and Fluid Science,1998,16:305-321P
    [166] Knapp R T, Hollander A. Laboratory investigations of the mechanism of cavitation,Transaction of ASME,1948,70:419-430P
    [167] Ellis A T. Techniques for pressure pulse measurements and high-speed photography inultrasonic cavitation, Cavitation in Hydrodynamics, HMSO, London,1956, Paper8
    [168] Timm E E, Hammitt F G. Bubble collapse adjacent to a rigid wall, a flexible wall and asecond bubble, ASME Cavitation Forum,18,1971
    [169]张建生.高速摄影技术对水中气泡运动规律的研究.光子学报,2000,29(10):952-955P
    [170] Trujillo M F, Hsiao C T, Choi J K, Paterson E G, Chahine G L, Peltier L J. Numericaland experimental study of a horizontal jet below a free surface,9th InternationalConference on Numerical Ship Hydrodynamics, Ann Arbor, Michigan,2007
    [171]汪斌,张光升,高宁等.高速摄影技术在水下爆炸气泡脉动研究中的应用,含能材料,2010,18(1):102-106P
    [172]朱锡,方斌.舰船静置爆炸气泡时总纵强度计算方法研究.海军工程大学学报,2007,19(6):6-11P
    [173]黄超.柱形装药气泡动态特性及射流冲击毁伤研究,哈尔滨工程大学博士学位论文
    [174] Lauterborn W. Cavitation bubble dynamics-new tools for an intricate problem, AppliedScientific Research,1982,(38):165-178P
    [175]张阿漫,姚熊亮.水深和药量的变化对水下爆炸气泡射流的影响研究.工程力学,2008,25(3):222-230P
    [176]王诗平,张阿漫,刘云龙,王超.同相气泡耦合特性试验研究.力学学报,2012,44(1),56-64P
    [177] Gibson D C. Proceeding of3rd Confference Hydraulic Fluid Mechanics (Sydney:Pearson)1968,20P
    [178] Link R A, Jiang L, Slater J E. Numerical simulation of the loading and response of flatplate targets subjected to close-proximity underwater explosions.75th Shock andVibration Symposium, Virginia Beach, VA,2004:87-92P
    [179]张阿漫.水下爆炸三维动态特性研究,哈尔滨工程大学博士学位论文
    [180]李健,荣吉利.水中爆炸冲击波传播与气泡脉动的试验及数值模拟.兵工学报,2008,29(12),1437-1443P
    [181] Chahine, G. L. Interaction between an oscillating bubble and a free surface. Trans.ASME, J. Fluids Eng.1977,99:709-716P
    [182] Chan P C, Kan K K, Stuhmiller J M A2000J. Fluids Eng.122783
    [183] Zhang Y L, Yeo K S, Khoo B C, Wang C2001J. Comput. Phys.166336
    [184] Plesset M S, Prosperetti A. Bubble dynamics and cavitation. Ann. Rev. Fluid Mech,1977,9:145-85P
    [185] Tomita Y, Kodama T. Interaction of laser-induced cavitation bubbles with compositesurfaces. J. Appl. Phys,2003,94(5):2809-2816P
    [186] Rama K, Vendhan C P. Deformation and rupture of thin rectangular plates subjected tounderwater shock. International Journal of Impact Engineering,2004,30(6):699-1015P
    [187] Dung C F, Dsu P Y, Dwang-Fuu J J. Elastic shock response of an air-backed plate tounderwater explosion. International Journal of Impact Engineering,2005,31(2):151-168P
    [188]牟金磊,朱锡,张振华,谷美邦.爆炸冲击作用下加筋板结构变形研究.海军工程大学学报,2007,19(6):12-16P
    [189]姚熊亮,陈建平.水下爆炸二次脉动压力下舰船抗爆性能研究.中国造船,2001,42(2):48-55P
    [190]董海,刘建湖,吴有生.水下爆炸气泡脉动作用下细长加筋圆柱壳的鞭状响应分析.船舶力学,2007,11(2):250-258P
    [191] Benjamin T B, Ellis A T. The collapse of cavitation bubbles and the pressures therebyproduced against solid boundaries. Philosophical Transaction of the Royal Society ofLondon,1966,260:221-240P
    [192] Naude C F, Ellis A T. On the mechanism of cavitation damage by non-hemisphericalcavities in contact with a solid boundary. ASME Journal of Basic Engineering,1961,83:648-656P
    [193] Blake J R, Taib B B, Doherty G. Transient cavities near boundaries Part I: Rigidboundary. Journal of Fluid Mechanics,1986,170:479-497P
    [194] Zhang Y L, Yeo K S, Khoo B C. Three-dimensional computational of bubbles near afree surface. Journal of Computational Physics,1988,146:105-123P
    [195]宗智,何亮,孙龙泉.水下爆炸气泡对水面舰船载荷的数值研究.船舶力学,2008,12(5):733-739P
    [196]姚熊亮,张阿漫.简单Green函数法模拟三维水下爆炸气泡运动.力学学报,2006,38(6):749-759P
    [197]张阿漫,姚熊亮.基于边界积分法的气泡动态特性综述.力学进展,2008,38(5),561-570P
    [198] Best J P, Blake J R. An estimate of the Kelvin impulse of a transient cavity. Journal ofFluid Mechanics,1994,261:75-93P
    [199] Tomita Y, Kodama T. Interaction of laser-induced cavitation bubbles with compositesurfaces. J. Appl. Phys,2003,94(5):2809-2816P
    [200] Huang C F, Hwangfu J J. Experimental study of the behaviour of mini-chargeunderwater explosion bubbles near different boundaries. Journal of Fluid Mechanics,2010,605:1-26P
    [201] Higdon C E. Water barrier ship self-defense concept, ADA294929. USA: Naval SurfaceWarfare Center, Dahlgren Divison,1994:142-155P
    [202]李世海.浅水爆炸流体运动规律的理论及试验研究.北京:中国科学研究院力学所,1990.
    [203] Naval Sea Systems Command, Water Barrier Ship Self-Defense, Nswc. Navy.
    [204] Best J P. The effect of non-spherical collapse on determination of explosion bubbleparameters. AD-A407861,2002.
    [205] Wang Q X. The Evolution of a Gas Bubble Near an InclinedWall Theoret. Comput.Fluid Dynamics,1998,12:29-51P
    [206]浦金云,邱金水,程智斌.舰船生命力.北京:海潮出版社,2001
    [207]姚熊亮.船体振动.哈尔滨:哈尔滨工程大学出版社,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700