用户名: 密码: 验证码:
竖轴H型叶轮及导流罩流体动力性能数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
H型叶轮是竖轴风力发电机组或海(潮)流发电机组中的关键设备。它的主要特点是风或水流的方向垂直于叶轮的主轴和叶片,叶轮的旋转不受来流方向的影响,叶片结构简单,易于实现变角度控制和大型化,所以近年来在风能和潮流能发电技术领域重新受到人们的关注。由于H型叶轮工作过程中流场、尾涡系及其作用于叶片上的载荷呈周期性的非对称非稳态变化,流动干扰复杂,叶轮流体动力学性能设计中的基础力学问题至今没有得到很好的解决。因此,深入研究H型叶轮的流体动力学理论与数值模拟方法,探索H型叶轮的流场特性、流体动力学机理和性能,对于准确的认识H型叶轮的特性和提高设计能力具有重要的理论和实际意义。
     H型叶轮流体动力性能数值预报通常采用流管法和涡方法。流管法在整体性能计算上简单快捷,但预报叶片瞬时载荷困难;涡方法能够计算瞬时载荷和涡系干扰,但在叶片出现大攻角流动分离时计算结果不准确。而近年来出现的粘性CFD方法能够弥补前两种方法的缺点。本文基于全粘性CFD方法和Fluent软件,对H型叶轮粘性流场的数值模拟方法,以及叶片、叶轮和导流罩的流体动力载荷与性能开展研究。
     首先研究H型叶轮流场的数值模拟方法。针对叶片截面研究典型对称翼型定常和非定常绕流的数值模拟问题,详细探讨了粘性CFD理论中相关计算条件和处理方法。在分析H型叶轮的运动特征和CFD滑移网格模型与动网格模型特点的基础上,提出UDF控制滑移网格模型方法。通过Strickland风力机和Kurushima潮流水轮机模拟结果与试验结果和其他方法的计算结果对比,表明滑移网格模型可以详细预报叶片的瞬时载荷,尤其在低速比工况的性能计算上有明显优势。通过摆线式水轮机的模拟结果与文献中试验结果对比,表明UDF控制滑移网格模型可以有效预报变偏角H型叶轮的功率特性,与动网格模型相比,该模型能够降低网格数量,保证网格质量,节省计算时间。
     然后考虑粘性流场中运动叶片的动力学问题。应用UDF建立叶片的受力平衡方程和力矩平衡方程,实现了带惯性力系的H型叶轮的数值模拟,给出了被动变偏角H型叶轮的叶片偏角变化规律和叶轮功率特性。通过弹簧控角水轮机的计算结果与实验结果对比,表明该方法可以有效预报叶片的运动特性及叶轮的功率特性。
     另外,研究叶轮的总体性能计算问题。提出了变偏角H型叶轮功率计算修正公式,将叶片力偶矩对叶片自身小轴的功计入叶轮转换的能量中。研究表明,修正项在低速比时对功率的影响很小,在高速比时对功率的影响较大,为更准确的计算叶轮性能提供了一种途径。
     最后,研究H型叶轮性能的强化问题。提出了适合于往复流特性的导流罩设计方法以及导流罩带扩张门的设计思想,模拟了导流罩流场特性以及导流罩加装固定偏角风力机、摆线式水轮机和弹簧控角水轮机模型的流场,给出了导流罩与叶轮之间的流体动力学干扰规律。数值计算和模型实验结果比较表明,导流罩可以稳定叶轮下游盘面流场,扩张门能够明显提高通过导流罩内部的流量;不同的H型叶轮安装于导流罩内时,导流罩的型线、收缩比、导流罩与叶轮的间隙等参数对叶轮的功率特性和叶片的流体动力特性的影响不同,带扩张门的导流罩优于不带扩张门的导流罩。弹簧控角水轮机功率特性的实验曲线证明,带扩张门的导流罩可以将叶轮的能量利用率峰值提高47.8%,同时扩大了叶轮高效运转的速比范围。
     本文的研究工作为各种类型H型叶轮绕流问题提供了全粘性数值模拟方法,对于深入研究H型叶轮的流体动力学机理,优化叶轮性能和设计,提高叶轮效率具有重要的理论意义和工程实用价值。
H-shaped turbine is the common and key equipment in Vertical axis wind turbine generator system or (marine) tidal streams turbine generator system, with the characteristics of the main axis perpendicular to the flow direction, the blade parallel to the main axis. So the flow direction has no influence with turbine rotations. The structure of blade is simple, which is easy to implement angle-changed control and large-scale production. Therefore, vertical axis turbines are highly concerned in the electric generation technology from wind energy and tide energy in recent years. Due to the fact that it is unsteady and unsymmetrical in flow field, trailing vortex and load on the blade during the working process of H-shaped turbine, besides, fluid dynamic disturbing effect is complex, many basic mechanic problems in turbine fluid dynamic performance design have not been solved as yet. Consequently, it is important theoretical and practical significance in accurately understanding and improving design capacity of H-shaped turbine, in studying fluid dynamic theory and numerical simulation methods, exploring flow characteristics, fluid dynamics mechanism and performance of H-shaped turbine.
     The methods of predicting hydrodynamic performance for H-shaped turbine are usually stream tube method and vortex method. Stream tube method is simple and quick in analyzing the overall performance, however, it is difficult to predict blade instantaneous load performance. Vortex method can calculate the instantaneous load and simulate vortex interference, however, when the blade moves in the range for angles of attack and flow begins to distribute, the calculation is not accurate, while viscous CFD method overcomes shortcomings mentioned above. Based on viscous CFD method and Fluent software, the numerical simulation method of H-shaped turbine flow field, fluid dynamic loads and performance of blades, the turbine and the duct are studied in this thesis.
     Firstly, numerical simulation method of flow field for H-shaped turbine are studied. Aimed at the section of blade, numerical simulation of steady and unsteady flow around the typical symmetry aerofoil are studied, and relevant calculation conditions and treatments in viscous CFD theory are discussed, besides, based on the characteristics of sliding mesh and dynamic mesh, the UDF controlled sliding mesh (UDF-SM) is put forward. Two numerical examples of Strickland wind turbine and Kurushima Strait tidal stream turbine demonstrate that the sliding mesh model can forecast accurately instantaneous load on blade, especially, it is more accurate to calculate performance in low speed ratio. Performance simulation of cycloidal hydro-turbine indicates UDF-SM model can calculate the power characters of variable pitch-angle H-shaped turbine, compared to dynamic mesh model, it can decrease mesh number on the premise that the mesh quality is guaranteed, therefore, it can save the calculating time.
     Secondly, fluid dynamics of the blade moving in viscous flow is studied. Balanced force equation and balanced torque equation of blade are formulated into UDF program, and then the working process of H-shaped turbine with inertial force system is simulated, giving the variety law of blade and the power efficiency characteristics of turbine. The comparison of numerical results and experimental results shows that this method can effectively predict the blades' motion and power efficiency characteristic of turbine.
     In addition, the general fluid dynamic performance of rotor are studied. The amendment formulas on the power efficiency of variable-pitch H-shaped turbine are presented, by considering the blade moment's work on the shaft in energy conversion. The calculation results show that the influence of amendment on power efficiency is small in the low speed ratio while it is large in the high-speed ratio. The power efficiency amendment provide a method for calculating the performance of the rotor more accurately.
     At last, work on the method to enhance the performance of H-shaped rotor. Duct design method is put forward that suitable for reciprocating flow, and the design concept of expansion door is presented. In addition to calculate the characteristics of duct in flow field individually, the flow fields are simulated about the duct with fixed blade wind turbine, with cycloidal hydro-turbine and spring-controlled passive variable-pitch turbine respectively. The dynamic interference between duct and rotor is discussed. Numerical and experimental results show that the duct can stabilize the flow in rotor downstream disk, expansion door can enlarge the flux in duct evidently. The influence on power efficiency and fluid dynamic characteristics of blade by duct parameters such as the moulded line, shrinking ratio, gap between duct and turbine will change along with the rotor's type. The duct with expansion-door is better than the one without it. In experiment, the peak of power efficiency of spring-controlled variable-pitch turbine is enhanced 47.8% by duct with expansion door, meanwhile the speed ratio range for effective operation of turbine is extended.
     The research work in the thesis provide a numerical simulation method to viscous flow problems for various H-shaped turbine. It is valuable in studying fluid dynamic mechanics, optimizing blade performance and design and improving turbine efficiency of H-shaped turbine, being significance in theory and engineering application.
引文
[1]袁玉琪,杨校生.风、风能、风力发电-21世纪新型清洁能源.太阳能.2002(2):146-451页
    [2]D.G.Shepherd.Historical Development of the Windmill.Work performed for U.S.Department of Energy Wind/Hydro/Ocean Technologies Division and Solar Technology Information Program.NASA-CR-4337,1990:1-52P
    [3]D.A.Spera.Wind Turbine Technology.The 2nd Printing.ASME PRESS,1995:1-24P 49-99P
    [4]www.pacwind.net
    [5]http://www.sandia.gov/
    [6]G.Darrieus.Turbine Having its Rotating Shaft Transverse to Flow of Current,U.S.Patent 1834018,December 1931
    [7]朱典明,李凤来,张亮等.70kW潮流实验电站.哈尔滨工程大学技术报告.96-A17-06-03,2002
    [8]张桂湘.摆线式和蹼板式水轮机水动力性能计算方法研究.哈尔滨工程大学硕士学位论文.2002
    [9]李凤来,张亮,张洪雨等.70kW潮流电站水轮机研究.国家863科技报告.哈尔滨工程大学,2000,12:5-6页
    [10]D.P.Coiro and F.Nicolosi.Numerical and Experimental Analysis of Kobold Turbine.Sinergy Symp.on vertical axis Wind Turbine,Hangzhou,China,24-27 Nov 1998
    [11]D.P.Coiro,et al.Exploitation of Marine Tidal Currents:Design,Installation and Experimental Results for the Patented Kobold Vertical Axis Hydro Turbine.In:"Poster-Session OWEMES 2003"Napoli,Italy,10-12,April 2003
    [12]S.Kiho,M.Shiono and K.Suzuki.Electric power generation from tidal currents by Darrieus turbine at Kurushima Strait.Trans. IEE of Japan,1992,6(122-D):530-538P
    [13]S.Kiho,M.Shionoa and K.Suzukia.The power generation from tidal currents by Darrieus Turbine.Renewable Energy,1996,9(1-4):1242-1245P
    [14]K.Nilsson,E.Segergren and M.Leijon.Simulation of Direct Drive Generators Designed for Underwater Vertical Axis Turbines.The Fifth European Wave Energy Conference.Cork,Ireland.September 2003
    [15]F.Ponta and G.S.Dutt.An improved vertical-axis water-current turbine incorporating a channelling device.Renewable Energy,2000,20:223-241P
    [16]朱典明.摆线推进器的理论计算方法.中国造船,1980,8-16页
    [17]http://pontediarchimede.com
    [18]Zhang liang,Sun ke,Li Fenglai,Chen han.Hydrodynamic experimental study on new type of vertical-axis variable-pitch turbine.Journal of Harbin Engineering University.v 27,n SUPPL.2,December,2006:346-352P
    [19]W.H.Isay.On the treatment of the flow through a Voith-Schneider propeller having a small advance coefficient.Burean of Ships Translation.1958
    [20]#12
    [21]R.J.Templin.Aerodynamic Performance Theory for the NRC Vertical Axis Wind Turbine.NRC of Canada TR.LTR-LA-160.1974
    [22]R.E.Wilson.Vortex sheet analysis of the Giromill.Trans.ASME J.Fluids Engineering.Sept.1978,100(3):340-342P
    [23]L.B.Wang,L.Zhang,N.D.Zeng.A Potential Flow 2-D Vortex Panel Model:Applications to the Vertical-Axis Straight-Blade Tidal Turbine.Energy Conversion and Management.Vol.48,Feb.2007,454-461P
    [24]Ould el Moctar,Volker Vertram,评论:数值模拟的现状.造船师2007, 2:78-80页
    [25]翟建华.计算流体力学(CFD)的通用软件.河北科技大学学报.第26卷第2期,2005年6月,160-165页
    [26]Beom-seok Kim,Jeong-Hwan Kim,Yu-Taek Kim,etc.A CFD study on the 3-D flow characteristics and performance analysis of 1MW HAWT.Korea Maritime University.
    [27]陈旭,郝辉,田杰,杜朝辉.水平轴风力机翼型动态失速特性的数值研究.太阳能学报.第24卷第6期,2003年12月,735-740页
    [28]叶枝全,黄继雄,陈严,曹人靖.风力机新系列翼型气动性能研究.太阳能学报.第23卷第2期,2002年4月,211-216页
    [29]Yukimaru SHIMIZU,Takao MAEDA,Yasunari KAMADA etc.Effects of Mie tip-vane on pressure distribution of rotor blade and power augmentation of horizontal axis wind turbine.Mechanical engineering,Mie University.
    [30]贾瑞博.风力机叶尖加小翼动力放大的数值模拟研究.内蒙古工业大学硕士学位论文.2005
    [31]Seung Jo Kim etc.Efficiency Improvement of Cycloidal Wind Turbine.School of Mechanical and Aerospace Engineering,Seoul National University
    [32]王宏伟.机翼非定常特性与直叶水轮机水动力性能分析.哈尔滨工程大学硕士学位论文.2006
    [33]马庆位.可调角直叶水轮机的性能研究.哈尔滨船舶工程学院硕士学位论文.1984
    [34]J.H.Strickland,B.T.Webster and T.Nguyen.A vortex model of the Darrieus turbine:an analytical and experimental study.Trans.ASME J.Fluids Engng.Vol.101,1979:500-505P
    [35]Klimas PC.Darrieus rotor aerodynamics.Trans ASME J Solar Energy Engng 1982:102-105P
    [36]S.M.Camporeale and V.Magi.Streamtube model for analysis of vertical axis variable pitch turbine for marine currents energy conversion.Energy Conversion & Management,2000,41:1811-1827P
    [37]F.Akinori,T.Yasuo and T.Kazuki.Theoretical Considerations in an Approximate Method for Estimating the Blade Performance of a Darrieus-Type Cross-Flow Water Turbine.Memoirs of the Faculty of Engineering,Kyushu Uni..Mar.1990,50(1):1-14P
    [38]F.Akinori,T.Yasuo and T.Kazuki.An Approximate Method for Estimating the Blade Performance of Darrieus-Type Cross-Flow Water Turbines.Memoirs of the Faculty of Engineering,Kyushu Uni..June 1992,52(2):131-144P
    [39]T.Yasuo etc.Study on Hydrodynamic Performance of Darrieus-type Cross-Flow Water Turbine.Bulletin of JSME,1985,28(240):1119-1127P
    [40]A.Gorlov.Development of the Helical Reaction Hydraulic Turbine.Final Technical Report,July 1,1996-June 30,1998.DE-FG01-96EE 15669
    [41]Blue Energy Canada Inc.http://www.bluenergy.com
    [42]E.Segergren and M.Leijon.Generator for underwater power conversion.Submitted to Journal of Renewable Energy.
    [43]S.H.Salter.Proposal for a large vertical-axis tidal-stream generator with ring-cam hydraulics.MAREC,UK,2001
    [44]S.H.Salter.Pitch-Control for Vertical-Axis Marine-Current Generators.World Renewable Energy Conference Aberdeen 2005,UK,2005
    [45]S.H.Salter.Theta-Islands for Flow Velocity Enhancement for Vertical-Axis Generators at Morecambe Bay.World Renewable Energy Conference Aberdeen 2005,UK,2005
    [46]孙百超,朱典明.弹簧控制攻角的直叶片水轮机工作原理.第二届全国海洋能利用学术讨论会文集(1983).北京:海洋出版社,1984:47-53P
    [47]孙百超,马文彬等.弹簧调节攻角的直叶片水轮机实验研究.第二届全国海洋能利用学术讨论会文集(1983).北京:海洋出版社,1984:278-284P
    [48]D.M.Zhu.Extended Application of the Computational Method for Cycloidal Propellers to Cycloidal Turbines.NSMB.1980,Report No.88221-3-SR.
    [49]张维新.蹼板式水轮机发电装置试验研究.哈尔滨工程大学硕士学位论文.1999
    [50]陈晗.弹簧控角竖轴直叶片水轮机水动力性能研究.哈尔滨工程大学硕士学位论文.2006
    [51]D.G.Phillips,A.Oakey,R.G.J.Flay,P.J.Richards,T.A.Nash.Computational fluid dynamic and wind tunnel modeling of a diffuser augmented wind turbine.Wind Engineering.Vol.23,No.1,1999
    [52]E.J.Rudkin.Proof of Concept for a Diffuser Augmented Water Turbine.Sc thesis.Dept of Engineering,The University of Reading,UK.1998
    [53]D.G.Phillips,T.A.Nash,E.J.Rudkin,D.C.Mcmillan,A.B.Dickson.Developing an Innovative Wind Turbine-the Vortec.New Zealand Wind Energy Association Annual Conference,Wellington,New Zealand.2000
    [54]T.D.Faure,B.D.Pratte,D.Swan.The darrieus hydraulic turbine model and field experiments.4~(th) Int.symp.on hydro power fluid machine.1986:123-129P
    [55]F.L.Ponta.Ana'lisis fluidodina'mico deuna hidroturbina de eje vertical.PhD thesis.School of Engineering,University of Buenos Aires.1999
    [56]田德,郭凤祥,刘树民等.聚能型风力发电机的研究.农村能源.1998(2):25-30页
    [57]田德,刁明光,黄顺成等.浓缩风能型风力发电机的整体模型风洞实验(第Ⅲ报)--发电对比实验.农业工程学报.第12卷第2期,1996(6):178-182页
    [58]汪建文,孙科.风力机扩散放大器的数值仿真.能源技术,2004,25(5):185-187页
    [59]汪建文,孙科,辛士红,吴克启.风力机扩散放大器的数值分析与风洞实验研究.华中科技大学学报(自然科学版).第33卷第12期,2005(12):37-40页
    [60]张洪雨,赵晨,李凤来.摆线式水轮机在二元对称导流管中工作时的水动力计算方法.哈尔滨船舶工程学院学报.第十二卷第四期.1991(2):388-994页
    [61]张亮,孙科.潮流电站导流罩的水动力设计.哈尔滨工程大学学报.第二十八卷第七期.2007:734-738页
    [62]张亮等.40kW座海底式潮流能独立发电系统.国家高技术研究发展计划(863计划)课题自验收报告.2005
    [63]刘斌.带导流罩的竖轴潮流水轮机水动力性能研究.哈尔滨工程大学硕士学位论文.2007
    [64]容亮湾.水轮机叶片水动力分析及翼型优化.哈尔滨工程大学硕士学位论文.2006
    [65]方静.基于遗传算法的翼型优化.哈尔滨工程大学硕士学位论文.2007
    [66]陶文铨编著.数值传热学.第2版.西安:西安交通大学出版社.2001:1-15页332-409页
    [67]王福军编著.计算流体动力学分析--CFD软件原理及应用.北京:清华大学出版社.2004
    [68]Anderson D A,Tannehill J C,Pletcher R H.Computational fluid mechanics and heat transfer.Washington DC:Hemisphere.1984
    [69]Moin P,Mahesh K.Direct numerical simulation:a tool in turbulence research.Ann Rev Fluid Mech.1998(30):39-78P
    [70]J.G,Wissink.DNS of separating low Reynolds number flow in a turbine cascade with incoming wakes.International Journal of Heat and Fluid Flow.24(4),2003:626-635P
    [71]V.Michelassi,J.G.Wissink,W.Rodi.Direct numberical simulation large eddy simulation and unsteady Reynolds-averaged Navier-Stakes simulations of periodic unsteady flow in a low-pressure turbine cascade:A comparison.Journal of Power and Energy.217(4),2003:403-412P
    [72]V.Stephane.Local mesh refinement and penalty methods dedicated to the Direct Numerical Simulation of incompressible multiphase flows.Proceedings of the ASME/JSME Joint Fluids Engineering Conference.2003:1299-1305P
    [73]J.C.Li.Large eddy simulation of complex turbulent flows:Physical aspects and research trends.Acta Mechanica Sinica.17(4),2001:289-301P
    [74]Mary Ivan,Sagaut Pierre.Large eddy simulation of flow around an airfoil near stall.AIAA Journal.40(6),2002:1139-1145P
    [75]D.G.E.Grigoriadis,J.G.Bartzis,A.Goulas.Efficient treatment of complex geometries for large eddy simulations of turbulent flows.Computers and Fluids.33(2),2004:201-222P
    [76]张兆顺,崔桂香,许春晓著.湍流理论与模拟.北京:清华大学出版社.2005:163-165页231页
    [77]潘文全编著.工程流体力学.北京:清华大学出版社.139-145页
    [78]P.Spalart and S.Allmaras.A one-equation turbulence model for aerodynamic flows.Technical Report AIAA-92-0439,American Institute of Aeronautics and Astronautics.1992.
    [79]B.E.Launder and D.B.Spalding.Lectures in Mathematical Models of Turbulence.Academic Press,London,England.1972.
    [80]V.Yakhot,S.A.Orzag.Renormalization group analysis of turbulence:basic theory.J Scient Comput.1986,1:3-11P
    [81]T.H.Shih,W.W.Liou,A.Shabbir,Z.G.Yang,J.Zhu.A new k-ε eddy viscosity model for high Reynolds number turbulent flows.Comput Fluid.24(3),1995:227-238P
    [82]H.K.Versteeg,W.Malalasekera.An introduction to computational fluid dynamics:the finite volume method.Wiley,New York,1995.
    [83]B.E.Launder and D.B.Spalding.The Numerical Computation of Turbulent Flows.Computer Methods in Applied Mechanics and Engineering.1974,3:269-289P
    [84]FLUENT Inc.\FLUENT User's Guide
    [85]S.E.Kim and D.Choudhury.A Near-Wall Treatment Using Wall Functions Sensitized to Pressure Gradient.In ASME FED Vol.217,Separated and Complex Flows.ASME,1995
    [86]B.Kader.Temperature and Concentration Profiles in Fully Turbulent Boundary Layers.Int.J Heat Mass Transfer.4(9),1981:1541-1544P
    [87]M.Wolfstein.The Velocity and Temperature Distribution of One-Dimensional Flow with Turbulence Augmentation and Pressure Gradient.Int.J.Heat Mass Transfer.1969,12:301-318P
    [88]H.C.Chen and V.C.Patel.Near-Wall Turbulence Models for Complex Flows Including Separation.AIAA Journal.26(6),1988:641-648P
    [89]T.Jongen.Simulation and Modeling of Turbulent Incompressible Flows.PhD thesis.EPF Lausanne,Lausanne,Switzerland.1992.
    [90]F.White and G.Christoph.A Simple New Analysis of Compressible Turbulent Skin Friction Under Arbitrary Conditions.Technical Report AFFDL-TR-70-133,February 1971
    [91]P.Huang,P.Bradshaw,T.Coakley.Skin Friction and Velocity Profile Family for Compressible Turbulent Boundary Layers.AIAA Journal,September 1993,31(9):1600-1604P
    [92]W.P.Jones,B.E.Launder.The prediction of laminarization with a two-equation model of turbulence.Int.J Heat Mass Transfer.1972,15:301-311P
    [93]W.P.Jones,B.E.Launder.The calculat ion of low-Reynolds-number phenomena with a two-equation model of turbulence.Int.J Heat Mass Transfer.1973,16:1119-1130P
    [94]陶文铨著.计算传热学的现代进展.北京:科学出版社.2000:84-96,383-395页
    [95]罗俞PJ著.计算流体动力学.钟锡昌,刘学宗译.北京:科学出版社,1983:47-56页82-87页473-490页
    [96]帕坦卡S V.传热与流体流动的数值计算.张政译.北京:科学出版社. 1989:152-157 页
    
    [97] S. V. Patankar. A calculation procedure for two-dimensional elliptic situations. Number Heat Transfer. 1981, 4:49-425P
    [98] J. P. Van Doormal, G. D. Raithby. Enhancement of the SIMPLE method for predicting incompressible fluid flow. Number Heat Transfer.1984, 7:147-163P
    [99] G.D.Raithby, C.E.Schneider. Elliptic systems: finite difference methods II. In:W. J. Minkowycz , E. M. Sparrow , R. H. Pletcher ,G. E. Schneider, eds. Handbook of numerical heat transfer. New York:John Wiley&Sons. 1988:241-289P
    [100] A. W. Date. Numerical prediction of natural convection heat transfer in horizontal annulus. Int. J Heat Mass Transfer. 1986,29:1457-1464P
    
    [101] D.B.Spalding. A general purpose computer program for multidimensional one-and-two phase flow. Math comput simulation.1981, 23:267-276P
    [102] N.C.Markatos, K.A.Pericleous. Laminar and turbulent natural convection in an enclosed cavity. Int J Heat Mass Transfer. 1985,27:755-772P
    
    [103] Fluent.Inc\fluent6. 2.16\help\html\ ug\node366.htm
    [104] Fluent. Inc\fluent6. 2.16\help\html\ ug\node391. htm
    [105] Fluent. Inc\fluent6. 2. 16\help\html\ug\node396. htm
    [106] Fluent. Inc\fluent6. 2. 16\help\html\ug\node397. htm
    [107] Fluent. Inc\fluent6. 2. 16\help\html\ug\node969. htm# sec-adapt-hanging
    
    [108] FLUENT Inc. Tutorial Guide\Modeling External Compressible Flow
    [109] GAMBIT Documentation
    [110] A. M.Winslow. Numerical solution of the quasilinear Poisson equation in a non-uniform triangle mesh. J Comput. Phys. 1967,2:49-l72P
    [111] J.F.Thompson, F.C.Thames, C.W.Mastin. Automatic numerical generation of body-fitted curvilinear coordinate system for field containing any number of arbitrary two-dimensional bodies.J Comput.Phys.1974,15:299-319P
    [112]J.F.Thompson,Z.U.A.Warsi,C.W.Mastin.Body-fitted coordinate systems for numerical solution of partial difference equations:a review.J Comput.Phys.1982,47:1-108P
    [113]C.W.Mastin,J.F.Thompson.Elliptic systems and numerical transformations.J Math Anyl Application.1878,62:52-62P
    [114]C.W.Mastin,J.F.Thompson.Transformation of three-dimensional regions into rectangular regions by elliptic systems.Numerische Mathematik.1979,29:397-407P
    [115]J.L.Steger,D.S.Chaussee.Generation of body-fitted coordinates using hyperbolic partial differential equations.SIAMJ Sci Stat Comp,1980,1(4):431-437P
    [116]Y.N.Jeng,Y.L.Shu.Grid generation for internal flow prolems by methods using hyperbolic equation.Numer Heat Transfer.Part B.1995,27:49-61P
    [117]M.T.Nair,T.K.Sengupta.Orthogonal.grid generation for Navier-Stokes computation.Int J Numer Methods Fluids.1998,28:215-224P
    [118]Nakamura S.Marching grid generation using parabolic partial differential equations.In:Thompson J F ed.Numerical grid generation.New York.Elsevier.1982:79-105P
    [119]J.K.Hodge,S.A.Leone,R.L.McCarty.Noniterative adaptive grid generation using parabolic partial differential equations.AIAA J.1987,25(4):542-549P
    [120]Y.C.Liou,Y.N.Jeng.Parabolic equation method of gird generation for enclosed region.Numer Heat Transfer,Part B.1996,29:289-303P
    [121]吴德铭,郜冶编著.实用计算流体力学基础.哈尔滨:哈尔滨工程大学出版社.2006:91页
    [122]R.S.Amano.Development of a turbulence near-wall model and its application to separated and reattached flow.Numer Heat Transfer.1984,7:59-75P
    [123]王补宣著.工程传热传质学(上册).北京:科学出版社.1982,426-428 363-366页
    [124]Fluent.Inc\fluent6.2.16\help\html\udf\node4.htm
    [125]汪鲁兵.竖轴潮流水轮机水动力性能理论与实验研究.哈尔滨工程大学博士学位论文.2006
    [126]贺德馨等编著.风工程与工业空气动力学(近代空气动力学丛书).北京:国防工业出版社.2006:83页
    [127]廖康平.垂直轴风机叶轮空气动力学性能研究.哈尔滨工程大学硕士学位论文.2007
    [128]汪鲁兵.一种新型变攻角直叶水轮机水动力性能优化研究.哈尔滨工程大学硕士学位论文.2003
    [129]Fernando h.Ponta,Pablo M.Jacovkis.A vortex model for Darrieus turbine using finite element techniques.Renewable Energy 24(2001):1-18P
    [130]Jianhui Zhang.Numerical Modeling of Vertical Axis Wind Turbine (VAWT).Master thesis.Technical University of Denmark,Department of Mechanical Engineering.2004
    [131]理论力学(下册).哈尔滨工业大学理论力学教研组编.高等教育出版社.1997年7月(第五版)
    [132]理论力学(上册).哈尔滨工业大学理论力学教研组编.高等教育出版社.1997年7月(第血版)
    [133]D.P.Coiro,F.Nicolosi,A.DeMarco,S.Melone,F.Montella.Dynamic behaviour of patented Kobold tidal current turbine:Numerical and experimental aspects.4~(th) international conference on advanced engineering design.Glasgow,UK:5-8 September 2004
    [134]侍茂崇.物理海洋学.山东:山东教育出版社.2004:318-329页
    [135]孙科.风力机扩散放大器的数值仿真.内蒙古工业大学硕士学位论文.2004
    [136]中国人民解放军总装备部军事训练教材编辑工作委员会.高低速风洞气动与结构设计.北京:国防工业出版社.2003:54-56页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700