用户名: 密码: 验证码:
全方位移动机械臂协调规划与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全方位移动机械臂相对一般的移动机械臂具有了全方位移动能力,可在较狭窄或拥挤的工作场所中自如地操作和能更好地控制机械臂的操作姿态与操作精度。因此,研究这类系统的规划与控制问题具有十分重要的理论价值和实践意义。论文的主要研究内容如下:
     (1)全方位移动机械臂实验平台的搭建。在分析全方位移动机械臂特点的基础上,研制全方位移动机械臂的移动平台,并采用全方位轮为驱动轮。对该轮的旋转机构和转向机构进行设计。在分析全方位移动机器人的运动特点及负载等情况下,对驱动电机进行选型。根据全方位移动机器人设计的具体参数对其进行运动学建模。采用Pmac多轴运动控制器对全方位移动机器人进行运动控制。采用Plus超宽频即时定位系统对全方位移动机器人的运动进行定位及导航。
     (2)机器人雅可比矩阵量纲统一研究。对全方位移动机械臂进行运动评价,需要考虑子系统不同自由度类型引起的雅可比矩阵量纲差异。针对机器人的雅可比矩阵量纲不统一而不能对其进行灵活性评价这一问题,提出了一种新的雅可比矩阵量纲统一及评价方法。首先基于倍四元数,将三维空间的旋转和平移统一为四维空间的纯转动,推导了基于倍四元数的连杆坐标系变换通式。然后利用该方法对机器人进行了运动学建模,得到了具有统一量纲的雅可比矩阵。
     (3)机械臂子系统最优运动研究。移动机械臂的基座位置对机械臂能否完成任务有较大的影响。目前对移动机械臂基座位置的研究中,大多数只考虑可行基座区域中,对候选基座位置进行评估,而没有考虑完成任务的质量。首先,对机械臂的工作空间进行分析。利用机械臂关节自运动,采用可操作度指标向关节梯度方向进行投影,使机械臂的操作能力最大化。其次,根据得到的工作空间中操作能力分布,定义了相对可操作度指标,并绘制了全局操作能力图。再次,对机械臂基座安装位置的可行区域进行了分析。为了评价机械臂的运动性能,定义了依赖于机械臂关节运动的指标。对RRT算法、RRT*算法进行了简要的分析,并将上述定义的指标作为RRT*算法的耗费函数。对提出的机械臂基座位置优化方法,进行数值仿真研究,并对仿真结果进行分析,得到研究结论。
     (4)全方位移动机械臂整体协调运动研究。针对全方位移动机械臂整体建模会导致雅可比矩阵量纲不统一这一问题,采用基于倍四元数的建模方法,对全方位移动机械臂进行整体运动学建模,得到一个量纲统一的雅可比矩阵,解决传统方法对混合关节建模雅可比矩阵量纲不统一的问题。基于方向可操作度提出了方向可操作度传递率指标用来评价OWMM对末端速度方向变化的敏感程度。为了验证评价方法的有效性,对同一个任务,让OWMM进行两种类型的仿真实验:即移动平台固定而机械臂运动和OWMM整体运动,结果表明该评价方法不仅适用于相同类型关节的机器人,同时适用于混合关节类型的机器人。
     (5)全方位移动机械臂实验验证。在现有的硬件平台基础上,通过调用相关软件的接口函数,开发全方位移动机械臂虚拟及样机实验平台。该平台具有环境建模、机器人运动规划、运动控制、定位与导航等功能,能够实施一系列的全方位移动机械臂的运动控制实验。通过对全方位移动机器人的典型轨迹运动实验、运动规划、避障导航实验研究,验证机器人的综合性能。通过对全方位移动机械臂的子系统最优运动规划实验、协调运动规划实验验证本文中提出的算法的有效性。
     通过以上研究,形成了一套全方位移动机械臂整体运动学建模、协调规划、运动评价、仿真及实验的理论和方法,为全方位移动机械臂系统的结构优化设计和协调运动控制提供理论依据和方法支持。
Compared to mobile manipulators, the omni-directional wheeled mobilemanipulator has omni-directional mobility to achieve free operation and better controlof the operating property and precision of manipulators in more narrow and crowdedspace. Consequently, there is very important theoretical value and practicalsignificance to study the planning and control problems of this kind of systems. Theprincipal research contents are as follows:
     (1) The construction of an experimental platform for omni-directional wheeledmobile manipulator. Develop a mobile platform on the analytical basis of thecharacteristics of omni-directional wheeled mobile manipulator and useomni-directional wheel as the driving wheel. We design the rotating and steeringmechanism of the wheel. Select the driving motor on the analysis of motioncharacteristics and load. Build motion model according to the specific parameter ofthe omni-directional wheeled mobile manipulator. Use Pmac multi-axis motioncontroller to take control of movement of the omni-directional wheeled mobilemanipulator. Adopt Plus location system based on ultra wideband to locate and guidethe movement of the omni-directional wheeled mobile manipulator.
     (2) Study on the dimension unity of robot Jacobian matrix. The dimensiondifference of Jacobian matrix coursed by various freedom types of subsystem needs tobe considered in the kinematic performance evaluation of omni-directional wheeledmobile manipulator. In view of the fact that the dexterity evaluation on robots cannotbe made due to the dimensional inhomogeneity of Jacobian, a new approach toformulate the dimensional homogeneous Jacobian and kinematic dexterity measurefor the robot with mixed joints is proposed. According to the double quaternion, therotation and translation in three-dimensional Euclidean spaces converts to the purerotation in four-dimensional Euclidean spaces. The universal transformationalexpression of the link coordinate system is derived based on double quaternion. Thenthe kinematics model of the robot is developed and the non-dimensional Jacobian isobtained by this approach.
     (3) Study on the optimal motion of the subsystem. A mobile manipulatortypically consists of a mobile platform and a robotic manipulator mounted on the platform. The base placement of the platform has a great influence on whether themanipulator can perform a given task. In the current study of base placement ofmobile manipulators, most only evaluate the candidate base placement in the feasiblearea of base (FAB), regardless of the quality of the implementing task. Firstly, theworkspace of a redundant manipulator is investigated. The manipulation capability ofthe redundant manipulator is maximized based on the manipulability index throughthe joint self-motion of the redundant manipulator. Next, the relative manipulabilityindex (RMI) is defined for analyzing manipulation capability of the manipulator in itsworkspace, and the global manipulability map (GMM) is presented based on theabove measure. Moreover, the feasible area for the installation of the manipulatorbase is analysed. Indices are defined dependent on the joint movements to evaluatethe kinematic performance of manipulators. RRT and RRT*algorithm is analyzedbriefly while indices mentioned in the last section are regarded as the cost function ofthe latter. Finally we study the optimization method of manipulator base placementproposed in this dissertation by means of simulation research based on severalkinematic performance criteria. At last, conclusions are obtained through the analysisof the simulation results.
     (4) Study on the overall coordinated motion of omni-directional wheeled mobilemanipulator. The unified analysis of omni-directional wheeled mobile manipulator(OWMM) through the dimensionally nonhomogeneous Jacobian matrix may lead tounreliable results. We present a new approach to formulate the dimensionallyhomogeneous Jacobian matrix and a new index for OWMM. The integrated modelingof OWMM is established based on double quaternion, and the non-dimensionalJacobian matrix is obtained from the above matrix. Next, by examining the concept ofdirectional manipulability, we propose a new index to evaluate the directionalmanipulability of OWMM along the specified task direction. Furthermore, thekinematic performance of the fixed base operation of manipulator and the operation ofOWMM are analyzed by numerical simulation. The results suggest that the proposedapproach is equivalent to the method of traditional kinematic modeling, and the newindex is more effective to reflect the variation of the task direction.
     (5) Experimental study on omni-directional wheeled mobile manipulator. Avirtual and prototype experimental platform of omni-directional wheeled mobilemanipulator has been developed by means of calling interface function of relatedsoftware on the basis of existing hardware platform. This platform has functions including environment modeling, robot motion planning, motion control, location andguidance, which enables the implementation of series motion control experiments ofomni-directional wheeled mobile manipulator. To study experiments of typical trackmovement, motion planning and obstacles avoidance navigation is a way to test thecomprehensive properties of robots. And the experiments of optimal motion planningof subsystem and coordinated motion planning of omni-directional wheeled mobilemanipulator provide evidence of the algorithm effectiveness mentioned.
     The study above has developed a set of theory and method of global motionmodeling, coordinated planning, motion evaluation, simulation and experiment, tooffer theoretical basis and method support for the structural optimization design andcoordination motion control of omni-directional wheeled mobile manipulator.
引文
[1]蔡自兴.机器人学.北京:清华大学出版社,2000.
    [2] A. M. Khamis, F. J. Rodriguez and M. A. Salichs. Remote Interaction with Mobile Robots.Autonomous Robots.2003,15(3):267-281.
    [3] W. Burgard, P. Trahanias, D. Hahnel, M. Moors, D. Schulz, H. Baltzakis and A. Argyros.Tele-Presence in Populated Exhibitions through Web-Operated Mobile Robots. AutonomousRobots.2003,15(3):299-316.
    [4] N. S. Tlale. On Distributed Mechatronics Controller for Omni-Directional AutonomousGuided Vehicles. Industrial Robot.2006,33(4):278-284.
    [5] Y. Qing and C. I-Ming. A General Approach to the Dynamics of Nonholonomic MobileManipulator Systems. Transactions of the ASME. Journal of Dynamic Systems, Measurement andControl.2002,124(4):512-521.
    [6] P. F. Muir and C. P. Neuman. Kinematic Modeling for Feedback Control of anOmnidirectional Wheeled Mobile Robot. Proceedings of the1987IEEE International Conferenceon Robotics and Automation (Cat. No.87CH2413-3),31March-3April1987, Washington, DC,USA,1987. IEEE Comput. Soc. Press,1987:1772-1778.
    [7] H. Bohumil. Inverse Kinematics and Control of the Assistive Robot for Disable.Syroco2003.2003:1-4.
    [8] R. Holmberg and O. Khatib. Development and Control of a Holonomic Mobile Robot forMobile Manipulation Tasks. International Journal of Robotics Research.2000,19(11):1066-1074.
    [9] B. P. Tae, H. L. Jae, Y. Byung-Ju, K. K. Whee, J. Y. Burn and O. Sang-Rok. OptimalDesign and Actuator Sizing of Redundantly Actuated Omni-Directional Mobile Robots. Roboticsand Automation,2002. Proceedings. ICRA '02. IEEE International Conference on,2002.2002:732-737.
    [10] K. L. Moore and N. S. Flann. A Six-Wheeled Omnidirectional Autonomous Mobile Robot.IEEE Control Systems Magazine.2000,20(6):53-66.
    [11] J. Balaram. Kinematic State Estimation for a Mars Rover. Robotica.2000,18:251-262.
    [12] B. K. Muirhead. Mars Rovers, Past and Future.2004IEEE Aerospace ConferenceProceedings,6-13March2004, Piscataway, NJ, USA,2004. IEEE,2004:128-134.
    [13] F. G. Pin and S. M. Killough. A New Family of Omnidirectional and Holonomic WheeledPlatforms for Mobile Robots. IEEE Transactions on Robotics and Automation.1994,10(4):480-489.
    [14] M. West and H. Asada. Design and Control of Ball Wheel Omnidirectional Vehicles.Proceedings of the1995IEEE International Conference on Robotics and Automation. Part1(of3),May21,1995-May27,1995, Nagoya, Jpn,1995. IEEE,1995:1931-1938.
    [15] K. A. Tahboub and H. H. Asada. Dynamics Analysis and Control of a Holonomic Vehiclewith aContinuously Variable Transmission. Robotics and Automation,2000. Proceedings. ICRA '00.IEEE International Conference on,2000.2000:2466-2472.
    [16] L. Ferriere, B. Raucent and G. Campion. Design of Omnimobile Robot Wheels. Proceedingsof the199613th IEEE International Conference on Robotics and Automation. Part1(of4), April22,1996-April28,1996, Minneapolis, MN, USA,1996. IEEE,1996:3664-3670.
    [17] G. Campion, G. Bastin and B. Dandrea-Novel. Structural Properties and Classification ofKinematic and Dynamic Models of Wheeled Mobile Robots. IEEE Transactions on Robotics andAutomation.1996,12(1):47-62.
    [18]邓旭玥,赵冬斌,易建强.全方位移动机器人结构和运动分析.机器人.2003,25(05):394-398.
    [19] Y. Byung-Ju and K. K. Whee. The Kinematics for Redundantly Actuated OmnidirectionalMobile Robots. Journal of Robotic Systems.2002,19(6):255-267.
    [20] K. Wheekuk, L. Seung-Eun and Y. Byung-Ju. Mobility Analysis of Planar Mobile Robots.Robotics and Automation,2002. Proceedings. ICRA '02. IEEE International Conference on,2002.2002:2861-2867.
    [21]赵冬斌,邓旭玥,易建强.一种全方位移动机器人的运动学分析.机器人.2004,26(01):49-53.
    [22] H. C. Jae, Y. Byung-Ju, K. K. Whee and L. Hogil. The Dynamic Modeling and Analysis foran Omnidirectional Mobile Robot with Three Caster Wheels. Robotics and Automation,2003.Proceedings. ICRA '03. IEEE International Conference on,2003.2003:521-527.
    [23]曹其新,冷春涛.四轮全方位移动机器人各向相异性研究.智能系统学报.2007,02(03):45-51.
    [24] M. Wada and H. H. Asada. Design and Control of a Variable Footprint Mechanism forHolonomic Omnidirectional Vehicles and its Application to Wheelchairs. IEEE Transactions onRobotics and Automation.1999,15(6):978-989.
    [25] M. Lauria, I. Nadeau, P. Lepage, Y. Morin, P. Giguere, F. Gagnon, D. Letourneau and F.Michaud. Design and Control of a Four Steered Wheeled Mobile Robot. IEEE IndustrialElectronics, IECON2006-32nd Annual Conference on,2006.2006:4020-4025.
    [26] M. Ashmore and N. Barnes. Omni-Drive Robot Motion On Curved Paths: The Fastest PathBetween Two Points is Not a Straight-Line. AI2002: Advances in Artificial Intelligence.15thAustralian Joint Conference on Artificial Intelligence. Proceedings,2-6Dec.2002, Berlin,Germany,2002. Springer-Verlag,2002:225-236.
    [27] K. Sungbok, M. Byoungkwon and J. Ilhwa. Optimal Isotropic Characteristics of CasterWheeled Omnidirectional Mobile Robot. Intelligent Robots and Systems,2006IEEE/RSJInternational Conference on,2006.2006:5576-5581.
    [28] K. Sungbok and J. Ilhwa. Systematic Isotropy Analysis of Caster Wheeled Mobile Robotswith Steering Link Offset Different From Wheel Radius. Robotics and Automation,2007IEEEInternational Conference on,2007.2007:2971-2976.
    [29]蒋新松.机器人学导论.沈阳:辽宁科学技术出版社,1994.
    [30]张玉兰,朱庆保.基于栅格法的机器人路径规划蚁群算法.机器人.2005,27(02):132-136.
    [31] T. Lozano-Perez and M. A. Wesley. An Algorithm for Planning Collision-Free PathsAmong Polyhedral Obstacles. Communications of the ACM.1979,22(10):560-570.
    [32] T. Li and Y. Shie. An Incremental Learning Approach to Motion Planning with RoadmapManagement. Journal of Information Science and Engineering.2007,23(2):525-538.
    [33] O. Khatib. Real-Time Obstacle Avoidance for Manipulators and Mobile Robots.1985IEEEInternational Conference on Robotics and Automation (Cat. No.85CH2152-7),25-28March1985,Silver Spring, MD, USA,1984. IEEE Comput. Soc. Press,1984:500-505.
    [34]张捍东,郑睿.移动机器人路径规划技术的现状与展望.系统仿真学报.2005,17(02):439-443.
    [35]徐秀娜,赖汝.移动机器人路径规划技术的现状与发展.计算机仿真.2006,23(10):1-4.
    [36] M. H. Overmars and P. Svestka. Probabilistic Approaches to Motion Planning. SOFSEM '96:Theory and Practice of Informatics.23rd Seminar on Current Trends in Theory and Practice ofInformatics. Proceedings,23-30Nov.1996, Berlin, Germany,1996. Springer-Verlag,1996:95-112.
    [37] L. E. Kavraki, M. N. Kolountzakis and J. C. Latombe. Analysis of Probabilistic Roadmapsfor Path Planning. Proceedings of IEEE International Conference on Robotics and Automation,22-28April1996, New York, NY, USA,1996. IEEE,1996:3020-3025.
    [38] A. M. Ladd and L. E. Kavraki. Measure Theoretic Analysis of Probabilistic Path Planning.IEEE Transactions on Robotics and Automation.2004,20(2):229-242.
    [39] S. M. Lavalle. Rapidly-Exploring Random Trees: A New Tool for Path Planning.1998.
    [40] S. M. L. A. Kuffner. Rapidly-Exploring Random Trees: Progress and Prospects.见:Algorithmic and Computational Robotics: New Directions. Wellesley, MA: A K Peters,2001.293-308.
    [41] Jr. J. J. Kuffner and S. M. Lavalle. Rrt-Connect: An Efficient Approach to Single-QueryPath Planning. Proceedings2000ICRA. IEEE International Conference on Robotics andAutomation,24-28April2000, Piscataway, NJ, USA,2000. IEEE,2000:995-1001.
    [42] C. Peng and S. M. Lavalle. Reducing Metric Sensitivity in Randomized Trajectory Design.Proceedings of RSJ/IEEE International Conference on Intelligent Robots and Systems,29Oct.-3Nov.2001, Piscataway, NJ, USA,2001. IEEE,2001:43-48.
    [43] L. Jaillet, A. Yershova, S. M. La Valle and T. Simeon. Adaptive Tuning of the SamplingDomain for Dynamic-Domain Rrts. Intelligent Robots and Systems,2005.(IROS2005).2005IEEE/RSJ International Conference on,2005.2005:2851-2856.
    [44] A. Yershova, L. Jaillet, T. Simeon and S. M. Lavalle. Dynamic-Domain Rrts: EfficientExploration by Controlling the Sampling Domain.2005IEEE International Conference onRobotics and Automation, April18,2005-April22,2005, Barcelona, Spain,2005. Institute ofElectrical and Electronics Engineers Inc.,2005:3856-3861.
    [45] C. Peng, E. Frazzoli and S. M. Lavalle. Improving the Performance of Sampling-BasedPlanners by Using a Symmetry-Exploiting Gap Reduction Algorithm.2004IEEE InternationalConference on Robotics and Automation,26April-1May2004, Piscataway, NJ, USA,2004.IEEE,2004:4362-4368.
    [46] S. R. Lindemann and S. M. Lavalle. Steps Toward Derandomizing Rrts. Robot Motion andControl,2004. RoMoCo'04. Proceedings of the Fourth International Workshop on,2004.2004:271-277.
    [47]瓮松峰,王华,赵臣.基于快速扫描随机树方法的路径规划器.哈尔滨工业大学学报.2004,36(07):963-965.
    [48]张建英,赵志萍.基于人工势场法的机器人路径规划研究.哈尔滨工业大学学报.2006,38(8):1306-1309.
    [49] Y. Koren and J. Borenstein. Potential Field Methods and their Inherent Limitations forMobile Robot Navigation. Proceedings.1991IEEE International Conference on Robotics andAutomation (Cat. No.91CH2969-4),9-11April1991, Los Alamitos, CA, USA,1991. IEEEComput. Soc. Press,1991:1398-1404.
    [50] J. Borenstein and Y. Koren. The Vector Field Histogram-Fast Obstacle Avoidance forMobile Robots. IEEE Transactions on Robotics and Automation.1991,7(3):278-288.
    [51] J. Barraquand, B. Langlois and J. C. Latombe. Numerical Potential Field Techniques forRobot Path Planning.91ICAR. Fifth International Conference on Advanced Robotics. Robots inUnstructured Environments (Cat. No.91TH0376-4),19-22June1991, New York, NY, USA,1991.IEEE,1991:1012-1017.
    [52]王志良,李擎,张伟.一种用于最优路径规划的改进遗传算法.信息与控制.2006,35(04):444-447.
    [53] X. Jing, Z. Michalewicz, Z. Lixin and K. Trojanowski. Adaptive EvolutionaryPlanner/Navigator for Mobile Robots. IEEE Transactions on Evolutionary Computation.1997,1(1):18-28.
    [54] K. Trojanowski, Z. Michalewicz and X. Jing. Adding Memory to the EvolutionaryPlanner/Navigator. Proceedings of1997IEEE International Conference on EvolutionaryComputation (ICEC '97),13-16April1997, New York, NY, USA,1997. IEEE,1997:483-487.
    [55]李春光,刘国栋,谢宏斌.动态环境中基于遗传算法的移动机器人路径规划的方法.机器人.2003,25(4):327-330.
    [56]林茂,孙树栋.基于遗传算法的多移动机器人协调路径规划.自动化学报.2000,26(05):672-676.
    [57] S. A. Cameron and R. K. Culley. Determining the Minimum Translational DistanceBetween Two Convex Polyhedra. Proceedings-1986IEEE International Conference on Roboticsand Automation., San Francisco, CA, USA,1986. IEEE,1986:591-596.
    [58] R. Dubey and J. Y. S. Luh. Performance Measures and their Improvement for RedundantRobots. Robotics: Theory and Applications. Presented at the Winter Annual Meeting of theAmerican Society of Mechanical Engineers., Anaheim, CA, USA,1986. ASME,1986:143-151.
    [59] M. Z. Huang and H. Varma. Optimal Rate Allocation in Kinematically RedundantManipulators--The Dual Projection Method. Proceedings of the1991IEEE InternationalConference on Robotics and Automation, April9,1991-April11,1991, Sacramento, CA, USA,1991. Publ by IEEE,1991:702-707.
    [60] J. M. Hollerbach and K. C. Suh. Redundancy Resolution of Manipulators through TorqueOptimization. IEEE journal of robotics and automation.1987, RA-3(4):308-316.
    [61] A. Liegeois. Automatic Supervisory Control of the Configuration and Behavior ofMultibody Mechanisms. IEEE Transactions on Systems, Man and Cybernetics.1977, SMC-7(12):868-871.
    [62] K. C. Park, P. H. Chang and J. K. Salisbury. Unified Approach for Local Resolution ofKinematic Redundancy with Inequality Constraints and its Application to Nuclear Power Plant.Proceedings of the1997IEEE International Conference on Robotics and Automation, ICRA. Part3(of4), April20,1997-April25,1997, Albuquerque, NM, USA,1997. IEEE,1997:766-773.
    [63] E. Dermatas, A. Nearchou and N. Aspragathos. Error-Back-Propagation Solution to theInverse Kinematic Problem of Redundant Manipulators. Robotics and Computer-IntegratedManufacturing.1996,12(4):303-310.
    [64] R. Koker. Reliability-Based Approach to the Inverse Kinematics Solution of Robots UsingElman's Networks. Engineering Applications of Artificial Intelligence.2005,18(6):685-693.
    [65]谈大龙,祖迪,吴镇炜.一种冗余机器人逆运动学求解的有效方法.机械工程学报.2005,41(06):71-75.
    [66] W. Chen, M. Yang, S. Yu and T. Wang. A Hybrid Algorithm for the Kinematic Control ofRedundant Robots.2004IEEE International Conference on Systems, Man and Cybernetics, SMC2004, October10,2004-October13,2004, The Hague, Netherlands,2004. Institute of Electricaland Electronics Engineers Inc.,2004:4438-4443.
    [67]左志远,赵建文,李来航.冗余度机器人梯度投影逆解算法的改进.机械科学与技术.2009,28(05):618-621.
    [68]戴炬,高同跃.冗余度机器人多指标融合优化的研究.华中科技大学学报(自然科学版).2004,32(S1):71-73.
    [69]刘廷荣,吴瑞珉.一种新的冗余度机器人梯度投影算法.机械工程学报.1999,35(01):77-81.
    [70]张友良,吴瑞珉,毕诸明.基于均衡比例因子的冗余度机器人梯度投影算法应用研究.兵工学报.1997,18(04):342-346.
    [71]柳洪义,郭大忠.冗余度机器人运动学性能优化的研究.机械与电子.2008,184(02):61-63.
    [72] J. Baillieul. Kinematic Programming Alternatives for Redundant Manipulators. Roboticsand Automation. Proceedings.1985IEEE International Conference on,1985.1985:722-728.
    [73]刘宏,谢宗武,孙奎.扩展雅克比方法的冗余度机器人逆运动学应用.哈尔滨工业大学学报.2009,41(05):34-36.
    [74] L. Huang and Y. Li. Repeatable Kinematic Control of Redundant Manipulators:Implementation Issues. Proceedings of the19978th International Conference on AdvancedRobotics, ICAR'97, July7,1997-July9,1997, Monterey, CA, USA,1997. IEEE,1997:147-152.
    [75] W. S. Tang and J. Wang. Improved Neurocomputation Scheme for Minimum Infinity-NormKinematic Control of Redundant Manipulators. International Joint Conference on NeuralNetworks (IJCNN'99), July10,1999-July16,1999, Washington, DC, USA,1999. IEEE,1999:2005-2010.
    [76] C. Lin and C. Chen. Motion Planning of Redundant Robots with Singularities UsingTransputer Based Fuzzy Inverse Kinematic Method. International Conference on IntelligentComputing, ICIC2006, August16,2006-August19,2006, Kunming, China,2006. SpringerVerlag,2006:140-145.
    [77] Y. Li and Y. Liu. Fuzzy Logic Self-Motion Planning and Robust Adaptive Control forTip-Over Avoidance of Redundant Mobile Modular Manipulators. Proceedings of the2005IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM2005, July24,2005-July28,2005, Monterey, CA, United states,2005. Institute of Electrical and ElectronicsEngineers Inc.,2005:1281-1286.
    [78] Z. S. Abo-Hammour, N. M. Mirza, S. M. Mirza and M. Arif. Cartesian Path Generation ofRobot Manipulators Using Continuous Genetic Algorithms. Robotics and Autonomous Systems.2002,41(4):179-223.
    [79] A. P. Del Pobil and M. A. Serna. Robot Motion Planning. Proceedings of the8thInternational Conference on Applications of Artificial Intelligence in Engineering, Toulouse, Fr,1993. Publ by Computational Mechanics Publ,1993:515-537.
    [80] Y. Koga, K. Kondo, J. Kuffner and J. Latombe. Planning Motions with Intentions.Proceedings of the Annual Conference on Computer Graphics, Jul24-291994, Orlando, FL,United states,1994. ACM,1994:395.
    [81] L. E. Kavraki, P. Svestka, J. Latombe and M. H. Overmars. Probabilistic Roadmaps for PathPlanning in High-Dimensional Configuration Spaces. IEEE Transactions on Robotics andAutomation.1996,12(4):566-580.
    [82] S. M. Lavalle. Rapidly-Exploring Random Trees: A New Tool for Path Planning.1998.
    [83] C. Urmson and R. Simmons. Approaches for Heuristically Biasing Rrt Growth.2003IEEE/RSJ International Conference on Intelligent Robots and Systems, October27,2003-October31,2003, Las Vegas, NV, United states,2003. Institute of Electrical and ElectronicsEngineers Inc.,2003:1178-1183.
    [84] D. Ferguson and A. Stentz. Anytime Rrts.2006IEEE/RSJ International Conference onIntelligent Robots and Systems, IROS2006, October9,2006-October15,2006, Beijing, China,2006. Institute of Electrical and Electronics Engineers Inc.,2006:5369-5375.
    [85]赵国良,周芳,朱齐丹.基于改进快速搜索随机树法的机械手路径优化.机械工程学报.2011,47(11):30-35.
    [86]郭剑辉,康亮,赵春霞.基于模糊滚动RRT算法的移动机器人路径规划.南京理工大学学报(自然科学版).2010,34(05):642-648.
    [87] M. Stilman. Global Manipulation Planning in Robot Joint Space with Task Constraints.IEEE Transactions on Robotics.2010,26(3):576-584.
    [88] D. Bertram, J. Kuffner, R. Dillmann and T. Asfour. An Integrated Approach to InverseKinematics and Path Planning for Redundant Manipulators.2006IEEE International Conferenceon Robotics and Automation, ICRA2006, May15,2006-May19,2006, Orlando, FL, Unitedstates,2006. Institute of Electrical and Electronics Engineers Inc.,2006:1874-1879.
    [89]吴叶斌,周芳,朱齐丹.基于雅可比转秩-RRT法的冗余机械手路径规划.控制工程.2009,16(06):756-759.
    [90] N. Vahrenkamp, D. Berenson, T. Asfour, J. Kuffner and R. Dillmann. Humanoid MotionPlanning for Dual-Arm Manipulation and Re-Grasping Tasks.2009IEEE/RSJ InternationalConference on Intelligent Robots and Systems, IROS2009, October11,2009-October15,2009,St. Louis, MO, United states,2009. IEEE Computer Society,2009:2464-2470.
    [91] C. Scheurer and U. E. Zimmermann. Path Planning Method for Palletizing Tasks UsingWorkspace Cell Decomposition.2011IEEE International Conference on Robotics andAutomation, ICRA2011, May9,2011-May13,2011, Shanghai, China,2011. Institute ofElectrical and Electronics Engineers Inc.,2011.
    [92] B. Du, J. Zhao and C. Song. Optimal Base Placement and Motion Planning for MobileManipulators. ASME2012International Design Engineering Technical Conferences andComputers and Information in Engineering Conference, IDETC/CIE2012, August12-15,2012,Chicago, IL, USA,2012. American Society of Mechanical Engineers,2012:1-8.
    [93] S. Karaman and E. Frazzoli. Sampling-Based Algorithms for Optimal Motion Planning.2455Teller Road, Thousand Oaks, CA91320, United States,2011. SAGE Publications Inc.,2011:846-894.
    [94] I. B. Vinogradov, A. E. Kobrinski and Y. E. Stepanenko. Details of Kinematics ofManipulators with Method of Volumes. mekhanika mashin.1971,(27-28):5-16.
    [95] J. K. Salisbury and J. J. Craig. Articulated Hands: Force Control and Kinematic Issues.Proceedings of the1981Joint Automatic Control Conference,17-19June1981, New York, NY,USA,1981. IEEE,1981:1-2.
    [96] T. Yoshikawa. Manipulability of Robotic Mechanisms. Robotics Research, The SecondInternational Symposium., Kyoto, Jpn,1985. MIT Press,1985:439-446.
    [97] R. Stoughton and T. Kokkinis. Some Properties of a New Kinematic Structure for RobotManipulators. Advances in Design Automation-1987. Presented at the1987ASME DesignTechnology Conferences-The Design Automation Conference., Boston, MA, USA,1987. ASME,1987:73-79.
    [98] C. A. Klein and B. E. Blaho. Dexterity Measures for the Design and Control ofKinematically Redundant Manipulators. International Journal of Robotics Research.1987,6(2):72-83.
    [99] J. Angeles and C. S. Lopez-Cajun. Kinematic Isotropy and the Conditioning Index of SerialRobotic Manipulators. International Journal of Robotics Research.1992,11(6):560-571.
    [100] K. Nagatani, T. Hirayama, A. Gofuku and Y. Tanaka. Motion Planning for MobileManipulator with Keeping Manipulability.2002IEEE/RSJ International Conference on IntelligentRobots and Systems, September30,2002-October4,2002, Lausanne, Switzerland,2002.Institute of Electrical and Electronics Engineers Inc.,2002:1663-1668.
    [101] S. Wanli, K. Nagatani and Y. Tanaka. Motion Planning for Mobile Manipulator to Pick Upan Object while Base Robot's Moving. Robotics and Biomimetics,2004. ROBIO2004. IEEEInternational Conference on,2004.2004:350-355.
    [102] H. S. Dong, B. S. Hamner, S. Singh and H. Myung. Motion Planning for a MobileManipulator with Imprecise Locomotion.2003IEEE/RSJ International Conference on IntelligentRobots and Systems,27-31Oct.2003, Piscataway, NJ, USA,2003. IEEE,2003:847-853.
    [103] P. H. H. and C. I-M. Optimal Synthesis for Workspace and Manipulability of ParallelFlexure Mechanism. Proceeding of the11th IFToMM World Congress on the Theory of Machinesand Mechanisms, Tianjin, China,2003. China Machinery Press,2003.
    [104] K. Gotlih, D. Kovac, T. Vuherer, S. Brezovnik, M. Brezocnik and A. Zver. VelocityAnisotropy of an Industrial Robot. Robotics and Computer-Integrated Manufacturing.2011,27(1):205-211.
    [105] F. L. Hammond and K. Shimada. Improvement of Kinematically Redundant ManipulatorDesign and Placement Using Torque-Weighted Isotropy Measures.200914th InternationalConference on Advanced Robotics (ICAR2009),22-26June2009, Piscataway, NJ, USA,2009.IEEE,2009:8.
    [106] H. Lipkin and J. Duffy. Hybrid Twist and Wrench Control for a Robotic Manipulator.Journal of mechanisms, transmissions, and automation in design.1988,110(2):138-144.
    [107] E. M. Schwartz, R. Manseur and K. L. Doty. Noncommensurate Systems in Robotics.International Journal of Robotics&Automation.2002,17(2):86-92.
    [108] C. M. Gosselin. Dexterity Indices for Planar and Spatial Robotic Manipulators. Proceedingsof the1990IEEE International Conference on Robotics and Automation, May13,1990-May18,1990, Cincinnati, OH, USA,1990. Publ by IEEE,1990:650-655.
    [109] S. Kim and J. Ryu. New Dimensionally Homogeneous Jacobian Matrix Formulation byThree End-Effector Points for Optimal Design of Parallel Manipulators. IEEE Transactions onRobotics and Automation.2003,19(4):731-737.
    [110] Q. Lin, J. W. Burdick and E. Rimon. Constructing Minimum Deflection FixtureArrangements Using Frame Invariant Norms. IEEE Transactions on Automation Science andEngineering.2006,3(3):272-286.
    [111] G. Pond and J. A. Carretero. Formulating Jacobian Matrices for the Dexterity Analysis ofParallel Manipulators. Mechanism and Machine Theory.2006,41(12):1505-1519.
    [112] G. Pond and J. A. Carretero. Quantitative Dexterous Workspace Comparison of ParallelManipulators. Mechanism and Machine Theory.2007,42(10):1388-1400.
    [113] J. Angeles, C. S. L, Pez-Caj and N. Kinematic Isotropy and the Conditioning Index of SerialRobotic Manipulators. Int. J. Rob. Res.1992,11(6):560-571.
    [114] C. M. Gosselin. Dexterity Indices for Planar and Spatial Robotic Manipulators. Proceedings1990IEEE International Conference on Robotics and Automation (Cat. No.90CH2876-1),13-18May1990, Los Alamitos, CA, USA,1990. IEEE Comput. Soc. Press,1990:650-655.
    [115] T. Yoshikawa. Manipulability of Robotic Mechanisms. International Journal of RoboticsResearch.1985,4(2):3-9.
    [116] L. J. Stocco, S. E. Salcudean and F. Sassani. On the Use of Scaling Matrices forTask-Specific Robot Design. IEEE Transactions on Robotics and Automation.1999,15(5):958-965.
    [117] J. Angeles and O. Ma. Performance Evaluation of Four-Bar Linkages for Rigid-BodyGuidance Based On Generalized Coupler Curves. Journal of Mechanical Design.1991,113(1):17-24.
    [118] M. Tandirci, J. Angeles and F. Ranjbaran. Characteristic Point and the Characteristic Lengthof Robotic Manipulators.22nd Biennial Mechanisms Conference, September13,1992-September16,1992, Scottsdale, AZ, USA,1992. Publ by ASME,1992:203-208.
    [119] J. Angeles. Design of Isotropic Manipulator Architectures in the Presence of Redundancies.International Journal of Robotics Research.1992,11(3):196-201.
    [120] L. Stocco, S. E. Salcudean and F. Sassani. Matrix Normalization for Optimal Robot Design.IEEE International Conference on Robotics and Automation,16-20May1998, New York, NY,USA,1998. IEEE,1998:1346-1351.
    [121] I. Mansouri and M. Ouali. A New Homogeneous Manipulability Measure of RobotManipulators, Based On Power Concept. Mechatronics.2009,19(6):927-944.
    [122] H. Liu, T. Huang and D. G. Chetwynd. A Method to Formulate a DimensionallyHomogeneous Jacobian of Parallel Manipulators. Robotics, IEEE Transactions on.2011,27(1):150-156.
    [123] Y. Yamamoto and X. Yun. Coordinating Locomotion and Manipulation of a MobileManipulator.1992Conference on Decision and Control,16-18Dec.1992, New York, NY, USA,1992. IEEE,1992:2643-2648.
    [124] W. F. Carriker, P. K. Khosla and B. H. Krogh. Path Planning for Mobile Manipulators forMultiple Task Execution. IEEE Transactions on Robotics and Automation.1991,7(3):403-408.
    [125]余达太,张硕生.轮式移动机械手的点一点运动规划方法.北京科技大学学报.2001,23(01):81-84.
    [126]余达太,张硕生.轮式移动机械手的多点运动规划方法.北京科技大学学报.2001,23(02):177-180.
    [127] G. Foulon, J. Y. Fourquet and M. Renaud. Planning Point to Point Paths for NonholonomicMobile Manipulators. Intelligent Robots and Systems,1998. Proceedings.,1998IEEE/RSJ International Conference on,1998.1998:374-379.
    [128] K. Tchon, J. Jakubiak and R. Muszynski. Regular Jacobian Motion Planning Algorithms forMobile Manipulator.15th Triennial World Congress, Barcelona, Spain,2002.2002.
    [129] H. G. Tanner and K. J. Kyriakopoulos. Nonholonomic Motion Planning for MobileManipulators. Proceedings2000ICRA. IEEE International Conference on Robotics andAutomation,24-28April2000, Piscataway, NJ, USA,2000. IEEE,2000:1233-1238.
    [130] K. Yamazaki, M. Tomono and T. Tsubouchi. Motion Planning for a Mobile Manipulatorwith Several Grasping Postures. IEEE International Conference on Robotics and Biomimetics-ROBIO2006,17-20Dec.2006, Piscataway, NJ, USA,2006. IEEE,2006:1077-1082.
    [131] F. Zacharias, C. Borst and G. Hirzinger. Capturing Robot Workspace Structure:Representing Robot Capabilities.2007IEEE/RSJ International Conference on Intelligent Robotsand Systems,29Oct.-2Nov.2007, Piscataway, NJ, USA,2007. IEEE,2007:3229-3236.
    [132] S. W. Ruehl, A. Hermann, X. Zhixing, T. Kerscher and R. Dillmann. Graspability: ADescription of Work Surfaces for Planning of Robot Manipulation Sequences.2011IEEEInternational Conference on Robotics and Automation,9-13May2011, Piscataway, NJ, USA,2011. IEEE,2011:496-502.
    [133] D. Berenson, J. Kuffner and H. Choset. An Optimization Approach to Planning for MobileManipulation.2008IEEE International Conference on Robotics and Automation. The Half-DayWorkshop on: Towards Autonomous Agriculture of Tomorrow,19-23May2008, Piscataway, NJ,USA,2008. IEEE,2008:1187-1192.
    [134] D. Richards, G. D. Paul, S. S. Webb and N. G. Kirchner. Manipulator-Based Grasping PoseSelection by Means of Task-Objective Optimisation. Proceedings of the Australasian Conferenceon Robotics and Automation2010(ACRA2010), Brisbane, Queensland, Australia,2010.2010:1-9.
    [135] A. Monastero and P. Fiorini. Target Pose Computation for Nonholonomic MobileManipulators.200914th International Conference on Advanced Robotics (ICAR2009),22-26June2009, Piscataway, NJ, USA,2009. IEEE,2009:8.
    [136] B. Kamrani, V. Berbyuk, D. W ppling, U. Stickelmann and X. Feng. Optimal RobotPlacement Using Response Surface Method. The International Journal of AdvancedManufacturing Technology.2009,44(1-2):201-210.
    [137] M. F. Aly, A. T. Abbas and S. M. Megahed. Robot Workspace Estimation and BasePlacement Optimisation Techniques for the Conversion of Conventional Work Cells IntoAutonomous Flexible Manufacturing Systems. International Journal of Computer IntegratedManufacturing.2010,23(12):1133-1148.
    [138] W. H. Bu, Z. Y. Liu and J. R. Tan. Industrial Robot Layout Based On Operation SequenceOptimisation. International Journal of Production Research.2009,47(15):4125-4145.
    [139] J. J. Yang, W. Yu, J. Kim and K. Abdel-Malek. On the Placement of Open-Loop RoboticManipulators for Reachability. Mechanism and Machine Theory.2009,44(4):671-684.
    [140] R. Santos, V. Steffen and S. Saramago. Optimal Task Placement of a Serial RobotManipulator for Manipulability and Mechanical Power Optimization. Intelligent InformationManagement.2010,9(2):512-525.
    [141] F. L. Hammond Iii and K. Shimada. Improvement of Redundant Manipulator Task AgilityUsing Multiobjective Weighted Isotropy-Based Placement Optimization.2009IEEE InternationalConference on Robotics and Biomimetics, ROBIO2009, December19,2009-December23,2009, Guilin, China,2009. IEEE Computer Society,2009:645-652.
    [142] F. L. Hammond Iii and K. Shimada. Improvement of Kinematically Redundant ManipulatorDesign and Placement Using Torque-Weighted Isotropy Measures.2009International Conferenceon Advanced Robotics, ICAR2009, June22,2009-June26,2009, Munich, Germany,2009.IEEE Computer Society,2009:1-8.
    [143] A. Nektarios and N. A. Aspragathos. Optimal Location of a General Position andOrientation End-Effector's Path Relative to Manipulator's Base, Considering VelocityPerformance. Robotics and Computer-Integrated Manufacturing.2010,26(2):162-173.
    [144] L. W. Sun and C. K. Yeung. Port Placement and Pose Selection of the Da Vinci SurgicalSystem for Collision-Free Intervention Based On Performance Optimization.2007IEEE/RSJInternational Conference on Intelligent Robots and Systems, IROS2007, October29,2007-November2,2007, San Diego, CA, United states,2007. Institute of Electrical and ElectronicsEngineers Inc.,2007:1951-1956.
    [145] H. Seraji. Motion Control of Mobile Manipulators. Proceedings of1993IEEE/RSJInternational Conference on Intelligent Robots and Systems (IROS '93),26-30July1993, NewYork, NY, USA,1993. IEEE,1993:2056-2063.
    [146] Y. Yamamoto and X. Yun. Unified Analysis On Mobility and Manipulability of MobileManipulators. Proceedings-IEEE International Conference on Robotics and Automation.1999,2:1200-1206.
    [147] J. F. Gardner and S. A. Velinsky. Kinematics of Mobile Manipulators and Implications forDesign. Journal of Robotic Systems.2000,17(6):309-320.
    [148] T. Yoshikawa. Manipulability of Robotic Mechanisms. International Journal of RoboticsResearch.1985,4(2):3-9.
    [149] S. Kim, J. Lee and H. Kim. Singularity and Manipulability Analysis of a Planar ManipulatorMounted On a Wheeled Mobile Platform.2003IEEE/RSJ International Conference on IntelligentRobots and Systems, October27,2003-October31,2003, Las Vegas, NV, United states,2003.Institute of Electrical and Electronics Engineers Inc.,2003:2211-2216.
    [150] S. L. Chiu. Kinematic Characterization of Manipulators: An Approach to DefiningOptimality. Proceedings-1988IEEE International Conference on Robotics and Automation.,Philadelphia, PA, USA,1988. IEEE,1988:828-833.
    [151] X. Li, D. Zhao and J. Yi. Manipulability Analysis for Omnidirectional Mobile Manipulators.China Mechanical Engineering.2006,17(14):1442-1447.
    [152] B. Bayle, J. Y. Fourquet and M. Renaud. Manipulability Analysis for Mobile Manipulators.2001IEEE International Conference on Robotics and Automation (ICRA), May21,2001-May26,2001, Seoul, Korea, Republic of,2001. Institute of Electrical and Electronics Engineers Inc.,2001:1251-1256.
    [153] A. Mohri, S. Furuno and M. Yamamoto. Trajectory Planning of Mobile Manipulator withEnd-Effector's Specified Path. Proceedings of RSJ/IEEE International Conference on IntelligentRobots and Systems,29Oct.-3Nov.2001, Piscataway, NJ, USA,2001. IEEE,2001:2264-2269.
    [154] T. Jindong and X. Ning. Unified Model Approach for Planning and Control of MobileManipulators. Proceedings2001ICRA. IEEE International Conference on Robotics andAutomation,21-26May2001, Piscataway, NJ, USA,2001. IEEE,2001:3145-3152.
    [155] H. Qiang, K. Tanie and S. Sugano. Coordinated Motion Planning for a Mobile ManipulatorConsidering Stability and Manipulation. International Journal of Robotics Research.2000,19(8):732-742.
    [156] T. Jindong and X. Ning. Unified Model Approach for Planning and Control of MobileManipulators. Proceedings2001ICRA. IEEE International Conference on Robotics andAutomation,21-26May2001, Piscataway, NJ, USA,2001. IEEE,2001:3145-3152.
    [157] F. Liping. An Adaptive Routing Algorithm for in-Vehicle Route Guidance Systems withReal-Time Information. Transportation Research, Part B (Methodological).2001,35B(8):749-765.
    [158] Y. Yamamoto and Y. Xiaoping. Effect of the Dynamic Interaction On Coordinated Controlof Mobile Manipulators. IEEE Transactions on Robotics and Automation.1996,12(5):816-824.
    [159]杨树风.带有机械臂的全方位移动机器人的研制.哈尔滨工业大学,工学硕士,2006:8-18.
    [160] W. K. Clifford. Application of Grassmann's Extensive Algebra. Amer. J. of Math.1878,1:350-358.
    [161] M. Arribas, A. Elipe and M. Palacios. Quaternions and the Rotation of a Rigid Body.Celestial Mechanics and Dynamical Astronomy.2006,96(3-4):239-251.
    [162] Y. Aydin and S. Kucuk. Quaternion Based Inverse Kinematics for Industrial RobotManipulators with Euler Wrist.2006IEEE International Conference on Mechatronics,3-5July2006, Piscataway, NJ, USA,2006. IEEE,2006:6.
    [163] R. Mukundan. Quaternions: From Classical Mechanics to Computer Graphics, and Beyond.2002.2002.
    [164] B. Xian, M. S. De Queiroz, D. Dawson and I. Walker. Task-Space Tracking Control ofRobot Manipulators Via Quaternion Feedback. IEEE Transactions on Robotics and Automation.2004,20(1):160-167.
    [165] K. R. Etzel and J. M. Mccarthy. Metric for Spatial Displacements Using Biquaternions Onso(4). Proceedings of the199613th IEEE International Conference on Robotics and Automation.Part1(of4), April22,1996-April28,1996, Minneapolis, MN, USA,1996. IEEE,1996:3185-3190.
    [166] S. Qiao, Q. Liao, S. Wei and H. Su. Inverse Kinematic Analysis of the General6R SerialManipulators Based On Double Quaternions. Mechanism and Machine Theory.2010,45(2):193-199.
    [167] J. M. Mccarthy. Introduction to Theoretical Kinematics.MIT Press,1990.
    [168] Q. J. Ge, A. Varshney and C. C. J. Menon. Double Quaternion for Motion Interpolation.1998.
    [169] J. K. Salisbury and J. J. Craig. Articulated Hands: Force Control and Kinematic Issues.Proceedings of the1981Joint Automatic Control Conference,17-19June1981, New York, NY,USA,1981. IEEE,1981:1-2.
    [170] J. Angeles and C. S. Lopez-Cajun. Kinematic Isotropy and the Conditioning Index of SerialRobotic Manipulators. International Journal of Robotics Research.1992,11(6):560-571.
    [171] B. Du, J. Zhao and C. Song. Optimal Base Placement and Motion Planning for MobileManipulators. ASME2012International Design Engineering Technical Conferences andComputers and Information in Engineering Conference, IDETC/CIE2012, August12-15,2012,Chicago, IL, USA,2012. American Society of Mechanical Engineers,2012:1-8.
    [172] E. Schwartz, R. Manseur and K. Doty. Noncommensurate Systems in Robotics.International Journal of Robotics& Automation.2002,17(2):86-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700