用户名: 密码: 验证码:
大型降落伞抽打现象及运动稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
回收着陆作为载人飞船天地间往返最为重要和关键的阶段之一,对可靠性有着很高的要求。本文以我国“神舟”号载人飞船回收系统为研究对象,结合工程实际问题,围绕回收过程中带牵顶伞的大型主伞拉直过程及抽打现象、降落伞系统运动稳定性和全张满状态主伞气动力参数辨识三个问题展开研究。主要研究内容如下:
     研究了带牵顶伞和剥离带的大型降落伞拉直过程分阶段动力学建模问题。以我国“神舟”8号飞船带牵顶伞和剥离带的主伞拉直过程为研究背景,建立了多阶段、多绳段、多自由度的动力学模型。模型中针对主伞包连接带和牵顶伞连接带建立了剥离带模型及牵顶伞的拉直充气模型,考虑了伞绳和伞衣在伞包中的叠放次序、绳段拉出过程、捆绑绳约束等因素,可以模拟伞绳和伞衣非连续和非均匀拉出的情况。论文利用空投试验录像统计数据对仿真结果进行了对比分析,验证了模型和程序的正确性和有效性。
     分析和评估了牵顶伞和剥离带对抽打现象的作用。通过仿真分析对“神舟”8号飞船回收系统改进措施的作用进行了分析和评估,重点研究了牵顶伞和剥离带对主伞拉直过程的影响,针对不同面积牵顶伞、不同强度和长度剥离带对抽打现象的作用进行了深入的研究。研究结果表明,牵顶伞和剥离带能够减小抽打速度、抽打幅度和抽打弧度,改善伞绳和伞衣的张力分布,有效抑制抽打现象的发生。所得结论为“神舟”8号飞船回收系统的出厂评审提供了重要依据。
     研究了大型降落伞抽打现象的特点和形成原因。定义了伞衣位形、抽打速度、抽打幅度和抽打弧度四个反映抽打现象特征的状态参数,通过数值计算得到了抽打现象形成时伞绳、伞衣的动力学状态参数和变化曲线,并对影响抽打现象的因素进行了仿真研究。结合录像观察,经过分析计算提出降落伞拉直过程中伞绳和伞衣上下部分存在较大的速度差以及伞绳和伞衣的绳帆现象是形成抽打现象两个基本条件的观点,并通过仿真分析对此观点进行了验证。
     研究了降落伞系统的运动稳定性。通过仿真分析得出降落伞系统的姿态变化规律与其气动力系数尤其是法向力系数密切相关的结论,对现有的稳定型伞和非稳定型伞的气动力模型进行研究,分析了不同风场和气动力模型下降落伞系统姿态变化规律。利用空投录像和试验测量数据研究并总结出“神舟”号飞船主伞返回舱系统在单点吊挂和双点吊挂阶段的基本运动模式。
     研究了大型降落伞全张满状态下的气动力参数辨识问题。针对降落伞的运动参数不易测量的特点,提出利用遗传算法辨识降落伞气动力参数的方案。通过仿真分析验证了方案的有效性,并提出了一种逐步缩小搜索空间提高辨识精度的方法。结合空投试验测量数据得到一组精度更高的“神舟”号飞船主伞全张满状态下的气动力参数,利用试验测量数据对辨识结果进行了验证。分析结果表明,辨识的主伞气动力模型在姿态预测方面较原有模型更为准确,且和主伞运动姿态的录像分析结果基本一致。
As one of the most important and critical phases of tripping from space to earth, the process of recovery and landing of manned spacecraft requires very high reliability and safety. Considering the practical problems of the recovery system of ShenZhou manned spacecraft, this dissertation focuses on three problems existing in the process of recovery system working, the first problem is the deployment of large main parachute with attached apex drogue and the bull whipping phenomenon, the second problem is the dynamic stability of the system of main parachute and cabin, and the third problem is aerodynamic parameters identification of main parachute in the full inflation state. The main contents in this dissertation are summarized as follows:
     The dynamic models of deployment process of the main parachute with attached apex drogue and peel off band was researched. Based on the deployment process of the main parachute with attached apex drogue and peel off band of ShenZhou-8 manned spacecraft, the dynamic models of multi-phase, multi-segment, and multi-freedom was built. Considering the improved design of the recovery system of ShenZhou-8 spacecraft, a dynamic model of the connecting band of the main parachute bag and the connecting band of attached apex drogue were built, and the deployment and inflation models of attached apex drogue were presented also. The factors of folding sequence of lines and canopy, deployment process of line segments, restrictions of binding lines were considered in detail, it may simulate the case of non-uniformity and non-continuously deployment process of main parachute. In the end, correctness and validity of the dynamic models and programs were verified through comparative analysis of the statistics dates from airdrop tests kinescope and simulation results.
     The effects of the attached apex drogue and peel off band on the bull whipping phenomenon were analyzed and evaluated. The improved measurements of the deployment process of main parachute of ShenZhou-8 spacecraft were analyzed and evaluated, and the effects of the attached apex drogue and peel off band were researched in focus. The results indicated that the attached apex drogue and peel off band could minish the velocity, range and radian of bull whipping, reform the distribution of tensile force in the lines and canopy, and restrain the forming of bull whipping phenomenon effectively. The effects of different intensity and length of the peel off band and different drag area of the attached apex drogue on the bull whipping phenomenon were researched also, and the conclusions were used as important evidences for the checking and accepted of ShenZhou-8 recovery system.
     The characteristics and causes of the bull whipping phenomenon in the deployment process of large parachute were researched. This dissertation defined four status parameters for the bull whipping phenomenon, and dynamic parameters and variety curves of lines and canopy were provided, the influence factors of the bull whipping were analyzed also. Combined with the observation of airdrop video, the viewpoint of forming the bull whipping phenomenon were proposed, one essential factor is the velocity difference between the upper and bottom segment of lines, the other is the linesail phenomenon of lines and canopy, this viewpoint was validated by simulation results also.
     The dynamic stability of the parachute recovery systems was researched. The conclusion that the attitudes of parachute recovery system were interrelated with the aerodynamic coefficients, especially the lateral force coefficients of parachute were educed through simulate analysis, and the different aerodynamic models of stability and instability for the parachutes were summarized. The different modes of attitudes were analyzed with different wind models and aerodynamic models in simulation, and finally the basic motion patterns of single point suspension and double point suspension were researched and summarized by the airdrop video and experimental data.
     The problem of aerodynamic coefficients identification of large parachute was researched. For the difficulty in measuring the kinematics parameters of parachute, this dissertation proposed a method to estimate aerodynamic coefficients of the parachute. The validity of the method was verified through simulation analysis, and a method which improved the precision by decreasing the searching space was presented. Combined with the experimental data of airdrop video, a more precise set of aerodynamic coefficients of the main parachute of ShenZhou-8 manned spacecraft was identified, and the result was validated by experiment. The results indicate that the identification results were more precise than the originally ones, and the attitudes of main parachute in simulation were basically consistent with the airdrop video.
引文
[1]《降落伞技术导论》编写组.降落伞技术导论[M].北京:国防工业出版社,1977.
    [2]王利荣.降落伞理论与应用[M].北京:宇航工业出版社,1997.
    [3] Maydew R C, ed. Design and Testing of High Performance Parachutes [R]. AD-A246343, 1991.
    [4] Ewing E G, Bixby H W, Knacke T W.回收系统设计指南[M].北京:航空工业出版社,1988.
    [5] Knacke T W, ed. Parachute Recovery Systems Design Manual [R]. AD- A247666, 1991.
    [6] NASA’s Exploration Systems Architecture Study [R]. NASA TM-2005- 214062, 20051.
    [7] Willcoxon R, Thronson H, Guilio Varsi. NASA Capability Roadmaps Executive Summary [R]. NASA 20050204002, 20051.
    [8]高滨.国外载人航天器回收着陆技术的进展[J].航天返回与遥感,2009,30(2): 1~9.
    [9]张育林,郑荣跃,沈力平,等.载人航天工程基础[M].长沙:国防科技大学出版社,1997.
    [10]戚发轫.载人航天器技术[M].北京:国防工业出版社,2003.
    [11]张宗美.航天故障手册[M].北京:宇航出版社,1994.
    [12]戴维.J.谢勒.载人航天飞行中的事故与灾难[M].北京:中国宇航出版社,2005.
    [13]林斌.联盟号载人飞船降落伞系统介绍和分析[J].航天返回与遥感,2000, 21(4):1~6.
    [14]李惠康.联盟号飞船的着陆系统[J].航天返回与遥感,1994,11(6):65~72.
    [15]陈国良,译.阿波罗15号飞行任务中主伞的失败.1993, 14(2):6~17.
    [16] Knacke T W. The Apollo Parachute Landing System [R]. NASA CR-131200, 1968.
    [17] Robert B W. Apollo Experience Report Earth Landing System [R]. NASA TN- D-7437, 1973.
    [18]荣伟.火星探测器减速着陆技术研究[D].北京:中国空间技术研究院博士学位论文,2008.
    [19]荣伟.火星探测用降落伞研制试验简介[J].航天返回与遥感,2007,28(1):12~17.
    [20] Richard A L, James C H. The Viking Mars Lander Decelerator System [C]. AIAA 70-1162, 1970.
    [21] William R C. The Viking Mission to Mars [R]. NASA SP-334, 1974.
    [22] David A S, et al. Mars Pathfinder Entry, Descent, and Landing Design [J].Journal of Spacecraft and Rockets. 1999, 36(4):1~30.
    [23] David A. S. Mars Pathfinder Atmospheric Entry Reconstruction [R]. AAS 98-146, 1998
    [24] Adam Steltzner, et al. The Mars Exploration Rovers Entry Descent and Landing and the Use of Aerodynamic Decelerators [C]. AIAA 2003-2125, 2003.
    [25] Robert J M. Transonic Aerodynamic Characteristics of the Viking Entry and Lander Configuration [R]. NASA TM X-2354. 1971.
    [26]吴季,朱光武,赵华,等.萤火一号火星探测计划的科学目标[J].空间科学学报, 2009,29(5):449~455.
    [27]鄢建国,平劲松.火星重力场研究现状及发展趋势[J].物理,2009,38(10): 707~711.
    [28]熊菁.翼伞系统动力学与归航方案研究[D].长沙:国防科技大学博士学位论文,2005.
    [29]葛玉君.可控翼伞系统飞行性能仿真研究[D].长沙:国防科技大学硕士学位论文,1991.
    [30]张晓今.冲压式翼伞系统制动着陆性能研究[D].长沙:国防科技大学硕士学位论文,1991.
    [31]马海亮.九自由度可控翼伞系统飞行性能仿真研究[D].长沙:国防科技大学硕士学位论文,1994.
    [32]张顺玉.翼伞系统雀降过程动力学特性研究[D].长沙:国防科技大学硕士学位论文,1999.
    [33]李扬.冲压式翼伞后缘下拉气动特性的数值研究[D].长沙:国防科学技术大学硕士学位论文,2004.
    [34]顾正铭.当今翼伞技术的发展[J].航天返回与遥感,1997,18(1):1~7.
    [35]顾正铭.翼伞技术研究的最新发展[J].航天返回与遥感,1998,19(1):5~14.
    [36]秋雁.大型冲压翼伞新技术[J].航天返回与遥感,1997,18(1):8~13.
    [37]吴兆元.美国X-38计划与翼伞返回系统[J].航天返回与遥感,2000,21(4): 7~13.
    [38] Smith J, Bennett T, et al. Development of the NASA X-38 Parafoil Landing System [R]. AIAA-99-1730, 1999.
    [39] Ricardo A M. Design and Testing of the X-38 Spacecraft Primary Parafoil [J]. AIAA-2000-4312, 2000.
    [40] Machin R. A, Iacomini C. S, et al. Flight Testing Parachute System for the Space Station Crew Return Vehicle [J]. Journal of Aircraft, 2001, 38(5): 786~ 799.
    [41] Bennett T. W. Design, Development & Flight Testing of the NASA X-38 7,500 ft2 Parafoil [R]. AIAA 2003-2107, 2003.
    [42] Petry G, Hummeltenberg G, et al. The Parafoil Technology DemonstrationProject [R]. AIAA-97-1425, 1997.
    [43] Petry G, Behr R, et al. The Parafoil Technology Demonstration (PTD) Project: Lessons Learned and Future Visions [R]. AIAA-99-1755, 1999.
    [44]陈国良,高树义.中国航天器回收着陆技术50年成就与展望[J].航天返回与遥感,2008,29(3):27~32.
    [45]张青斌.载人飞船降落伞回收系统动力学研究[D].长沙:国防科技大学博士学位论文,2003.
    [46]赵汉元.飞行器再入动力学与制导[M].长沙:国防科技大学出版社,1997.
    [47]王希季,等.航天器进入于返回技术[M].北京:宇航出版社,1991.
    [48]程文科.减速伞返回舱组合体动力及稳定性分析[D].长沙:国防科技大学硕士学位论文,1996.
    [49]程文科.一般降落伞-载荷系统动力学及其稳定性研究[D].长沙:国防科技大学博士学位论文,2000.
    [50]郭叔伟.载人飞船回收着陆半实物仿真系统及试验研究[D].长沙:国防科技大学博士学位论文,2009.
    [51]宋旭民.大型降落伞系统动力学建模及抽打现象研究[D].长沙:国防科技大学博士学位论文,2006.
    [52]宋旭民.大型降落伞开伞过程中的“抽鞭"现象[J].航天返回与遥感.2009, 30(3):16~21.
    [53] Toni R A. Theory on the Dynamics of Bag Strip for a Parachute Deployment Aided by a Pilot Chute [R]. AIAA 68-925, 1968.
    [54] Toni R A. Theory on the Dynamics of a Parachute System Undergoing Its Inflation Process [R]. AIAA 70-1170, 1970.
    [55] Huckins E K. Techniques for Selection and Analysis of Parachute Deployment Systems [R]. NASA TN D-5619. 1970.
    [56] Huckins E K. A New Technique for Predicting the Snatch Force Generated during Lines-first Deployment of an Aerodynamic Decelerator [J]. Journal of Spacecraft and Rockets, 1971, 8 (3): 298~299.
    [57] Huckins E K. Snatch Force during Lines-first Parachute Deployment [J]. J. Spacecraft & Rockets, 1971, 8 (3):298~299.
    [58] Poole L R. Numerical Solution of Equations Governing Longitudinal Suspension Line Wave Motion during the Parachute Unfurling Process [R]. NASA TM-X-69498. 1970.
    [59] Poole L R, Huckins E K. Evaluation of Massless-Spring Modeling of Suspension-line Elasticity during the Parachute Unfurling Process [R]. NASA TN D-6671. 1972.
    [60] Poole L R, Whitesids J L. Suspension-line Wave Motion during the Lines-firstParachute Unfurling Process [R]. AIAA Journal, 1974, 12 (1):38~43.
    [61] Heinrich E K. A Parachute Snatch Theory Incorporating Line Disengagement Impulse [R]. AIAA 73-4641.1973.
    [62] McVey D F, Wolf D F. Analysis of Deployment and Inflation of Large Ribbon Parachutes [J]. J. Aircraft, 1974, 11(2):96~103.
    [63] French K E. A First-order Theory for the Effects of Line Ties on Parachute Deployment [R]. AIAA-79-0450.1979.
    [64]徐宏,曹义华,李栋.先拉伞绳法数学模型及拉直利预测[J].航空动力学报. 2008, 23(4):706~711.
    [65] Moog R D. Aerodynamic Line Bowing during Parachute Deployment [R]. AIAA 75-1381.1975.
    [66] Sundberg W D. Finite-element Modeling of Parachute Deployment and Inflation[R]. AIAA 75-1380.1975.
    [67] Purvis J W. Improved Prediction of Parachute Line Sail during Lines-first Deployment[R]. AIAA 84-0786.1984.
    [68] Purvis J W. Numerical Prediction of Parachute Deployment, Initial Fill and Inflation of Parachute Canopies[R]. AIAA 84-0787.1984.
    [69] Purvis J W. Prediction of Parachute Line Sail during Lines-first Deployment [J]. J. Aircraft, 1983, 20(11):940~945.
    [70] Eckroth W V, Garrard W L, et al. Design of a Recovery System for a Reentry Vehicle[R]. AIAA 93-1224.1993.
    [71]张青斌,程文科.降落伞拉直过程的多刚体模型[J].中国空间科学技术,2003, 23(2):45~50.
    [72]张青斌,彭勇.降落伞拉直过程中的阻尼弹簧模型[J].弹道学报,2003,15(1): 31~36.
    [73]张青斌,彭勇.系绳力对降落伞拉直过程的影响[J].航天返回与遥感,2002, 23(2):9~14.
    [74]余莉,史献林,袁文明.牵顶伞在降落伞拉直过程中的作用[J].南京航空航天大学学报, 2009,41(2):198~201
    [75] Alain Goriely, Tyler McMillen. Shape of a Cracking Whip [J]. Physical Review Letters.2002, 88(24)
    [76] Krehl P, Engemann S, Schwenkel D. The Puzzle of Whip Cracking-Uncovered by a Correlation of Whip-tip Kinematics with Shock Wave Emission [J]. Shock Waves.1998, 8:1-9.
    [77]武际可.甩鞭子为什么会响?—兼谈鞭梢效应[J].力学与实践.1995, 17(5):72-73
    [78] Bruce R, David H, Wolf D F. A Textile Vent Hoop Replacement for Parachute Vent Line[R]. AIAA-2001-2041, 2001.
    [79]夏刚,程文科,秦子增.航天器回收中几种主伞失效案例介绍[J].航天返回与遥感. 2002, 23(4)-4-8.
    [80] Norman L C, Suit K L. An Investigation of the Initial Century Series Ringsail Parachute [R]. NASA TND-5968, 1970.
    [81] Long L J. Design and Development of the Model 227 Aerial Recovery System [R]. AIAA-93-1244, 1993.
    [82] Watts G. Space Shuttle Solid Rocket Boost Main Parachute Damage Reduction Team Report [R].NASA TM-4437, 1993.
    [83] Bennett T, Smith J, Fox R. Testing and Development of the NASA X-38 Parafoil Upper Surface Energy Modulator [R]. AIAA-99-1753, 1999.
    [84] Machin R, Stein J M, Muratore J. An Overview of the X-38 Prototype Crew Return Vehicle Development and Test Program [R]. AIAA-99-1703. 1999.
    [85] Mitcheltree R, Bruno R. High Altitude Test Program for a Mars Subsonic Parachute [C]. AIAA- 2005-1659
    [86]林斌.牵顶伞设计分析[C].中国宇航学会返回与再入专业委员会学术会议.2006:74-78
    [87]林仙友.开伞系统中牵顶伞的功能[J].航天返回与遥感.1993, 14(4):14~27.
    [88]王海涛,秦子增,宋旭民等.大型降落伞拉直过程的抽打现象分析[J].国防科技大学学报, 2010,32(5):34~39.
    [89]王海涛,秦子增,宋旭民等.牵顶伞对大型降落伞拉直过程的影响分析[J].国防科技大学学报, 2010,32(4):49~55.
    [90]余莉.降落伞仿真技术与试验研究[D].南京:南京航空航空大学博士学位论文,2006.
    [91]彭勇.载人飞船回收系统若干动力学问题的研究与应用[D].长沙:国防科技大学博士学位论文,2004.
    [92] Heinrich H G. Analysis of Parachute Opening Dynamics with Supporting Wind Tunnel Experiments. AIAA 68-0924,1968
    [93] Heinrich H G. Opening Time of Parachutes under Infinite-Mass Conditions [J]. J. Aircraft, 1969, 6(3)
    [94] French K E. Inflation of a Parachute [J]. AIAA Journal, 1963, 1(11)
    [95] Greene G C. Opening Distance of a Parachute [J]. J. Spacecraft, 1970, 7(1)
    [96] Mcewan A J. An Investigation of Parachute Opening Loads and a New Engineering Method for Their Determination [R]. AIAA 70-1168.1970.
    [97] Wolf D F. A Simplified Dynamic Model of Parachute Inflation. Journal of Aircraft, 1974, 11(1):28~33.
    [98] Macha J M. A Simple Approximate Model of Parachute Inflation. AIAA 93-1206, 1993.
    [99] Keith R S, Benney R J. Parachute Inflation a Problem in Zeroelasticity [R]. AD-A284375. 1994.
    [100] Benney R, Keith R S. Current 3-D Structural Dynamic Finite Element Modeling Capabilities [R]. AIAA-97-1506. 1997.
    [101] Keith S, Benney R. 3-D Computation of Parachute Fluid-Structure Interactions Performance and Control [R]. AIAA 99-1974. 1999.
    [102] Keith S, Benney R, Tezduyar T, et al. 3-D Computation of Parachute Fluid-Structure Interactions Performance and Control[R]. AIAA-99-1714. 1999.
    [103] Nelsen J M. Computational Fluid Dynamic Studies of a Solid and Ribbon 12-Gore Parachute Canopy in Subsonic and Supersonic Flow [R]. AIAA-95-1558. 1995.
    [104] Vinay K, Tayfun E. T. A Parallel 3D Computational Method Fluid-Structure Interactions in Parachute Systems [J]. Computer Methods Application Mechanical Energy, 2000,190 (1):321-332.
    [105] Strickland J H., Homicz G F, Gossler A A, et al. On the Development of a Gridless Inflation Code for Parachute Simulations[R]. AIAA 2001-2000. 2001.
    [106] Frucht Y I, Cockrell D J. A Discrete Vortex Method of Analysis for inviscid Asymmetric Flows around Parachute Canopies[R]. AIAA 91-0850. 1991.
    [107] Cockrell D J, Haidat N I. Influence of the Canopy-Payload Coupling on the Dynamic Stability in Pitch of a Parachute System[R]. AIAA-93-1248. 1993.
    [108] Shirayama S, Kuwahara K. Computation of Flow past a Parachute by a Three-Dimensional Vortex Method[R]. AIAA 86-0350. 1986.
    [109] Vinod Kumar. Advanced Computational Techniques for Incompressible Compressible Fluid-Structure Interactions [D]. Houston: RICE University PhD thesis, 2005.
    [110] Wenqing Zhang. Parallel Finite Element Methods for the Simulation of Parachute Dynamics and Control [D]. Hartford: University of Connecticut PhD thesis,2003.
    [111] Vance L. Behr, Walter P. Wolfe, Carl W. Peterson. An Overview of the Development of a Vortex Based Inflation Code for Parachute Simulation (VIPAR) [R]. AIAA -99-1726. 1999.
    [112] Lyalin V V, Morozov V I, Ponomarev A T. Parachute Performance Computer Analysis [R]. AIAA 2001-2064. 2001.
    [113]彭勇,宋旭民,秦子增.用粘性涡方法计算伞状物绕流[J].航天返回与遥感, 2004,25 (4):10~14.
    [114]彭勇,宋旭民,秦子增.降落伞充气过程中尾流再附动力学分析[J].航天返回与遥感,2005,26(2):1~5.
    [115]彭勇,张青斌,程文科,等.降落伞初始充气阶段数值模拟[J].中国空间科学技术,2003,23(3):7~12.
    [116]彭勇,张青斌,秦子增.降落伞主充气阶段数值模拟[J].国防科技大学学报, 2004, 26(2):13~16.
    [117]李晓勇,王健,蒋崇文,等.降落伞数值模拟中的计算流体力学进展简介[J].航天返回与遥感,2004,25(4):1~9.
    [118]李晓勇,曹义华,蒋崇文,等.降落伞稳定下降阶段流场的数值模拟[J].航天返回与遥感,2004,25(2):5~9.
    [119]蒋崇文,曹义华,苏文翰.轴对称降落伞稳定下降阶段的流场特性[J].航天返回与遥感,2005,26(3):10~16.
    [120]蒋崇文,曹义华,苏文翰.对称面圆对轴对称降落伞流场特性的影响[J].北京航空航天大学学报,2006,32(3):271~275.
    [121]蒋崇文,曹义华,苏文翰.轴对称降落伞小迎角稳定下降时流场特性[J].中国空间科学技术,2007,(2):59~66.
    [122]潘星,曹义华.降落伞开伞过程的多节点模型仿真[J].北京航空航天大学学报, 2008,34(2):188~192.
    [123]余莉,明晓,胡斌.降落伞开伞过程的试验研究[J].南京航空航天大学学报, 2006,38(2):176~180.
    [124]余莉,李水生,明晓.降落伞弹性现象对伞衣载荷的影响[J].宇航学报,2008,29 (1):375~379.
    [125]余莉,夏文庆,朱春玲.降落伞设计软件的研制[J].计算机仿真,2004,21(12): 66~69.
    [126] Lester W G. A Note on the Theory of Parachute Stability[R]. R. A. E. Mech. Eng. 358. 1964.
    [127] Neustadt M, Ericksen R E, Guiteras J, et al. A Parachute Recovery System Dynamic Analysis [J]. J. Spacecraft, 1967, 4 (3):321~326.
    [128] White F M, Wolf D F. A Theory of Three Dimensional Parachute Dynamic Stability [J]. J. Aircraft, 1968, 5 (1):86~92.
    [129] Wolf D F. The Dynamic Stability of a Nonrigid Parachute and Payload System [D]. University of Rhode Island PhD thesis, 1968.
    [130] Wolf D. F. The Dynamic Stability of a Nonrigid Parachute and Payload System [J]. J. Aircraft, 1971, 8 (8):603~609.
    [131] Doherr K F, Schilling H. Nine-degree-of-freedom Simulation of Rotating Parachute Systems [J]. J. Aircraft, 1992, 29 (5):774~780.
    [132] Tory T, Ayres R. Computer Model of a Fully Deployed Parachute [J]. J. Aircraft, 1977, 14 (7):675~679.
    [133] Eaton J A. Added Mass and the Dynamic Stability of Parachutes [J]. J. Aircraft, 1982, 19 (5):414~416.
    [134] Eaton J A. Added Fluid Mass and the Equations of Motion of a Parachute [J].The Aeronautical Quarterly, 1983, 34 (3):226~242.
    [135] Cockrell D J. Apparent Mass-Its History and Its Engineering Legacy for Parachute Aerodynamics[R]. AIAA-91-0827-CP. 1991.
    [136] Cockrell D J, Doherr K F. Preliminary Consideration of Parameter Identification Analysis from Parachute Aerodynamic Flight Test Data[R]. AIAA 81-1940. 1981.
    [137] Cockrell D J, Doherr K F, Polpitiye S J. Further Experiment Determination of Parachute Virtual Mass Coefficients[R]. AIAA 84-0797. 1984.
    [138] Cockrell D J, Frucht Y I, Harwood R J. A Revision of the Added Mass Concept as Applied to Parachute Motion[R]. AIAA 89-0895. 1989.
    [139] Cockrell D J. Haidat N I. A. Influence of the Canopy-Payload Coupling on the Dynamic Stability in Pitch of a Parachute System[R]. AIAA-93-1248. 1993.
    [140] Ibrahim S K, Engdahl R A. Parachute Dynamics and Stability Analysis[R]. NASA-CR-120326. 1974.
    [141] Pillasch D W, Shen Y C, Valero N. Parachute/Submunition System Coupled Dynamics[R]. AIAA-84-0798. 1984.
    [142] Fallon E J. Parachute Dynamics and Stability Analysis of the Queen Match Recovery System [R]. AIAA-91-0879. 1991.
    [143] Watts G. Technique to Eliminate Computational Instability in Multibody Simulations Employing the Lagrange Multiplier[R]. NASA-TP-3220. 1992.
    [144] Watts G. Space Shuttle Solid Rocket Boost Main Parachute Damage Reduction Team Report[R]. NASA TM-4437. 1993.
    [145] Vishnyak A. Simulation of the Payload-Parachute-Wing System Flight Dynamics[R]. AIAA-93-1250. 1993.
    [146] Vishnyak A. Parachute Simulations for Ariane-5 Booster Recovery System Design[R]. AIAA-95-1593. 1995.
    [147] Vergnolle J F, Astorg J M. Dynamic Stability of a Capsule-Drogue Assembly during the Reentry[R]. AIAA-91-0878-CP. 1991.
    [148] Moulin J. Recovery System Simulation: Link Modelization [R]. AIAA-93-1249. 1993.
    [149] Raiszadeh B. Multibody Parachute Flight Simulations for Planetary Entry Trajectories Using“Equilibrium Points”[R]. AAS 03-163. 2003.
    [150] Raiszadeh B, Queen E M. Partial Validation of Multibody Program to Optimize Simulated Trajectories II (POST II) Parachute Simulation with Interacting Forces[R]. NASA/TM-2002-211634. 2002.
    [151] Queen E M, Raiszadeh B. Mars Smart Lander Parachute Simulation Model[R]. AIAA 2002-4616. 2002.
    [152] Raiszadeh B, Queen E. M. Mars Exploration Rover Terminal Descent MissionModeling and Simulation[R]. AAS 04-271. 2004.
    [153]李大耀,物—伞系统运动稳定性判据.返回与遥感.1994,3
    [154]李大耀,物体—双伞系统运动方程与稳定性判据.宇航学报.1997,10
    [155] Fatykhov F F. On the Solution of the Equations of Perturbed Motion of an Object-Parchute System. Dinamicheskie Sistemy, 1991.
    [156] Dohher K F, Schilling H. Nine-Degree-of-Freedom Simulation of Rotating Parachute Systems. J. Aircraft, 1992,29(5):774~780.
    [157] Matteis. Effects of Random Initial Conditions and Deterministic Winds on Simulated Parachute Motion. AIAA.
    [158] Gulieri G, Quagliotti F B. Validation of a Simulation Model for Planetary Entry Capsule. J. Aircraft, 2003, 40(1):127~136.
    [159]廖前芳.风场对舱-伞系统着陆姿态影响的仿真研究.返回与遥感,2005,6.
    [160]廖前芳.物伞系统回收过程动力学仿真与分析[D].长沙:国防科技大学硕士学位论文,2005.
    [161]王海涛,秦子增.降落伞回收系统平面运动稳定性分析[J].系统仿真学报,2009,21(18): 5816~5820.
    [162]王海涛,秦子增.物伞回收系统运动稳定性分析[J].导弹与航天运载技术, 2009,(6):46~51.
    [163]王海涛,郭叔伟,秦子增.降落伞特性对物伞系统稳定性的影响[J].航天器工程, 2009, 18(2):68~74.
    [164]王海涛,郭叔伟,秦子增.物伞系统空间运动模式分析[J].航天返回与遥感,2009,30(1): 21~27.
    [165] Oleg A. Yakimenko, Roman B.Statnikov. Muticriteria Parametrical Identification of Parafoil-Load Delivery System [J]. AIAA 2005-1664
    [166]蔡金狮.飞行器系统辨识[M].北京:宇航出版社,1995.
    [167] Kurashova M, Vishnyak, A. Identification of a Paraglider Longitudinal Aerodynamic Characteristics [J]. AIAA 1995-1560
    [168] Jann T. Aerodynamic Model Identification and GNC Design for the Parafoil-Load System AXLEX [J]. AIAA 2005-2015
    [169] Jann T. Aerodynamic Coefficients for a Parafoil Wing with Arc Anhedral-Theoretical and Experimental Results [J]. AIAA 2003-2106
    [170] Kothandaraman, G., and Rotea, M. R. SPSA Algorithm for Parachute Parameter Estimation, [J]. AIAA 2003
    [171] Rogers, R., Aerodynamic Parameter Estimation for Controlled Parachutes [J]. AIAA 2002-4708
    [172] Hur, G., Valasek, J., System Identification of Powered Parafoil-Vehicle from Flight Test Data [J] AIAA 2003-5539.
    [173]王海涛,郭叔伟,郭鹏等.遗传算法在降落伞气动力参数辨识中的应用[J].宇航学报,2010,31(4):981~986.
    [174]王海涛,秦子增.基于遗传算法的大型降落伞气动力参数辨识[J].国防科技大学学报,2010, 32(1):28~34.
    [175] Miguel A. Gonzalez, Francisco Zapirain. Integrated Dsign and Testing Tool[R]. AIAA-97-1452. 1997.
    [176] Adler D, Baeza M, Northey D. PASDA in Action[R]. AIAA-93-1225. 1993.
    [177] Adler D, Trogus W, Bachor E, et al. PASDA-A Tool to Design Atmospheric Descent Bodies with Parachutes [J]. Adv. Space Res., 1995, 16 (6):113~116.
    [178] Sundberg W D. Status Report: Parachute System Design, Analysis and Simulation Tool [R]. AIAA 93-1208. 1993.
    [179] Balaram J, Austin R, Banerjee P, et al. A High-Fidelity Dynamics and Spacecraft Simulator for Entry, Descent and Surface Landing[R]. IEEE 0-7803-7231-X/01. 2002.
    [180] Muller S, Wagner O, Sachs G. A High-Fidelity Nonlinear Multibody Simulation Model for Parafoil Systems [R]. AIAA 2003-2120. 2003.
    [181] Cuthbert P A, Desabrais K J. Validation of a Cargo Airdrop Software Simulator [R]. AIAA2003-2133. 2003.
    [182] Cuthbert P A. A Software Simulation of Cargo Drop Tests[R]. AIAA 2003-2132. 2003.
    [183] Cuthbert P A, Conley G L. A Desktop Application to Simulate Cargo Drop Tests[R]. AIAA 2005-1623. 2005.
    [184] Taylor A P, Murphy E. The DCLDYN Parachute Inflation and Trajectory Analysis Tool -An Overview[R]. AIAA 2005-1624. 2005.
    [185]柯鹏.降落伞系统动力学建模和综合仿真[D].北京:北京航空航天大学博士学位论文,2007.
    [186]柯鹏,杨春信,杨雪松.重型货物空投系统过程仿真及特性分析[J].航空学报, 2006,27(5):856~860.
    [187]柯鹏,杨春信.货台空投系统的三维动画仿真[J].系统仿真学报,2006,18(5): 1253~1256.
    [188]柯鹏,杨春信.降落伞开伞过程数值模拟研究综述[J].中航救生,2005,4:35~41.
    [189] Lamb H.理论流体动力学[M].游镇雄,牛家玉,译.北京:科学出版社,1990.
    [190] Eaton J A. Added Fluid Mass and the Equations of Motion of a Parachute [J]. The Aeronautical Quarterly, 1983, 34(3):226~242.
    [191] Hwang Y L. Nonlinear Analysis of Mooring Lines[C]. OMAE[C]. 1986:
    [192]纪宝淳.水下缆索之振动分析[D].国立中山大学(硕士),2001.
    [193] Potvin J. Simple Description of Airflow Characteristics inside an UnfoldingParachute [J]. J. Aircraft, 1999, 36(5)
    [194] Wolf D F, Heindel K. A Steady Rotation Motion for a Cluster of Parachutes. AIAA
    [195]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1999.
    [196]崔逊学.多目标进化算法及其应用[M].北京:国防工业出版社,2006.
    [197]钱炜祺,汪清,王文正,等.遗传算法在气动力参数辨识中的应用[J].空气动力学学报,2003,21(2):196~201.
    [198]钱炜祺,汪清,何开锋,等.混合遗传算法在气动力参数辨识中的应用[J].飞行力学,2004,22(1):33~36.
    [199]王晓鹏.导弹气动力辨识中的一种鲁棒算法[J].导弹与航天运载技术,2003, 261(1):8~11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700